X-means: Extending K-means with
Efficient Estimation of the Number of Clusters

Dan Pelleg
Andrew Moore

DPELLEG@CS.CMU.EDU
AWM@CS.CMU.EDU

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract

Despite its popularity for general clustering,
K-means suffers three major shortcomings;
it scales poorly computationally, the num-
ber of clusters K has to be supplied by the
user, and the search is prone to local min-
ima. We propose solutions for the first two
problems, and a partial remedy for the third.
Building on prior work for algorithmic accel-
eration that is not based on approximation,
we introduce a new algorithm that efficiently,
searches the space of cluster locations and
number of clusters to optimize the Bayesian
Information Criterion (BIC) or the Akaike
Information Criterion (AIC) measure. The
innovations include two new ways of exploit-
ing cached sufficient statistics and a new very
efficient test that in one K-means sweep se-
lects the most promising subset of classes for
refinement. This gives rise to a fast, statis-
tically founded algorithm that outputs both
the number of classes and their parameters.
Experiments show this technique reveals the
true number of classes in the underlying dis-
tribution, and that it is much faster than re-
peatedly using accelerated K-means for dif-
ferent values of K.

1. Introduction

K-means (Duda & Hart, 1973; Bishop, 1995) has long
been the workhorse for metric data. Its attractive-
ness lies in its simplicity, and in its local-minimum
convergence properties. It has, however, three main
shortcomings. One, it is slow and scales poorly with
respect to the time it takes to complete each itera-
tion. Two, the number of clusters K has to be sup-
plied by the user. Three, when confined to run with a
fixed value of K it empirically finds worse local optima
than when it can dynamically alter K. We offer so-

lutions for these problems. Speed is greatly improved
by embedding the dataset in a multiresolution kd-tree
and storing sufficient statistics at its nodes. A careful
analysis of the centroid locations allows for geomet-
ric “proofs” about the Voronoi boundaries, and (un-
like all of (Deng & Moore, 1995; Zhang et al., 1995;
Moore, 1999)) there is absolutely no approximation
anywhere in the computation. An additional geomet-
ric computation, blacklisting, maintains a list of just
those centroids that need to be considered for a given
region (Pelleg & Moore, 2000). Blacklisting is not only
extremely fast but also scales very well with the num-
ber of centroids, allowing tractable 10, 000-means algo-
rithms. This fast algorithm is used as a building-block
in X-means: a new algorithm that quickly estimates
K. Tt goes into action after each run of K-means, mak-
ing local decisions about which subset of the current
centroids should split themselves in order to better fit
the data. The splitting decision is done by computing
the Bayesian Information Criterion (BIC). We show
how the blacklisting method naturally extends to en-
sure that obtaining the BIC values for all current cen-
ters and their tentative offspring costs no more than a
single K-means iteration. We further enhance compu-
tation by caching stable-state information and elimi-
nating the need to re-compute it.

We have experimented with X-means against a more
traditional method that estimates the number of clus-
ters by guessing K. X-means consistently produced
better clustering on both synthetic and real-life data,
with respect to BIC. It also runs much faster, even
when the baseline is our accelerated blacklisting K-
means.

2. Definitions

We first describe the naive K-means algorithm for pro-
ducing a clustering of the points in the input into K
clusters. It partitions the data-points into K subsets
such that all points in a given subset “belong” to some

center. The algorithm keeps track of the centroids of
the subsets, and proceeds in iterations. Before the first
iteration the centroids are initialized to random values.
The algorithm terminates when the centroid locations
stay fixed during an iteration. In each iteration, the
following is performed:

1. For each point x, find the centroid which is closest
to x. Associate xz with this centroid.

2. Re-estimate centroid locations by taking, for each
centroid, the center of mass of points associated
with it.

The K-means algorithm is known to converge to a lo-
cal minimum of the distortion measure (that is, av-
erage squared distance from points to their class cen-
troids). Tt is also known to be too slow for practical
databases. Much of the related work does not attempt
to confront the algorithmic issues directly. Instead,
different methods of subsampling and approximation
are proposed. A way to obtain a small “balanced”
sample of points by sampling from the leaves of a Rx
tree is shown in Ester et al. (1995). Ng and Han
(1994) suggested a simulated-annealing approach to
direct the search in the space of possible partitions of
the input points. Zhang et al. (1995) present a tree
structure with sufficient statistics. It is used to iden-
tify outliers and speed computations. However, the
calculated clusters are approximations, and depend on
many parameters.

