Under consideration for publication in J. Functional Pragnming 1

The Essence of the Iterator Pattern

Jeremy Gibbons and Bruno C. d. S. Oliveira
Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
http://www.comlab.ox.ac.uk/jeremy.gibbons/
http://www.comlab.ox.ac.uk/bruno.oliveira/

Abstract

The ITERATOR pattern gives a clean interface for element-by-elemenésscto a collection, in-
dependent of the collection’s shape. Imperative iteratiosing the pattern have two simultaneous
aspectsmappingandaccumulating Various existing functional models of iteration capturer
other of these aspects, but not both simultaneously. Wedhgut McBride and Patersoragplicative
functors and in particular the corresponditraverseoperator, do exactly this, and therefore capture
the essence of ther ERATOR pattern. Moreover, they do so in a way that nicely supportdutay
programming. We present some axioms for traversal, digoosilarity concerns, and illustrate with
a simple example, theordcountproblem.

1 Introduction

Perhaps the most familiar of the so-called Gang of Four desigterns (Gammat al,,
1995) is the TERATOR pattern, which ‘provides a way to access the elements of an ag
gregate object sequentially without exposing its undagyiepresentation’. Traditionally,
this is achieved by identifying arTERATOR interface that presents operations to initialize
an iteration, to access the current element, to advancestoekt element, and to test for
completion; collection objects are expected to implemikistinterface, usually indirectly
via a subobject. Essential to the pattern is the idea thateiés are accessed sequentially,
but independently of their ‘position’ in the collection;rfexample, labelling each element
of a tree with its index in left-to-right order fits the patiebut labelling each element with
its depth does not.

This traditional version of the pattern is sometimes caHadEXTERNAL | TERATOR.
An alternative NTERNAL ITERATOR approach assigns responsibility for managing the
traversal to the collection instead of the client: the dlieeeds only to provide an operation,
which the collection applies to each of its elements. Thedapproach is simpler to use,
but less flexible; for example, it is not possible for theatérn to affect the order in which
elements are accessed, nor to terminate the iteration &sgrhiteration’ in this paper we
mean the NTERNAL ITERATOR approach — not ETERNAL | TERATORS, nor iteration in
the sense of Pascafer loop.

An external iterator interface has been included in the dawhthe C# libraries since
their inception. Syntactic sugar supporting use of therfate, in the form of théoreach

2 Jeremy Gibbons and Bruno Oliveira

public staticint loop(MyObj) (IEnumerabléMyObj) coll){
intn=0;
foreach (MyObj objin coll){
n=n+1;
obj.touch();

}

returnn;

}

Fig. 1. lterating over a collection in C#.

construct, has been present in C# since the first versiomadala since version 1.5. This
syntactic sugar effectively represents internal itesabioterms of external iterators; its use
makes code cleaner and simpler, although it gives privilegi@tus to the specific iteration
interface chosen, entangling the language and its lilwarie

In Figure 1 we show an application of C#&r each construct: a metholdopthat iterates
over a collection, counting the elements but simultangougtracting with each of them.
The method is parametrized by the tyidgObj of collection elements; this parameter is
used twice, once to constrain the collectiooll passed as a parameter, and again as a
type for the local variablebj. The collection itself is rather unconstrained; it only has
implement thdEnumerabléMyObj) interface.

In this paper, we investigate the structure of iterationsr @ollection elements like that
shown in Figure 1. We emphasize that we want to capture bptcésof the metholbop
and iterations like itmappingover the elements, and simultaneouastcumulatingsome
measure of those elements. Moreover, we aim to dbddistically, treating the iteration
as an abstraction in its own right; this leads us naturallg tigher-order presentation.
We also want to develop aagebraof such iterations, with combinators for composing
them and laws for reasoning about them; this leads us towarfdsictional approach.
We argue that McBride and Patersoajsplicative functor{McBride & Paterson, 2008),
and in particular the corresponditigaverseoperator, have exactly the right properties.
Finally, we will argue thatraverseand its laws are ideally suited to modular development,
whereby more complex programs can be obtained by compobsinges ones together,
and compositions may be transformed by the applicationefatvs.

The rest of this paper is structured as follows. Section Zevey a variety of earlier
approaches to capturing the essence of iterations furadljoBection 3 presents McBride
and Paterson’s notions of applicative functors and traler§ hese two sections summarise
previous work; our present contribution starts in Sectipwidh a more detailed look at
traversals. In Section 5 we propose a collection of lawsafdrsal, and in Section 6 we
illustrate the use of some of these laws in the context of plgimxample, thevordcount
problem. Section 7 concludes.

2 Functional iteration

In this section, we review a number of earlier approacheapducing the essence of itera-
tion. In particular, we look at a variety of datatype-geneeicursion operators: maps, folds,
unfolds, crushes, and monadic maps. The traversals wesdigtGection 4 generalise most
of these.

The Essence of the Iterator Pattern 3

2.1 Origami

In theorigamistyle of programming (Meijeet al, 1991; Gibbons, 2002; Gibbons, 2003),
the structure of programs is captured by higher-order sonroperators such asap
fold andunfold These can be madiatatype-generi¢Jansson & Jeuring, 1997; Gibbons,
2006a), parametrised by the shape of the underlying daaagshown below.
class Bifunctor swhere
bimap:(a—b)— (c—d)—sac—sbd
dataFixsa= In{out::sa(Fixsa)}

map : Bifunctors= (a— b) — Fixsa— Fixshb
mapf = Inobimap f(map f)oout
fold :: Bifunctors= (sab—b) — Fixsa—b

foldf =fobimapid(fold f) - out
unfold :: Bifunctors= (b—sab —b— Fixsa
unfold f = Inobimap id(unfold f) o f

For a suitable binary type constructgrthe recursive datatypleix s ais the fixpoint
(up to isomorphism) in the second argumensd&dr a given typea in the first argument;
the constructoitn and destructoout witness the implied isomorphism. The type class
Bifunctor captures those binary type constructors appropriate fiarikning the shapes
of datatypes: the ones withkamapoperator that essentially locates elements of each of
the two type parameters. Technicaliyapshould also satisfy the laws

bimapid id =id -- identity
bimap(f -h) (gok) = bimap f gobimap h k -- composition
but this constraint is not expressed in the type class deabar

The recursion pattermapcaptures iterations that modify each element of a collactio
independently; thugnap touchcaptures the mapping aspect of the C# loop in Figure 1,
but not the accumulating aspect.

At first glance, it might seem that the datatype-genfaid captures the accumulating
aspect; but the analogy is rather less clear for a non-licgéction. In contrast to the C#
method above, which is sufficiently generic to apply to nioedr collections, a datatype-
generic counting operation defined usfolfl would need a datatype-generic numeric alge-
bra as the fold body. Such a thing could be defined polytylyi¢dnsson & Jeuring, 1997;
Hinze & Jeuring, 2003), but the fact remains tfa@tl in isolation does not encapsulate the
datatype genericity.

Essential to iteration in the sense we are using the terrméstiaccess to collection
elements; this was the problem wittid. One might consider a datatype-generic operation
to yield a linear sequence of collection elements from fodgsion-linear structures, for
example byunfoldng to a list. This could be done (though as with tieéd problem,
it requires additionally a datatype-generic sequencegedsb as the unfold body); but
even then, this would address only the accumulating asgebteaC# iteration, and not
the mapping aspect — it discards the shape of the originattstre. Moreover, for some
datatypes the sequence of elements is not definable as dd (@fobonset al,, 2001).

