一、技术架构与核心原理
1.1 ControlNet底层架构解析
- 双分支结构设计:
- 主分支:保留原始Stable Diffusion的U-Net结构,负责基础图像生成
- 控制分支:新增的ControlNet模块,包含13个卷积层和8个注意力层,实现条件信号的编码与融合
- 参数共享机制:ControlNet与主U-Net共享前4层卷积层参数,减少显存占用
- 多模态融合技术:
- 支持14种控制信号类型(Canny边缘、Depth深度、Scribble涂鸦等)
- 采用交叉注意力机制(Cross-Attention)实现条件信号与文本提示的深度融合
- 自适应权重分配:通过Learnable Skip Connection动态调整控制信号强度
1.2 Lora模型技术原理
- 低秩矩阵分解:
- 核