Note that although the starting centers can be selected
arbitrarily, K-means is fully deterministic, given the
starting centers. A bad choice of initial centers can
have a great impact on both performance and distor-
tion. Bradley and Fayyad (1998) discuss ways to refine
the selection of starting centers through repeated sub-
sampling and smoothing.

For the remainder of this paper we denote by g; the
coordinates of the j-th centroid. We will use the no-
tation (7) to denote the index of the centroid which
is closest to the i-th data-point. For example, p(; is
the centroid associated by the i-th point during an it-
eration. D is the input set of points, and D; C D 1is
the set of points that have y; as their closest centroid.
We let R = |D| and R; = |D;|. The number of di-
mensions is M, and the Gaussian covariance matrix is

¥ = diag(c?).

3. Estimation of K

The algorithm as it was described up to this point can
only be used to perform K-means where K is fixed and

supplied by the user. We proceed now to demonstrate
how to efficiently search for the best K. The frame-
work now changes so the user only specifies a range
in which the true K reasonably lies, and the output is
not only the set of centroids, but also a value for K in
this range which scores best by a model selection cri-
terion such as BIC (see Section 3.2). We first describe
the process conceptually, without paying much atten-
tion to the algorithmic details. Next, we derive the
statistical tests used for scoring different structures.
We then come back to the high-level description of the
algorithm and show how it can be implemented effi-
ciently using ideas deriving from blacklisting and the
sufficient statistics stored in the kd-tree nodes.

3.1 Model Searching

In essence, the algorithm starts with K equal to the
lower bound of the given range and continues to add
centroids where they are needed until the upper bound
is reached. During this process, the centroid set that
achieves the best score is recorded, and this is the one
that is finally output.

The algorithm consists of the following two operations
repeated until completion.

X-means:

1. Improve-Params
2. Improve-Structure

3. If K > Kpax stop and report the best-
scoring model found during the search.
Else, Goto 1.

The Improve-Params operation is simple: it consists
of running conventional K-means to convergence.

The Improve-Structure operation finds out if and
where new centroids should appear. This is achieved
by letting some centroids split in two. How can we
decide what to split? We begin by describing and
dismissing two obvious strategies, after which we will
combine their strengths and avoid their weaknesses in
our X-means strategy.

Splitting idea 1: One at a time. The first idea would
be to pick one centroid, produce a new centroid
nearby, run K-means to completion and see if the
resulting model scores better. If it does, accept
the new centroid. If it doesn’t, return to the
previous structure. But this will need O(Kyax)
Improve-Structuresteps until X-means is com-
plete. And this begs the question of how to choose
which centroid is most deserving to give birth.

And if it doesn’t improve the score what should be
tried next? Perhaps all centroids could be tested
in this way (and then we stick with the best) but
since each test needs a run of K-means that would
be an extremely expensive operation for adding
only one centroid.

Splitting idea 2: Try half the centroids. The second
idea is used in the SPLITLOOP system for Gaus-
sian mixture model identification (Wasserman &
Moore, in press). Simply choose (say) half the
centroids according to some heuristic criterion for
how promising they are to split. Split them, run
K-means, and see if the resulting model scores
better than the original. If so accept the split.
This is a much more aggressive structure im-
provement, requiring only O(log Kmax) Improve-
Structure steps until X-means completes. But
what should the heuristic criterion be? Size of
region owned by centroid? Distortion due to cen-
troid? Furthermore, we will miss the chance to
improve in cases when one or two centroids need
to split but the rest do not.

Our solution achieves the benefits of ideas 1 and 2, but
avoids the drawbacks and (as we will see in Section 3.3)
can be turned into an extremely fast operation. We
will explain by means of an example.