We might also explore the possibility of combining some aésth approaches. For
example, it is clear from the definitions above thapis an instance ofold. Moreover,

4 Jeremy Gibbons and Bruno Oliveira

the banana split theoreniFokkinga, 1990) states that two folds in parallel on the sam
data structure can be fused into one. Therefore, a map and ia foarallel fuse to a single
fold, yielding both a new collection and an accumulated megsand might therefore be
considered to capture both aspects of the C# iteration. Memveve feel that this is an
unsatisfactory solution: it may indeed simulate or implatrtee same behaviour, but it is
no longer manifest that the shape of the resulting colladtoelated to that of the original.

2.2 Crush

Meertens (1996) generalised APL's ‘reduce’ taciraush operation,({(®)) ::t a — a for
binary operatof®) ::a— a — awith a unit, polytypically over the structure of a regular
functort. For example((+)) polytypically sums a collection of numbers. For projectipn
composition, sum and fixpoint, there is an obvious thing tosdahe only ingredients that
need to be provided are the binary operator (for productspagonstant (for units). Crush
captures the accumulating aspect of the C# iteration inrEigyu accumulating elements
independently of the shape of the data structure, but naohtpping aspect.

2.3 Monadic map

One aspect of iteration expressed by neither the origamratgrs nor crush is the possi-
bility of effects, such as stateful operations or exce@i®@eminal work by Moggi (1991),
popularised by Wadler (1992), showed how such computdteffexts can be captured in
a purely functional context through the usenodnads
class Functor fwhere
fmap :(a—b)—fa—fb
class Functor m=- Monad mwhere
(>=):ma— (a—mb —mb
return::a—ma
satisfying the following laws:

fmap id =id -- identity
fmap(f - Q) =fmap fo-fmap g -- composition
returna>=f =fa -- left unit
mx>=return = mx -- right unit

(mx>=f)>=g=mx>=(Ax—f x>=g) --associativity
Roughly speaking, the typa afor a monadn denotes a computation returning a value of
typea, but in the process possibly having some computationatied@responding ton;
thereturn operator lifts pure values into the monadic domain, andlired” operators=
denotes a kind of sequential composition.

Haskell's standard library (Peyton Jones, 2003) definm®aadic magor lists, which
lifts an effectful computation on elements to one on lists:

mapM:: Monad m=- (a— mb) — ([a] — m[b])
Fokkinga (1994) showed how to generalise this from listsrt@sbitrary regular functor,
polytypically. Several authors (Meijer & Jeuring, 1995; fp et al., 1999; Jansson &
Jeuring, 2002; Pardo, 2005; Kiselyov & Lammel, 2005) havsesved that monadic map
is a promising model of iteration. Monadic maps are veryekostheidiomatic traversals

The Essence of the Iterator Pattern 5

that we propose as the essence of imperative iterationsedhdor monadic applicative
functors, traversal reduces exactly to monadic map. Howeve argue that monadic
maps do not capture accumulating iterations as nicely asnttight. Moreover, it is well-
known (Jones & Duponcheel, 1993; King & Wadler, 1993) thahads do not compose in
general, whereas applicative functors do; this will giveauscher algebra of traversals.
Finally, monadic maps stumble over products, for which ¢hare two reasonable but
symmetric definitions, coinciding only when the monad is cmmative. This stumbling
block forces either a bias to left or right, or a restrictedu® on commutative monads, or
an additional complicating parametrisation; in contrapplicative functors generally have
no such problem, and in fact can exploit it to provide traakreversal.

Closely related to monadic maps are operations like Haslsgljuencéunction

sequence Monad m=- [m a) — m|a]
and its polytypic generalisation to arbitrary datatypesleled,sequenceand mapM are
interdefinablemapM f = sequencemap f, and sosequence- mapM id Most writers
on monadic maps have investigated such an operation; Megdi (1999) call itpassive
traversal Meertens (1998) callsftinctor pulling and Pardo (2005) and others have called
it a distributive law McBride and Paterson introduce the functitist playing the same
role, but as we shall see, more generally.

3 Applicative Functors

McBride and Paterson (2008) recently introduced the natioan applicative functoror
idiom as a generalisation of monads. (‘ldiom’ was the nhame McBaidginally chose,
but he and Paterson now favour the less evocative term Ggiplée functor’. We have a
slight preference for the former, not least because it létsetf nicely to adjectival uses,
as in ‘idiomatic traversal’. However, out of solidarity, well mostly use ‘applicative
functor’ as the noun in this paper, resorting to ‘idiomatis the adjective. Note that
Leroy’s parametrised modules that map equal type paraméteequal abstract types
(Leroy, 1995) are a completely different kind of ‘applieatifunctor’.) Monads allow
the expression of effectful computations within a purelpdtional language, but they
do so by encouraging amperativeprogramming style (Peyton Jones & Wadler, 1993);
in fact, Haskell’s monadiclo notation is explicitly designed to give an imperative feel.
Since applicative functors generalise monads, they peothé same access to effectful
computations; but they encourage a mapplicativeprogramming style, and so fit better
within the functional programming milieu. Moreover, as viwak see, applicative functors
strictly generalise monads; they provide features beyboda of monads. This will be
important to us in capturing a wider variety of iterationsdan providing a richer algebra
of those iterations.

Applicative functors are captured in Haskell by the follogitype class, provided in
recent versions of the GHC hierarchical libraries (GHC Te2006).

class Functor m=- Applicative mwhere

pure::a— ma
(®) mm(a—b)—-ma—mb

6 Jeremy Gibbons and Bruno Oliveira

Informally, purelifts ordinary values into the idiomatic world, amgprovides an idiomatic
flavour of function application. We make the convention tRadssociates to the left, just
like ordinary function application.

In addition to those of thEBunctorclass, applicative functors are expected to satisfy the
following laws.

pureid®u =u -- identity

pure(c) ®UAVEW = U® (VB W) -- composition
pure f® pure X = pure(f x) -- homomorphism
u® pure X =pure(Af = fx)®u --interchange

In case the reader feels the need for some intuition for tlaesse we refer them forwards to
the stream Naperian applicative functor discussed in @e&il below, which we believe
provides the most accessible instance of them.

These four laws are sufficient to rewrite any expressiort fnaiin the applicative func-
tor operators into a canonical form, consisting of a purecfiom applied to a series of
idiomatic argumentspure f® u; ® --- ® un. (The composition law read right to left re-
associates applications to the left; the interchange lawesipure functions to the left; and
the homomorphism and identity laws combine multiple or zerourrences opure into
one.) Hence the sequencing of effects of any applicativepcation is fixed; in contrast,
the ‘bind’ operation of a monad allows the result of one cotapan to affect the choice
and ordering of effects of subsequent computations, aredherefore not supported by
applicative functors in general.

