使用pandas解析JSON Dataset要方便得多。Pandas允许您将列表的列表转换为Dataframe并单独指定列名。
JSON解析器将JSON文本转换为另一种表示必须接受符合JSON语法的所有文本。它可以接受非JSON形式或扩展。实现可以设置以下内容:
- 它接受的文本大小的限制,
- 对嵌套的最大深度的限制,
- 对数字范围和精度的限制,
- 设置字符串的长度和字符内容的限制。
使用大型JSON数据集可能会恶化,特别是当它们太大而无法容纳在内存中时。在这种情况下,命令行工具和Python的组合可以成为探索和分析数据的有效方法。
导入JSON文件
JSON的操作是使用Python数据分析库pandas完成的。
import pandas as pd
现在,您可以使用命令read_json读取JSON并将其保存为pandas数据结构。
pandas.read_json (path_or_buf=None, orient = None, typ=’frame’, dtype=True, convert_axes=True, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, lines=False, chunksize=None, compression=’infer’)
import pandas as pd
# Creating Dataframe
df = pd.DataFrame([['a', 'b'], ['c', 'd']],
index =['row 1', 'row 2'],
columns =['col 1', 'col 2'])
# Indication of expected JSON string format
print(df.to_json(orient ='split'))
print(df.to_json(orient ='index'))
输出:
{
"columns":["col 1", "col 2"],
"index":["row 1", "row 2"],