Figure 1 shows a stable K-means solution with 3 cen-
troids. The boundaries of the regions owned by each
centroid are also shown. The structure improvement
operation begins by splitting each centroid into two
children (Figure 2). They are moved a distance pro-
portional to the size of the region in opposite directions
along a randomly chosen vector. Next, in each parent
region we run a local K-means (with K = 2) for each
pair of children. It is local in that the children are
fighting each other for the points in the parent’s re-
gion: no others. Figure 3 shows the first step of all
three local 2-means runs. Figure 4 shows where all
the children eventually end up after all local 2-means
have terminated.

At this point a model selection test is performed on
all pairs of children. In each case the test asks “is
there evidence that the two children are modeling real
structure here, or would the original parent model the
distribution equally well”? The next section gives the
details of one such test for K-means. According to the
outcome of the test, either the parent or its offspring
are killed. The hope is that centroids that already own
a set of points which form a cluster in the true under-
lying distribution will not be modified by this process
(that is, they will outlive their children). On the other
hand, regions of the space which are not represented

Figure 1. The result of running K-means with three cen-
troids.

Figure 2. Each original centroid splits into two children.

well by the current centroids will receive more atten-
tion by increasing the number of centroids in them.
Figure 5 shows what happens after this test has been
applied to the three pairs of children in Figure 4.

Therefore our search space covers all possible 25 post-
splitting configurations, and it determines which one
to explore by improving the BIC locally in each re-
gion. Compared with ideas 1 and 2 above, this allows
an automatic choice of whether to increase the number
of centroids by very few (in case the current number
is very close to the true number) or very many (when
the current model severely underestimates K). Empir-
ically, we have also found that regional K-means runs
with just 2 centers tend to be less sensitive to local
minima.

We continue oscillating between Improve-Params
and Improve-Structure until the upper bound for
K is attained.

3.2 BIC Scoring

Assume we are given the data D and a family of al-
ternative models M}, where in our case different mod-
els correspond to solutions with different values of K.

Figure 3: The first step of parallel local
2-means. The line coming out of each

centroid shows where it moves to.

How do we choose the best? We will use the poste-
rior probabilities Pr[M;|D] to score the models. In
our case the models are all of the type assumed by
K-means (that is, spherical Gaussians). To approxi-
mate the posteriors, up to normalization, we use the
following formula from Kass and Wasserman (1995):

BIC(M;) = ;(D) — % log R

where l;- (D) is the log-likelihood of the data accord-
ing to the j-th model and taken at the maximum-
likelihood point, and p; is the number of parameters
in M;. This is also known as the Schwarz criterion.

The maximum likelihood estimate (MLE) for the vari-
ance, under the identical spherical Gaussian assump-
tion, is:

| ,
~2)2
7 _R—KZ (@i =)",

(3

The point probabilities are:
; Ra) 1 1 5
(z:) RN eXP(557 1 = Hall

The log-likelihood of the data is

(D) = log T, P(i) =
R
5 (108 Zskesr — sl — o |7 +1og %)

Fix 1 < n < K. Focusing just on the set D, of points
which belong to centroid n and plugging in the maxi-
mum likelihood estimates yields:

- R, R, M
(D, = —TIOg(Qﬂ') -3

+R,log R, — R, log R

log(6”) — ——

Figure 4: The result after all parallel 2-

means have terminated.

R,— K

Figure 5: The surviving centroids after

all the local model scoring tests.

The number of free parameters p; is simply the sum of
K — 1 class probabilities, M - K centroid coordinates,
and one variance estimate. To extend this formula for
all centroids instead of one, we use the fact that the
log-likelihood of the points that belong to all centroids
in question is the sum of the log-likelihood of the in-
dividual centroids, and replace R above with the total
number of points which belong to the centroids under
consideration.

We use the BIC formula globally when X-means finally
chooses the best model it encountered, and also locally
in all the centroid split tests.