3.1 Monadic applicative functors

Applicative functors generalise monads; every monad iadam applicative functor, with
the following operations.
newtype M m a= Wrap{ unWrap:: m a}

instance Monad m=- Applicative(M m) where
pure = Wrape return
f ®x=Wrap(unWrap f‘ap' unWrap %
(The wrappeM lifts a monad to an applicative functor, and is needed tochwwaerlapping
type class instances.) Thareoperator for a monadic applicative functor is essentiai$y j
thereturn of the monad, and idiomatic applicationmis essentially monadic application,
mf‘ap’' mx= mf >=Af — mx>=Ax — return (f x), here with the effects of the function
preceding those of the argument — there is another, contyptemetric, definition, with
the effects of the argument preceding those of the funciea Gection 4.3). We leave the
reader to verify that the monad laws thus entail the appiedtinctor laws.
For example, th&tatemonad uses the following type declaration:
newtype State s a= Statg runState: s — (a,s) }
and induces a monadic applicative fundiér(State $.
A particular subclass of monadic applicative functors espionds to datatypes of fixed
shape, and is exemplified by the stream functor:
data Stream a= SCons g Stream a

The Essence of the Iterator Pattern 7

The pure operator lifts a value to a stream, with infinitely many cap@f it; idiomatic
application is a pointwise ‘zip with apply’, taking a strearhfunctions and a stream of
arguments to a stream of results:
instance Applicative Strearwhere
pure x = xswherexs= SCons X xs
(SConsf fs® (SCons x Xs= SCongf X) (fs® xs)
This applicative functor turns out to be equivalent to the mtuced by th®eademonad:
newtype Reader r a= Readef runReader:r — a}
where the environment typeis the natural numbers. Computations within the stream
applicative functor tend to perform a transposition of tesuthey are related to what
Kuhne (1999) calls theansfoldoperator. We find that this applicative functor is the most
accessible one for providing some intuition for the appiesfunctor laws.

A similar construction works for any fixed-shape datatyparg vectors of lengtim,
matrices of fixed size, infinite binary trees, and so on. Rd#srcock calls such datatypes
Naperian because they support a notion of logarithm. That is, dptatyis Naperian
if ta~ aP ~ p — a for some typep of positions, called the logarithm logof t. Then
t1~ 1P ~ 1, so the shape is fixed, and familiar properties of Napiegatithms arise —
for example, logt x u) ~ log t + log u. Naperian functors generally are equivalent to
Reademonads, with the logarithm as environment; nevertheleedeel that it is worth
identifying this particular subclass of monadic applieatfunctors as worthy of special
attention. We expect some further connection with datalfgmand numerically intensive
computation, in the style of Jay’s language FISh (Jay & Sexck998), but we leave the
investigation of that connection for future work.

3.2 Monoidal applicative functors

Applicative functors strictly generalise monads; there @pplicative functors that do not

arise from monads. A second family of applicative functtris time non-monadic, arises

from constant functors with monoidal targets. McBride amdePson call thesphantom

applicative functorsbecause the resulting type is a phantom type, as opposetidaner

type of some kind. Any monoidd,) induces an applicative functor, where thare

operator yields the unit 0 of the monoid and applicatiorsuke binary operatap.
newtype Const b a= Consf{ unConst: b}

instance Monoid b=- Applicative(Const § where
pure_ = Constd
x®y = Const(unConst xbunConsty
Computations within this applicative functor accumulaime measure: for the monoid of
integers with addition, they count or sum; for the monoidistslwith concatenation, they
collect some trace of values; for the monoid of booleans digjunction, they encapsulate
linear searches; and so on.

Note that the ‘repeat’ and ‘zip with apply’ operations of tteeam Naperian applica-
tive functor can be adapted for ordinary lists (Fridlendeinflrika, 2000) (although this
instance does not seem to arise from a monad):

instance Applicative[| where

pure x = Xswherexs= Xx:xs

8 Jeremy Gibbons and Bruno Oliveira

(f:fs)@ (x:xs) =f x: (fs@x9)

- ®_ =[]
Therefore, lists form applicative functors in three diffet ways: monadic in the usual way
using cartesian product, when they model non-determingstaluation; monoidal using
concatenation, when they model tracing of outputs; and Napénspired using zip, when
they model data-parallel computations.

3.3 Combining applicative functors

Like monads, applicative functors are closed under pradsottwo independent idiomatic
effects can generally be fused into one, their product.
data (mXn) a= Prod{ pfst:: m a psnd:n a}
(®) :: (Functor mFunctorn) = (a— mb) — (a— nb) — (a— (mXn) b)
(f®0) x=Prod (f X) (g X)
instance (Applicative mApplicative r) = Applicative(mX n) where
pure x = Prod (pureX (pure X
mf ® mx= Prod (pfst mf® pfst my (psnd mf® psnd mx
Unlike monads in general, applicative functors are alssedounder composition; so
two sequentially-dependentidiomatic effects can gehebalfused into one, their compo-
sition.
data (mmn) a= CompunComp:m(n a) }
(®):: (Functor nFunctorm) = (b—nc¢)— (a—mb) — (a— (mm@n)c)
f ©g=Comp-fmap fo g
instance (Applicative mApplicative r) = Applicative(m n) where
pure X = Comp(pure(pure X)
(Comp mf ® (Comp mx = Comp(pure(®) ® mf ® mx)
The two operators and® allow us to combine idiomatic computations in two different
ways; we call thenparallelandsequential compositignespectively. We will see examples
of both in Sections 4.1 and 6.

3.4 ldiomatic traversal

Two of the three motivating examples McBride and Patersonige for idiomatic com-
putations — sequencing a list of monadic effects and trasisg@ matrix — are instances
of a general scheme they ctithversal This involves iterating over the elements of a data
structure, in the style of a ‘map’, but interpreting certhinction applications idiomati-
cally.

traverselList: Applicative m=- (a— mb) — [a] — m[b]

traverseList f[] = pure]]

traverselList f(x: xs) = pure(:) ®f x® traverseList f xs
A special case is for traversal with the identity functiomj@h distributes the data structure
over the idiomatic structure:

distList:: Applicative m=- [m a — m|[a]

distList= traverseList id

The Essence of the Iterator Pattern 9

The ‘map within the applicative functor’ pattern of travargor lists generalises to
any (finite) functorial data structure, even non-regula(Bird & Meertens, 1998). We
capture this via a type class ®faversabledata structures (a slightly more elaborate type
classData Traversableappears in recent GHC hierarchical libraries (GHC Teamg200

class Functor t= Traversable ivhere
traverse: Applicative m= (a— mb) —ta—m(tbh)
traverse f= distofmap f
dist:: Applicativem=-t (ma — m(ta)
dist=traverseid

For example, here is a datatype of binary trees:

dataTree a= Leaf a| Bin (Tree g (Tree g

instance Functor Treewhere
fmap f (Leaf ¥ = Leaf (f X)
fmap f(Bintu) = Bin (fmap f § (fmapf u
The correspondingiaverseclosely resembles the simplerap with judicious uses obure
ande®:
instance Traversable Treavhere
traverse f(Leaf X = pure Leaf®f x
traverse f(Bin t u) = pure Bin@traverse f t® traverse f u

