pandas|解析JSON数据与导出

文章介绍了如何利用Python的pandas库方便地解析和操作JSON数据。通过read_json函数读取JSON文件转换为DataFrame,以及to_json方法将DataFrame导出为JSON。对于大型数据集,文章提到了内存管理和分块处理的方法。此外,还展示了如何处理嵌套的JSON数据,并提供了具体代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用pandas解析JSON Dataset要方便得多。Pandas允许您将列表的列表转换为Dataframe并单独指定列名。
JSON解析器将JSON文本转换为另一种表示必须接受符合JSON语法的所有文本。它可以接受非JSON形式或扩展。实现可以设置以下内容:

  • 它接受的文本大小的限制,
  • 对嵌套的最大深度的限制,
  • 对数字范围和精度的限制,
  • 设置字符串的长度和字符内容的限制。

使用大型JSON数据集可能会恶化,特别是当它们太大而无法容纳在内存中时。在这种情况下,命令行工具和Python的组合可以成为探索和分析数据的有效方法。

导入JSON文件

JSON的操作是使用Python数据分析库pandas完成的。

import pandas as pd

现在,您可以使用命令read_json读取JSON并将其保存为pandas数据结构。

pandas.read_json (path_or_buf=None, orient = None, typ=’frame’, dtype=True, convert_axes=True, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, lines=False, chunksize=None, compression=’infer’)


import pandas as pd
# Creating Dataframe 
df = pd.DataFrame([['a', 'b'], ['c', 'd']],
                  index =['row 1', 'row 2'],
                  columns =['col 1', 'col 2'])
  
# Indication of expected JSON string format
print(df.to_json(orient ='split'))
  
print(df.to_json(orient ='index'))

输出:

{
   
   "columns":["col 1", "col 2"],
 "index":["row 1", "row 2"],
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值