3.3 Acceleration

The X-means algorithm described so far can be im-
plemented as-is for small datasets. But so far we have
neglected its most important feature. It was invented
subject to the design constraint that it should be pos-
sible to use cached statistics to scale it up to datasets
with massive numbers of records.

Accelerating K-means: We begin by concentrat-
ing on a single K-means iteration. The task is to de-
termine, for every data-point, which centroid owns it.
Then, we can compute the center-of-mass of all points
which belong to a given centroid and that makes the
new location for that centroid. Immediately we ob-
serve that showing that a subset of points all belong to
a given centroid is just as informative as doing this for
a single point, given that we have sufficient statistics
for the subset (in our case the sufficient statistics are
the number of points and their vector sum). Clearly
it may save a lot of computation, provided that doing
this is not significantly more expensive than demon-
strating the ownership over a single point. Since the
kd-tree imposes a hierarchical structure on the data-
set, and we can easily compute sufficient statistics for
its nodes at construction time, it makes a natural selec-

tion for the partition of the points. Each kd-node rep-
resents a subset of the data-set. It also has a bounding
box, which is a minimal axis-parallel hyper-rectangle
that includes all points in the subset. In addition it
contains pointers to two children nodes, which repre-
sent a bisection of the points their parent owns.

Consider a set of counters, one for each centroid, which
store a running total of the number of points that be-
long to each, as well as their vector sum. We now show
how to update all the counters by scanning the kd-tree
just once. The Update procedure is a recursive one,
and accepts as parameters a node and a list of cen-
troids that may own the points in it. Its task is to
update the counters of the nodes in question with the
appropriate values of the points in the node. The ini-
tial invocation is with the root node and the list of all
centroids. After it returns the new locations may be
calculated from the counters. The procedure consid-
ers the geometry of the bounding box and the current
centroid locations to eliminate centroids from the list
by proving they cannot possibly own any point in the
current node. Hence the name “blacklisting”. Com-
plete details, as well as proofs, can be found in Pelleg
and Moore (2000). The point to remember here is that
after shrinking the list, the procedure recurses on the
children of the current node. The halting condition
is when the list contains just one centroid; then, the
centroid’s counters are incremented using the statis-
tics stored in the kd-node. Frequently this happens in
a shallow level of the kd-tree, and eliminates the work
needed to traverse all of its descendants.

Accelerating Improve-Structure: The procedure
described above works well to update the centroid
locations of a global K-means iteration. We will
now apply the same procedure to carry forward
an Improve-Structure step. Recall that during
Improve-Structure we perform 2-means in each
Voronoi region of the current structure. We first make
a list of the parent centroids, and use that as input to
the Update procedure. The difference from the global
iteration is in the action taken when the list reduces
to a single centroid. This event signifies the fact that
all points in the current node belong to the single cen-
troid. All we have to do now is divide them between
its children. To do this we simply make up a list con-
taining just the two children, and recurse using this
short list and the current node. The rest of the work
is done by the Update procedure. After a full scan
of the kd-tree has been carried out (possibly pruning
away many nodes), the counters of the child centroids
have their final values and their new locations can be
computed. Now a new iteration can take place, and so
on until the last of the centroid pairs has settled down.

Additional Acceleration: An interesting outcome
of the local decision-making is that some regions of the
space tend to become active (i.e., a lot of splitting and
re-arrangement takes place) while other regions, where
the centroids seem to have found the true classes, ap-
pear dormant. We can translate this pattern into fur-
ther acceleration by using caching of statistics from
previous iterations. Consider a kd-node that contains
a boundary between two centroids (that is, either of
the two centroids may own any of the node’s points).
Although we must recurse down the tree in order to
update the counters for the centers, there is no reason
to do this again in the next iteration, provided that
the centroids did not move, and that no other cen-
troid has moved into a position such that it can own
any of the node’s points. We therefore cache the con-
tribution of this node to each of the centroids’ counters
in the node, and subsequent iterations do not need to
traverse the tree any further than the current node if
the list of competing centroids matches.