McBride and Paterson propose a special syntax involvinigrigtic brackets’, which
would have the effect of inserting the occurrencepoife and ® implicitly; apart from
these brackets, the definition then looks exactly like a d@&finof fmap This defini-
tion could be derived automatically (Hinze & Peyton Joné3)®, or given datatype-
generically once and for all, assuming some universal sgmtation of datatypes such
as sums and products (Hinze & Jeuring, 2003) or (using thaitefis of Bifunctor, Fix
andfold from Section 2.1) regular functors (Gibbons, 2003):

class Bifunctor s=- Bitraversable svhere

bidist:: Applicative m=-s(ma (mb) - m(sab
instance Bitraversable s= TraversablegFix s) where
traverse f= fold (fmap Ine bidiste bimap f id)

Whenm is specialised to the identity applicative functor, trazgrreduces precisely
(modulo the wrapper) to the functorial map over lists.

newtypeld a= Id{unld::a}

instance Applicative ldwhere

purex =Idx
mf@®mx= Id ((unld mf) (unld mx)

In the case of a monadic applicative functor, traversal isfises to monadic map,
and has the same uses. In fact, traversal is really just bt gjgneralisation of monadic
map: generalising in the sense that it applies also to nomawtic applicative functors. We
consider this an interesting insight, because it revealsrttonadic map does not require
the full power of a monad; in particular, it does not require thind’ or ‘join’ operators,
which are unavailable in applicative functors in general.

10 Jeremy Gibbons and Bruno Oliveira

For a Naperian applicative functor, traversal transposgsits. For example, interpreted
in the pair Naperian applicative functaraverseList idunzips a list of pairs into a pair of
lists.

For a monoidal applicative functor, traversal accumulatdaes. The functiomeduce
performs that accumulation, given an argument that assigiatue to each element:

reduce: (Traversable tMonoid m = (a—m) —-ta—m

reduce f= unConsttraverse(Constf)
The special caserush(named after Meertens’ operator discussed in Section At2yith
an additional monoidal constraint) applies when the elémare their own values:

crush:: (Traversable tMonoid n) = tm—m

crush=reduce id
For example, when the monoid is that of integers and additiemersal sums the elements
of a collection.

tsum:: Traversable & t Integer— Integer

tsum= crush

4 Traversalsasiterators

In this section, we show some representative examples\drsals over data structures,
and capture them usirtcaverse
Before we look at traversals, however, we will introduce avemient piece of notation.
Recall the identity and constant functors introduced intisac:
newtypeld a=Id{unld::a}
newtype Const b a= Consf unConst: b}
We will have a number of new datatypes with coercion funditike Id, unld, Constand
unConst To reduce clutter, we introduce a common notation for sweraons:
classCoerce alj a— bwhere
Ja—b
fti:b—a
The idea is that an instance Gberce a hindicates that typa is a new datatype built on
top of an underlying typ®; the function|} reveals the underlying value, and the functjpn
wraps it up. The identity functor is an instance of this tyfsess, of course:
instance Coerce(ld a) awhere
J =unld
T=Id
and so are constant functors:
instance Coerce(Const a) awhere
| =unConst
= Const
Moreover, instances may be propagated through product:
instance (Coerce(m a) b, Coerce(n a) ¢) = Coerce((mXn) a) (b,c) where
I mnx = ({ (pfst mny, § (pshd mnx)
1 (xy) = Prod (1 x) (1Y)

through composition:

The Essence of the Iterator Pattern 11

instance (Functor mFunctor n Coerce(m b) c,Coerce(n a) b) =
Coerce((mmn) a) cwhere
| = { ofmapyl c.unComp
1 = Compefmapqof
and through monad wrapping:
instance Coerce(m a) ¢ =- Coerce(M m a) cwhere
J = ounWrap
I = Wrape f
We will introduce other instances @foerceas we need them.

4.1 Shape and contents

In addition to being parametrically polymorphic in the eaflion elements, the generic
traverseoperation is parametrised along two further dimensions:détatype being tra-
versed, and the applicative functor in which the traversahierpreted. Specialising the
latter to lists as a monoid yields a genezantentperation:

contentsBodya — Const[a] b

contentsBody x 1 [X]

contents:: Traversable =t a — Const[a] (t b)
contents= traverse contentsBody
To obtain a function of the expected typa — [a], we need to remove the type coer-
cions. The type clasSoerceallows this to be done generically:
run:: (Coerce b ¢Traversable}=- (ta—b) —-ta—c
run program= |} o program
Now we can define the function we expect:
runContents: Traversable = ta — [a]
runContents= run contents
(so thatrunContents=reduce(:[]). The functiorrunis applicable to all the other traversals
we define as well, but for the sake of brevity we usually ongtithutine definitions.
Thecontentsoperation is in turn the basis for many other generic opamnatiincluding
non-monoidal ones such as indexing. Moreover, it yieldstwaieof Jay’'s decomposition
of datatypes into shape and contents (Jay, 1995). The o#ifeofithe decomposition is
obtained simply by a map, which is to say, a traversal intggat in the identity idiom:
shapeBody a— Id ()
shapeBody = 1 ()

shape: Traversable t=ta— Id (t ())

shape= traverse shapeBody
This pair of traversals nicely illustrates the two aspecisenations that we are focussing
on, namely mapping and accumulation. Of course, it is trici@ompose them in parallel
to obtain both halves of the decomposition as a single fanctut doing this by tupling
in the obvious way

decompose Traversable = ta— (Id X Const[a]) (t ())

decompose- shaper contents

12 Jeremy Gibbons and Bruno Oliveira

entails two traversals over the data structure. Is it ptss$ibfuse the two traversals into
one? The product of applicative functors allows exactlg,thind Section 5.3 justifies this
decomposition of a data structure into shape and conteatsiimgle pass:

decompose- traverse(shapeBodw contentsBody

Moggi et al. (1999) give a similar decomposition, but using a customizdbination
of monads; we believe that the above component-based agpiosimpler.

A similar benefit can be found in the reassembly of a full détacsure from separate
shape and contents. This is a stateful operation, wheretdlte consists of the contents
to be inserted; but it is also a partial operation, becausetimber of elements provided
may be less than the number of positions in the shape. Wefthhemaake use of both the
Statemonad and th&laybemonad, and so we incorporate these two in our framework for
coercions:

instance Coerce(Maybe @ (Maybe g where

J=id
f=id
instance Coerce(State s a(s— (a,s)) where
|l =runState
I = State

This time, we form the composition of the functors, rathearththeir product. (As it
happens, the composition of ti&tateand Maybemonads in this way does in fact form
another monad, but that is not the case for monads in general.
The central operation in the solution is the partial stdthfoction that strips the first
element off the list of contents, if this list is non-empty:
reassembleBody() — (M (State[a]) @ M Maybe a
reassembleBody 1} - takeHead
wheretakeHead. || = (Nothing[])
takeHead._ (y:ys) = (Just yys)
This is a composite monadic value, using the compositiohefwo monadState/a] and
Maybe traversal using this operation yields a stateful funcfarthe whole data structure.
reassemble Traversable & t () — (M (State[a]) @M Maybg (t a)
reassemble- traverse reassembleBody
Now it is simply a matter of running this stateful functiondadiscarding any leftover
elements:
runReassembleTraversable t= (t (),[a]) — Maybe(t a)
runReassemble fsto uncurry(run reassemble
Decomposition and reassembly are partial inverses, inalf@fing sense:
run decompose= (s,c) < run reassemble s€ (Justt[])
Moreover, traversal of any data structure may be expressenims of list-based traversal
of its contents:
runDecompose xs (ys z9 =
fmap(curry runReassemble yétraverseList f zs= fmap Jus{traverse f x$
This reinforces the message that traversal concerns tharlprocessing of contents, pre-
serving but independent of the shape.

The Essence of the Iterator Pattern 13

4.2 Collection and dispersal

We have found it convenient to consider special cases ottéfletraversals, in which
the mapping aspect is independent of the accumulation, imedversa. The first of these
traversals accumulates elements effectfully, with an aipem of typea — m (), but modi-
fies those elements purely and independently of this acatioua| with a function of type
a—h.

collect:: (Traversable tApplicative) = (a—m()) — (a—b) - ta—m(th)

collect f g=traverse(Aa— pure(A() — g a) ®f a)
The C# iteration in Figure 1 is an example, using the appiedtinctor of theStatemonad
to capture the counting:

loop:: Traversable & (a — b) — t a— M (State Integer(t b)

loop touch= collect(Aa — Wrap(do {n«— getput(n+1)})) touch
The second kind of traversal modifies elements purely bu¢égnt on the state, with a
binary function of typea — b — ¢, evolving this state independently of the elements, via a
computation of typen b

disperse: (Traversable tApplicative = mb— (a—b—c)—-ta—m(tc)

disperse mb g- traverse(Aa — pure(g a) ® mh)
An example of this family of traversals is a kind of conver§eaunting, labelling every
element with its position in order of traversal.

label:: Traversable = t a — M (State Integer (t Integer

label= dispersgWrap step (curry snd

step: State Integer Integer
step= do {n < get put (n+1);return n}

4.3 Backwards traversal

In contrast to pure maps, the order in which elements artedign an effectful traversal is
significant; in particular, iterating through the elemenaskwards is observably different
from iterating forwards, because the effects happen in fiposite order. We can capture
this reversal quite elegantly as applicative functor adapter

newtype Backwards m a= Backwardg runBackwards. m a}

instance Applicative m=- Applicative(Backwards mwhere
pure = Backwards pure
f @ x = Backwardgpure(flip ($)) ® runBackwards % runBackwards ¥
Informally, Backwards nis an applicative functor ifnis, but any effects happenin reverse;
this provides the symmetric ‘backwards’ embedding of maniatb applicative functors
referred to in Section 3.1.
Such an adapter can be parcelled up existentially:
data AppAdapter mvhere
AppAdapter: Applicative(g m) =
(Vva.ma—gma — (Va.gma— ma) — AppAdapter m
backwards: Applicative m=- AppAdapter m
backwards= AppAdapter Backwards runBackwards
It can be used to define a parametrised traversal:

14 Jeremy Gibbons and Bruno Oliveira

ptraverse: (Applicative mTraversable t =
AppAdapterm- (a—mb) —ta— m(th)
ptraverse{AppAdapter insert retrieyd = retrieveo traverse(insertof)
For example, reverse labelling is just labelling, adapbtedin backwards:
lebal = ptraverse backward& a — step
Of course, there is a trividbrwardsadapter too:
newtype Forwards m a= Forwards{ runForwards: m a}

instance Applicative m=- Applicative(Forwards) where
pure = Forwardse pure
f ® x = Forwards(runForwards f® runForwards ¥

instance Functor m=- Functor (Forwards m) where
fmap f= Forwards- fmap forunForwards

forwards:: Applicative m=- AppAdapter m
forwards= AppAdapter Forwards runForwards

5 Lawsof traverse

In line with other type classes such snctor and Applicative we should consider also
what properties the various datatype-specific definitidrisawerseought to enjoy.

5.1 Freetheorems of traversal

In addition to his popularisation of Moggi’s work on monadé&dler made Reynolds’ work
on parametricity (Reynolds, 1983) more accessible undesliigan ‘theorems for free’
(Wadler, 1989). This principle states that a parametsigadlymorphic function enjoys a
property that follows entirely from its type, without anyr=ideration of its implementa-
tion. The free theorem arising from the typedistis

disto fmap(fmap K = fmap(fmap K - dist
As corollaries, we get the following two free theoremgrafverse

traverse(geh) = traverse gfmap h

traverse(fmap kof) = fmap(fmap K o traverse f
These laws are not constraints on the implementatiodigifand traverse they follow
automatically from their types.

5.2 Seguential composition of traversals

We have seen that applicative functors compose: there emtity applicative functoid
and, for any two applicative functors andn, a composite applicative functarzn. We
impose on implementations distthe constraint of respecting this compositional structure
Specifically, the distributodist should respect the identity applicative functor:

distofmap Id=Id
and the composition of applicative functors:

disto fmap Comp= Compr fmap disb dist
As corollaries, we get analogous propertiesraberse

The Essence of the Iterator Pattern 15

traverse(ldof) =Idofmapf

traverse(Comp- fmap fo g) = Comp-fmap(traverse f) o traverse g
Both of these consequences have interesting interpregatiche first says thataverse
interpreted in the identity applicative functor is essalii just fmap as mentioned in
Section 3.4. The second provides a fusion rule for the sdleromposition of two
traversals; it can be written equivalently as:

traverse(f @ g) = traverse fo traverse g

5.3 Idiomatic naturality

We also impose the constraint that the distribulist should benatural in the applicative
functor, as follows. Anapplicative functor transformatiop:: m a— n afrom applicative
functor m to applicative functomn is a homomorphism over the structure of applicative
functors, that is, a polymorphic function (categorica#lypatural transformation between
functorsm andn) that respects the applicative functor structure, asvidlo

@ (purgna) =purga

@ (Mf®mmx) = @ mf ®n @ mx
(Here, the idiomatic operators are subscripted by theanidior clarity.)

Thendist should satisfy the following naturality property: for ajmaitive functor trans-
formationg,

dist, - fmap@ = @-disty,
One consequence of this naturality property is a ‘purity law
traverse pure= pure
This follows, as the reader may easily verify, from the ofsaBon thatpure,,ounid is
an applicative functor transformation from applicativedtorld to applicative functom.
This is an entirely reasonable property of traversal; onghitnsay that it imposes a con-
straint of shape preservation. (But there is more to it theaps preservation: a traversal
of pairs that flips the two halves necessarily ‘preservepah®ut breaks this law.) For
example, consider the following definition tverseon binary trees, in which the two
children are swapped on traversal:
instance Traversable Treavhere
traverse f(Leaf @ = pure Leaf®f a
traverse f(Bin t u) = pure Bin@ traverse f u® traverse f t

With this definition traverse pure= pureo mirror, wheremirror reverses a tree, and so the
purity law does not hold; this is because the correspondéfigition of distis not natural
in the applicative functor. Similarly, a definition with twampies oftraverse f tand none
of traverse f umakedraverse pureurely return a tree in which every right child has been
overwritten with its left sibling. Both definitions are pedtly well-typed, but (according
to our constraints) invalid.

On the other hand, the following definition, in which the &esals of the two children
are swapped, but tHgin operator is flipped to compensate, is blameless. The paritwtill
applies, and the corresponding distributor is natural éetplicative functor; the effect of
the reversal is that elements of the tree are traversed ‘figimhto left’.