To enable fast comparison of centroid locations against
their position in previous iterations we employ a write-
once data structure which does not permit alteration
of centroid coordinates after the initial insertion. In
case a centroid location changes, a new element has
to be inserted and it is given a unique identifier. This
way only a O(1) comparison of identifiers (per cen-
troid) is needed. Clearly “old” centroids would never
be accessed so there is no need to keep storing them in
the data-structure. This allows for a fast and memory-
efficient implementation using the original M - K mem-
ory plus a hash-table for identifier lookup. A further
extension of this idea can also cache the children of
a centroid in a regional iteration. Instead of being
killed, they are moved to a “zombie” state and the
next regional iteration resurrects them. Owing to the
fact that their identifiers did not change, the caching
mechanism immediately recalls the outcome of their
last local iteration (which may have been reached af-
ter several re-positioning steps).

4. Experimental Results

In our first experiment we tested the quality of the
X-means solution against that of K-means. To de-
fine quality as the BIC value of the solution would
be unfair to the K-means algorithm since it only tries
to optimize the distortion (i.e., average squared dis-
tance from points to their centroids). We therefore
compared both algorithms by the distortion of their
output. Gaussian datasets were generated as in Pelleg
and Moore (2000), then both algorithms were used.
While K-means was given the true number of classes

0.00084

T T
K-means +——
X-means ---x--+

0.00082 - —
0.0008 | q
0.00078 - q

0.00076 —

distortion

0.00074

0.00072 - q
0.0007 —

0.00068 |-) R
s oo Foommmmmmmmmeeeee Koo %

0.00066 I I I I I I I I I
75000 80000 85000 90000 95000 100000 105000 110000 115000 120000 125000
points

Figure 6. Distortion of X-means and K-means, showing
average distortion per point. Results are the average of
30 runs on 3-D data with 250 classes.

K, the X-means variant had to search for it in the
range [2... K] (see Figure 6). Interestingly, the distor-
tion values for the X-means solutions are lower (mean-
ing higher quality solutions). We may attribute this
to the gradual way in which X-means adds new cen-
troids in areas where they are needed. This contrasts
with the once-only placement of initial centroids used
by K-means.

Another interesting question is how good X-means is
at revealing the true number of classes. For com-
parison we used a variant of K-means which simply
tries different values of K and reports the configura-
tion which resulted in the best BIC. The permissible
range for X-means was [2...2K], and for K-means
we used the 20 equally-distant values up to 2K. Av-
eraged results are in Table 1 and detailed results for
the 100-class case are in Figure 7. They show that
X-means outputs a configuration which is within 15%
from the true number of classes. We also see that
K-means does better in this respect (about 6% aver-
age deviation). The results also show that K-means
tends to over-estimate the number of classes, and also
to output more classes as the number of records, R,
increases, while X-means usually under-estimates the
true K, and is in general insensitive to R.

A slightly different picture arises when we examine
the BIC score of the output configurations. Note that
our K-means variant chooses the best configuration
by its BIC score, so this is a fair comparison now. In
Figure 8 we see that X-means scores not only better
than K-means in this respect, but also outperforms the
underlying distribution which was used to generate the
data. This may be explained by random deviations in

Table 1. The mean absolute error vs. the number of classes
output by the two algorithms, using 2-D data with 4000 to
36000 points.

classes

error
K-means X-means
50 3.53+0.37| 3.00+0.89
100 5.77+0.58 | 9.06 &+ 1.00
150 9.65+4.28 | 21.43 +2.26
104 | 4
R 100 ¥ * 4
é 98 4
é. 96 - -
° 94 - 4
2| = S 0 N TR P S
8 0 50‘00 10(;00 15(;00 20(‘)00 25800 30(‘)00 35800 40000

points

Figure 7. The number of output classes as a function of
input size for 2-D data with 100 true classes, averaged over
30 randomly generated data-sets.

the data that cause it to be better modeled by fewer
classes than there actually are. For example, two (or
more) class centers, which are chosen at random, may
fall extremely close to one another so they approximate
a single class.