16 Jeremy Gibbons and Bruno Oliveira

instance Traversable Treavhere
traverse f(Leaf 8 = pure Leaf®f a
traverse f(Bin t u) = pure(flip Bin) ®traverse f u® traverse f t
We consider this to be a reasonable, if rather odd, defindfdraverse
Another consequence of naturality is a fusion law for thajparcomposition of traver-
sals, as defined in Section 3.3:
traverse f@ traverse g= traverse(f @ g)
This follows from the fact thapfstandpsndare applicative functor transformations from
Prod m nto mand ton, respectively.

5.4 Sequential composition of monadic traversals

A third consequence of naturality is a fusion law specific tiniadic traversals. The natural
form of composition for monadic computations is callddisli composition
(¢)::Monad m= (b—mc)— (a—mbh) — (a—m¢
(feg)x=do{y—gxz—fyreturnz}
The monadn is commutativef, for all mxandmy,
do {x«— mxy« my,return(x,y) } = do {y < my,x — mxreturn (x,y) }
When interpreted in the applicative functor of a commutativonadm, traversals with
bodiesf ::b — m candg::a— m bfuse:
traverse fe traverse g= traverse(f « g)
This follows from the fact thap: - unCompforms an applicative functor transformation
from mmmto m, for a commutative monaa with ‘join’ operatoru (thatis,u = (>==id)).
This fusion law for the Kleisli composition of monadic trasals shows the benefits
of the more general idiomatic traversals quite nicely. Nibe the corresponding more
general fusion law for applicative functors in Section Slavas two different applicative
functors rather than just one; moreover, there are no siddittons concerning commu-
tativity, in contrast to the situation with Kleisli comptisn. For example, consider the
following programs:
updatg ::a — State Integer a
update x = do {var < get put (varx* 2); return x}
update ::a — State Integer a
update x = do {var — get put (var+ 1); return x}
monadig = traverse updatge traverse update
monadig = traverse(update « update)

applicativg = traverse updatgo traverse update

applicative = traverse(updatg © update)
Becausaipdatg andupdatg do not commutemonadig # monadig in general; never-
thelessapplicativg = applicative. The only advantage of the monadic law is that there
is just one level of monad on both sides of the equation; irresh the idiomatic law has
two levels of applicative functor, because there is no aqusmf the ‘join’ operatop.

We conjecture that the monadic traversal fusion law alsd$eVen ifmis not commu-
tative, provided that andg themselves commuté {g = g«f); but this no longer follows

The Essence of the Iterator Pattern 17

from naturality of the distributor in any simple way, andhitposes the alternative constraint
that the three types, b, c are equal.

5.5 No duplication of elements

Another way in which a definition ofraversemight cause surprises would be to visit
elements multiple times. (A traversal that skips elemerdald/ violate the purity law in
Section 5.3.) For example, consider this definitiortrafzerseon lists, which visits each
element twice:
instance Traversablg | where
traverse f[] = pure|]
traverse f(x: xs) = pure(const(:)) ®f x®f x®traverse f xs
Note that this definition still satisfies the purity law. Hoxee, it behaves strangely in the
following sense: if the elements are indexed from zero upggjaand then the list of indices
is extracted, the result is not an initial segment of the r@twmbers. To make this precise,
we define:
index:: Traversable t= t a — (t Integer, Integen
index xs= run label xs0
wherelabelwas given in Section 4.2. We might expect for asghat if index xs= (ys n)
thenrunContents ys- [0..n— 1]; however, with the duplicating definition of traversal for
lists above, we gehdex"abc" = (ys 6) whererunContentsys- [1,1,3,3,5,5].

We might impose ‘no duplication’ as a further constraint caveérsal, but the charac-
terisation of the constraint in terms of indexing feels eathd hoc; we are still searching
for a nice theoretical treatment of this condition. For theetbeing, therefore, we propose
to leave as an observation the fact that some odd definitibtraweersal may duplicate
elements.

6 Modular programming with applicative functors

In Section 4, we showed how to model various kinds of iteratie both mapping and
accumulating, and both pure and impure — as instances ofherigtraverseoperation.
The extra generality of applicative functors over monadgtaring monoidal as well as
monadic behaviour, is crucial; that justifies our claim tididmatic traversal rather than
monadic map is the essence of tieRATOR pattern.

However, there is an additional benefit of applicative fongbver monads, which con-
cerns the modular development of complex iterations franpgr aspects. Hughes (1989)
argues that one of the major contributions of functionalgpamming is in providing
better glue for plugging components together. In this segtive make a corresponding
case for applicative traversals: the improved compositionof applicative functors over
monads provides better glue for fusion of traversals, amtédetter support for modular
programming of iterations.

6.1 An example: wordcount

As an illustration, we consider the Unix word-counting ititilwc, which computes the
numbers of characters, words and lines in a text file. Therpragn Figure 2, based on

18 Jeremy Gibbons and Bruno Oliveira

publicstaticint [] we(char) (IEnumerabléchar) coll){
intnl=0,nw=0,nc=0;
bool state= false
foreach (char cin coll){
++nc
if c="\n’) +nl;
if(c=? *ve="\n’> ve="\t*){
state= false
} elseif (state= false){
state= true;
+nw;
}
}

int [] res= {nc,nw,nl};
returnres

}
Fig. 2. Kernighan and Ritchieisc program in C#

Kernighan and Ritchie’s version (1988), is a translatiorthe original C program into

C#. This program has become a paradigmatic example in thgrgorocomprehension
community (Gallagher & Lyle, 1991; Villavicencio & Olivear 2001; Gibbons, 2006b),
since it offers a nice exercise in re-engineering the thegmaate slices from the one
monolithic iteration. We are going to use it in the other diien: fusing separate simple
slices into one complex iteration.

6.2 Modular iterations, idiomatically

The character-counting slice of the program accumulates a result in the integers-as-
monoid applicative functor:
type Count= Const Integer

count:a— Countb

count_ = Constl
The body of the iteration simply yields 1 for every element:

cciBody:: Char — Count a

cciBody= count
Traversing with this body accumulates the character count:

cci:: String— Count|a]

cci = traverse cciBody
(Note that the element type of the output collection is ust@ined for traversal in a
monoidal applicative functor, because the result has atphatype.)

Counting the lines (in fact, the newline characters, thgighoring a final ‘line’ that is
not terminated with a newline character) is similar: thded#nce is simply what number
to use for each element, namely 1 for a newline and 0 for angtbise.

test:: Bool— Integer
test b=if bthen 1 else0
With the help of this function, we define:

The Essence of the Iterator Pattern 19

IciBody:: Char — Count a
IciBody c= 1) (test(c=’\n’))
Ici :: String— Count|a]

Ici = traverse IciBody

Counting the words is trickier, because it necessarily lire® state. Here, we use the
Statemonad with a boolean state, indicating whether we are ctiyrasithin a word, and
compose this with the applicative functor for counting:

wciBody:: Char — (M (State Boglm Count) a

wciBody c= 1} (updateState)owhere

updateState Char — Bool— (Integer, Bool)
updateState ¢ w- let s= not (isSpace fin (test(not wA s),s)

wci:: String— (M (State Boolm Count) [a]

wci = traverse wciBody

The wrapper actually to extract the word count runs thisarsal from an initial state of
False and discards the final boolean state:

runWeci:: String— Integer

runWeci s= fst (run wci s Fals¢

These components may be combined in various ways. For egaptracter- and line-
counting may be combined to compute a pair of results, usiagptoduct of applicative
functors:

clci:: String— (CountX Coun [a]

clci=cci®lci
This composition is inefficient, though, since it performsttraversals over the input.
Happily, the two traversals may be fused into one, as we s&eation 5.3, giving

clci = traverse(cciBodyg IciBody)
in a single pass rather than two.