As far as speed is concerned, X-means scales much
better than iterated K-means. As shown in Figure 9,
X-means runs twice as fast for large problems. Note
this is a competition against an already accelerated
version of K-means as described in Pelleg and Moore
(2000). When compared against naive K-means (that
is, compute distances from every point to all cen-
troids and pick the minimal), X-means fares much bet-
ter. On a dataset of over 330,000 galaxies, X-means
completed in 238 seconds where traditional K-means
choosing among 10 values of K took 7793 seconds.
Both algorithms were set up to perform just one iter-
ation in the Improve-Params stage (and X-means
is programmed to iterate once more in the Improve-
Structure stage, and to augment the split by another
global iteration). The quality of the X-means solution
was superior in terms of both BIC and distortion.

BIC

23

2.25 |

22

215

I
0 5000 10000 15000 20000 25000 30000 35000 40000
points

Figure 8. BIC of X-means and K-means. Average BIC per
point is shown. Results are the average of multiple runs on
2-D data with 100 classes. The label “true” stands for the
BIC score of the centroids used to generate the data.

An interesting application of X-means arises in the
astrophysics domain. Given a dataset composed of
galaxies and their (z,y) coordinates, one would like
to ask what is a typical size of a cluster of galaxies.
We selected the brightest galaxies in the The Sloan
Digital Sky Survey (1998) data. This input set of ap-
proximately 800,000 sky objects' was divided by an
18 x 3 grid (the ranges of the data are not propor-
tional in both axis). The cells had approximately the
same number of objects. On each cell with R objects
we ran K-means iterated over the 10 values in the
range [R/1000, R/100] and X-means searching for K
in the same range, and recorded the resulting number
of clusters (equivalently, the average cluster size).

The average cluster size according to X-means was
473425.5, and 572+40.8 according to K-means. While
it 1s hard to validate these manually, we tend to believe
X-means since it is free to choose the number of clus-
ters from a wide range where K-means can only vali-
date a small number of specified K. This fact is well
reflected in the smaller variance of the X-means out-
put. In early experiments, where the range for K was
large and the number of sample points small, this effect
was more noticeable (and indeed, in the early stages
of a scientific research one’s guesses tend to be less
educated, so we expect this to be a recurring theme).

In terms of run-time, X-means is not only faster,
but increases its advantage as the number of points
increases, similarly to the way it does so for syn-
thetic datasets. An X-means run over the full data-

'As the survey progresses, we expect the number of
galaxies to grow significantly.

350

T
K-means ——+—
X-means ---x--+

300 -

250

200

seconds

150

100

50 I I I I I I I
0 5000 10000 15000 20000 25000 30000 35000 40000
points

Figure 9. Run-times of X-means and K-means. Average
run-times are shown for 3 dimensions and 250 classes on a
233-Mhz Pentium-2.

set of some 800,000 points and 4,000 resulting cen-
troids takes about 4.5 hours on a 600-Mhz DEC Alpha.
A similar K-means invocation ran into a hard-coded
limit after running for twice as long.

In a similar experiment on the important task of clus-
tering galaxies in the Las Campanas Redshift Survey
(1998) we compared X-means against a highly opti-
mized but traditional (no kdtree) implementation of
K-means. Traditional K-means tried 10 different val-
ues of K between 50 and 500. Both algorithms found
solutions with almost identical BIC scores, though X-
means chose a larger value of K. X-means completed
its search eight times faster than K-means.

5. Conclusion

We have presented a new K-means based algorithm
that incorporates model selection. By adopting and
extending algorithmic improvements to K-means, it is
efficient to the extent that running it once is cheaper
than looping over K with the fixed-model algorithm.
It uses statistically-based criteria to make local deci-
sions that maximize the model’s posterior probabili-
ties. Experimental results on both synthetic and real-
life data show it is performing faster and better than
K-means.

The choice of BIC as the splitting criterion is not
the only possible one. While we have found BIC to
perform well for our test-sets and applications, using
other criteria, such as AIC or MDL, may make sense
in other areas. Incorporating these measures into our
algorithm is straightforward.