It so happens that both character- and line-counting useahe applicative functor,
but that is not important here. Exactly the same techniquksvio combine these two
components with the third:

clwci:: String— ((CountX Coun) X (M (State Boolm Cound) [a]

clwci = traverse(cciBody® IciBody® wciBody)

Note that character- and line-counting traversals are fdahovhereas word-counting is
monadic. For a related example using a Naperian applicativetor, consider conducting
an experiment to determine whether the distributions ofdtiers ‘q’ and ‘u’ in a text are
correlated. This might be modelled as follows:

quiBody:: Char — Pair Bool

quiBodyc=P (c="q’,c="’u’)

qui:: String— Pair [Bool|

qui = traverse quiBody
wherePair is a datatype of pairs:

newtype Paira=P (a,a)
made into a Naperian applicative functor in the obvious Wawplying quito a string yields
a pair of boolean sequences, representing the graphs abthibutions of these two letters
in the string:

20 Jeremy Gibbons and Bruno Oliveira

run qui"qui" = ([True, False False], [False True False])
Moreover,gui combines nicely with character-counting:

ccqui:: String— (CountX Pair) [Bool|

ccqui= cci® qui = traverse(cciBodyw quiBody)

We can also combingui with the word-counting traversal — although the product of
two applicative functors requires them to agree on the eténype, the word-counting
bodywci is agnostic about this type and so combines with anything:

wcqui:: String— (Pair X (M (State Boolm Cound) [Bool|

wcqui= qui® wci = traverse(quiBody® wciBody)

In general, however, component traversals may not be soarteto composition, and
product may not be the appropriate combinator. Such a &ituaslls for sequential com-
position® rather than parallel compositionof applicative functors alone. Here, however,
we can’tdirectly compose querying with counting, becawsenting discards its argument;
and neither can we compose counting with querying, becausging produces booleans
and counting consumes characters. Instead, we have to tisesdmpential and parallel
composition, preserving a copy of the input for queryingddidion to counting it:

wequl :: String— ((1d X (M (State Boolm Count) @ Pair) [Bool|

wequi = traverse(quiBodyo® (Id @ wciBody))

6.3 Modular iterations, monadically

Itis actually possible to compose the three sliceswfising monads alone. Let us explore
how that works out, for comparison with the approach usingieative functors.

The first snag is that none of the three slices is actually mienae have to cast them
in the monadic mold first. The simple counting slices can h@essed using thé/riter
monad:

ccmBody: Char — Writer Integer Char

ccmBody ¢= do {tell 1;return c}

ccm:: String— Writer Integer String
ccm= mapM ccmBody

IcmBody:: Char — Writer Integer Char
IcmBody c= do {tell (test(c= ’>\n’)); return c}

Icm:: String— Writer Integer String
Icm = mapM IcmBody
Word-counting is stateful, acting on a state of tyjpreeger, Bool):
wcmBody: Char — State(Integer, Bool) Char
wcmBody c= let s= not (isSpace tin do
(n,w) « get
put(n+test(not WA s),s)
return c

wcm:: String— State(Integer, Bool) String

wcm= mapM wcmBody
This rewriting is a bit unfortunate; however, having retenitin this way, we can compose
the three traversals into one, and even fuse the three bodies

The Essence of the Iterator Pattern 21

clwem= ccm® lem® wem= mapM (ccmBody IcmBodyz wemBody

Now let us turn to the Naperian traversal. That too can beesgad monadically: as
observed in Section 3.1, a Naperian functor is equivalerst Readermonad with the
position being the ‘environment’. In particular, the Naparapplicative functor for the
functorPair is equivalent to the mona®eader Boal

gumBody: Char — Reader Bool Bool

qumBody e=do {b < askreturn (if bthen (c= ’q’) else(c="u’)) }

qum:: String— Reader Boo|Bool|

gum= mapM qumBody
We can't form the parallel composition of this with word-cting, for the same reason as
with the idiomatic approach: the element return types ditBait with monads, we can’t
even form the sequential composition of the two traversitee the two monads differ,
and Kleisli composition requires two computations in theaeamonad.

It is sometimes possible to work around the problem of setipleromposition of com-
putations in different monads, usimgonad transformergJones, 1995). A monad trans-
formert turns a monadhn into another monatim, typically adding some functionality in
the process; the operatitifi embeds a monadic value from the simpler space into the more
complex one.

classMonadTrans where

lift :: Monad m=ma—tma
With this facility, there may be many monads providing aaierkind of functionality, so
that functionality too ought to be expressed in a class. kample, the functionality of
the Statemonad can be added to an arbitrary monad using the monadotnanes State T
yielding a more complex monad with this added functionality
newtype StateT s m & State runStateT:s— m(a,s) }
instance MonadTrangStateT $where...

classMonad m=- MonadState s hm — swhere
get:ms
put::s—m()
instance MonadState $State $ where...
instance Monad m=- MonadState §StateT s mwhere...
Now, in the special case of the composition of two differemn@ds in which one is a
monad transformer applied to the other, progress is p@ssibl
(") :: (Monad mMonadTrans tMonad(t m)) =
(b—tmcg—(a—mb —(a—tmg
plTep2 = ple (lift - p2)
(1) :: (Monad mMonadTrans tMonad(t m)) =
(b—m¢—(a—tmb —(a—tmg
ple'p2 = (lift opl) e p2
We can use these constructions to compose sequentially'tHia’ ‘experiment and word-
counting. We need to generalise the typevefnBodyfrom theStatemonad specifically to
any monad with the appropriate functionality (and in patac, one withStatefunctional-
ity added to thdReademonad):

22 Jeremy Gibbons and Bruno Oliveira

wcmBody:: MonadStatéInteger, Bool) m=- Char — m Char
wcmBodyc = let s= not (isSpace tin do
(n,w) < get
put(n+test(not WA s),s)
return ¢
(Notice that the definition is identical; only the type hasebed.) Now querying and
word-counting compose monadically:
quwcent: String— StateT(Integer, Bool) (Reader Bogl [Bool|
guwcm= mapM qumBody' mapM wcmBody= mapM(qumBody’wcmBodY)

This particular pair of monads composes just as well theratlag around, because the
typesState Reader r § and Reader r(State s & are isomorphic. So we could instead
use theReaderTmonad transformer to ad@leaderbehaviour to th&tatemonad, and use
the dual composition operatiom. However, both cases are rather awkward, because they
entail having to generalise (perhaps previously-writtemmhponents from types involving
specific monads (such &tatg to general monad interfaces (suchStateT). Writing the
components that way in the first place might be good pradtigethat rule is little comfort
when faced with a body of code that breaks it. Moreover, theaddransformer approach
works only for certain monads, not for all of them; in contra®mposition of applicative
functors is universal.

The upshot is that composition of applicative functors ig@rftexible than composition
of monads.