Another direct extension is the application of BIC

(or similar criteria) to direct a model search in an
unrestricted-Gaussian EM algorithm (since blacklist-
ing is assuming hard membership, this is non-trivial).
Work in this vein is currently in progress (Wasserman
& Moore). One can also think of other ways to con-
duct the search for a model, even under the K-means
assumption (e.g., removing centroids, as well as adding
them).

Using our fast algorithms, statistical analysis of mil-
lions of data-points and thousands of classes is per-
formed in a matter of hours. Consequently, we are
able to test astrophysical theories using observations
that are much larger in scale than were ever available
in the past. As hinted above, this work opens up an
opportunity for a large class of algorithms to aid in
such endeavors.

Finally, we need to consider the question of the dimen-
sionality of the data. This paper has only empirically
demonstrated X-means on up to four-dimensional
data, although simpler algorithms (Pelleg & Moore,
2000) still give significant accelerations up to seven di-
mensions. But are even seven dimensions enough to
be interesting? We say yes for two reasons.

First, many big-science disciplines need to cluster
data-sets with between millions and billions of low-
dimensional records very quickly. Spatial galaxy,
color-space sky objects, and protein gel clustering are
just three such examples on which we are collaborating
with natural scientists.

Second, for high-dimensional data sets it is frequently
preferable to model the PDF by a factored represen-
tation (Meila, 1999) such as a Bayesian network in
which node distributions can be represented by lower-
dimensional clusters. X-means is a step towards a fast
inner-loop for these expensive algorithms.

Acknowledgements

We thank Larry Wasserman for invaluable help with
the statistical foundations of this work. Support pro-
vided by an NSF KDI Award to Andrew Moore: DMS-
9873442.

References

Bishop, C. M. (1995). Neural networks for pattern
recognition. Oxford: Clarendon Press.

Bradley, P. S., & Fayyad, U. M. (1998). Refining ini-
tial points for K-Means clustering. Proceedings of
the Fifteenth International Conference on Machine
Learning (pp. 91-99). Morgan Kaufmann, San Fran-

cisco, CA.

Deng, K., & Moore, A. W. (1995). Multiresolution
instance-based learning. Proceedings of the Twelfth
International Joint Conference on Artificial Intel-
ligence (pp. 1233-1239). San Francisco: Morgan
Kaufmann.

Duda, R. O., & Hart, P. E. (1973). Pattern Classifi-
cation and Scene Analysis. John Wiley & Sons.

Ester, M., Kriegel, H.-P.; & Xu, X. (1995). A database
interface for clustering in large spatial databases.
Proceedings of First International Conference on

Knowledge Discovery and Data Mining. Menlo
Park: AAAI

Kass, R., & Wasserman, L. (1995).
Bayesian test for nested hypotheses and its relation-
ship to the Schwarz criterion. Journal of the Amer-
tcan Statistical Association, 90, T73-795.

A reference

Las Campanas Redshift Survey (1998).
http://manaslu.astro.utoronto.ca/~lin/lcrs.html.

Meila, M. (1999). Efficient Tree Learning. Doctoral
dissertation, Massachusetts Institute of Technology,
Department of Computer Science, Cambridge, MA.

Moore, A. W. (1999). Very fast mixture-model-based
clustering using multiresolution kd-trees. Advances
in Neural Information Processing Systems 10 (pp.
543-549). Morgan Kaufmann.

Ng, R. T., & Han, J. (1994). Efficient and effective
clustering methods for spatial data mining. Pro-
ceedings of VLDB.

Pelleg, D., & Moore, A. (2000). Accelerating ez-
act k-means with geometric reasoning (Technical
Report CMU-CS-00-105). Carnegie Mellon Uni-
versity, Pittsburgh, PA. Also available from
http://www.cs.cmu.edu/~dpelleg/.

The Sloan Digital Sky Survey (1998). www.sdss.org.

Wasserman, L., & Moore, A. Density Estimation with
Accelerated, Exact, Mixture Models. In press.

Zhang, T., Ramakrishnan, R., & Livny, M. (1995).
BIRCH: An efficient data clustering method for very
large databases,. Proceedings of ACM SIGMOD (pp.
103-114).