7 Conclusions

Monads have long been acknowledged as a good abstractionddularising certain
aspects of programs. However, composing monads is knowa thifficult, limiting their
usefulness. One solution is to use monad transformershisuteéquires programs to be
designed initially with monad transformers in mind. Appliwe functors have a richer
algebra of composition operators, which can often replaeaise of monad transformers;
there is the added advantage of being able to compose apgibat non-monadic com-
putations. We thus believe that applicative functors piewn even better abstraction than
monads for modularisation.

We have argued that idiomatic traversals capture the essahienperative loops —
both mapping and accumulating aspects. We have stated sopergies of traversals and
shown a few examples, but we are conscious that more worksriedze done in both of
these areas.

This work grew out of an earlier discussion of the relatiopdfetween design patterns
and higher-order datatype-generic programs (Gibbon€§&08reliminary versions of that
work argued that pure datatype-generic maps are the furadi@malogue of theTERATOR
design pattern. It was partly while reflecting on that argome- and its omission of
imperative aspects — that we came to the more refined pogitiesented here. Note
that idiomatic traversals, and even pure maps, are more@ehan object-orientedrt
ERATORS in at least one sense: it is trivial with our approach to geathe type of the
collection elements with a traversal, whereas with an aggrdased on mutable objects,
this is essentially impossible.

The Essence of the Iterator Pattern 23

As future work, we are exploring properties and generadinatof the specialised traver-
sals collect and disperse We hope that such specialised operators might enjoy richer
composition properties than do traversals in general, anéXample will provide more
insight into therepminexample discussed in the conference version of this papleb(@s
& Oliveira, 2006). We also hope to investigate the categdritructure ofdist further:
naturality in the applicative functor appears to be relételeck’s distributive laws (Beck,
1969), and ‘no duplication’ to linear type theories.

8 Acknowledgements

We are grateful to the members of IFIP WG2.1, thgebra of Programmingesearch
group at Oxford, théatatype-Generic Programmingroject at Oxford and Nottingham,
and the anonymous MSFP and JFP referees, whose insightfuheats have improved
this paper considerably. Thanks are due especially to Cie&ride and Ross Paterson,
without whose elegant work on applicative functors this ldaever have happened. As
well as the clear debt we owe to (McBride & Paterson, 2008) themk McBride for
pointing us to Hancock’s notion of Naperian functors, anteRm@n for the observation
thatdist should be natural in the applicative functor.

References

Beck, Jon. (1969). Distributive law$ages 119-140 ofEckmann, B. (ed)Seminar on triples and
categorical homology theoryecture Notes in Mathematics, vol. 80.

Bird, Richard S., & Meertens, Lambert. (1998). Nested gates. Pages 52—67 ofJeuring, Johan
(ed),Proceedings of mathematics of program constructibacture Notes in Computer Science,
vol. 1422. Marstrand, Sweden: Springer-Verlag.

Fokkinga, Maarten. (1994) Monadic maps and folds for arbitrary datatypePepartment INF,
Universiteit Twente.

Fokkinga, Maarten M. (1990). Tupling and mutumorphisifise Squiggolistl(4), 81-82.

Fridlender, Daniel, & Indrika, Mia. (2000). Do we need degent types?Journal of functional
programming 10(4), 409-415.

Gallagher, K. B., & Lyle, J. R. (1991). Using program slicimgsoftware maintenancelEEE
transactions on software engineeririy(8), 751-761.

Gamma, Erich, Helm, Richard, Johnson, Ralph, & Vlisside#nJ (1995). Design patterns:
Elements of reusable object-oriented softwakeldison-Wesley.

GHC Team. (2006). Haskell hierarchical libraries http://www.haskell.org/ghc/docs/
latest/html/libraries/.

Gibbons, Jeremy. (2002). Calculating functional prograReges 148—203 oBackhouse, Roland,
Crole, Ray, & Gibbons, Jeremy (ed#)lgebraic and coalgebraic methods in the mathematics of
program constructionLecture Notes in Computer Science, vol. 2297. Springelade

Gibbons, Jeremy. (2003). Origami programmirigages 41-60 ofGibbons, Jeremy, & de Moor,
Oege (eds)The fun of programmingCornerstones in Computing. Palgrave.

Gibbons, Jeremy. (2006a). Design patterns as higher-dedatype-generic programgl/orkshop on
generic programming

Gibbons, Jeremy. (2006b). Fission for program comprebenflages 162—-179 ofJustalu, Tarmo
(ed), Mathematics of program constructionLecture Notes in Computer Science, vol. 4014.
Springer-Verlag.

24 Jeremy Gibbons and Bruno Oliveira

Gibbons, Jeremy, & Oliveira, Bruno C. d. S. (2006). The essaf the Iterator pattern. McBride,
Conor, & Uustalu, Tarmo (edsMathematically-structured functional programming

Gibbons, Jeremy, Hutton, Graham, & Altenkirch, Thorst&@01). When is a function a fold or
an unfold? Electronic notes in theoretical computer sciendd(1). Coalgebraic Methods in
Computer Science.

Hinze, Ralf, & Jeuring, Johan. (2003). Generic Haskell:cBca and theory. Pages 1-56 of:
Backhouse, Roland, & Gibbons, Jeremy (e@&)mmer school on generic programmirgecture
Notes in Computer Science, vol. 2793.

Hinze, Ralf, & Peyton Jones, Simon. (2000). Derivable tylesses.International conference on
functional programming

Hughes, John. (1989). Why functional programming matt€mmnputer journgl32(2), 98-107.

Jansson, Patrick, & Jeuring, Johan. (1997). PolyP — a galtyfgrogramming language extension.
Pages 470-482 of: Principles of programming languages

Jansson, Patrik, & Jeuring, Johan. (2002). Polytypic dataersion programsScience of computer
programming 43(1), 35-75.

Jay, Barry, & Steckler, Paul. (1998). The functional impes Shape!Pages 139-53 ofdankin,
Chris (ed)European symposium on programmingcture Notes in Computer Science, vol. 1381.

Jay, C. Barry. (1995). A semantics for shaeience of computer programmirp, 251-283.

Jeuring, Johan, & Meijer, Erik (eds). (1995)dvanced functional programmind.ecture Notes in
Computer Science, vol. 925.

Jones, Mark P. (1995). Functional programming with ovetilog and higher-order polymorphism.
In: (Jeuring & Meijer, 1995).

Jones, Mark P., & Duponcheel, Luc. (1998)omposing monaddTech. rept. RR-1004. Department
of Computer Science, Yale.

Kernighan, Brian W., & Ritchie, Dennis M. (1988Jhe C programming languagérentice Hall.

King, David J., & Wadler, Philip. (1993). Combining monadsaunchbury, J., & Sansom, P. M.
(eds),Functional programming, Glasgow 1993pringer.

Kiselyov, Oleg, & Lammel, Ralf. (2005)Haskell's Overlooked Object Syste@raft; submitted for
publication.

Kuhne, Thomas. (1999). Internal iteration externalizRdges 329—-350 ofSuerraoui, Rachid (ed),
European conference on object-oriented programmibgcture Notes in Computer Science, vol.
1628.

Leroy, Xavier. (1995). Applicative functors and fully trgarent higher-order moduleBages 142—
153 of: Principles of programming languages

McBride, Conor, & Paterson, Ross. (2008). Applicative pamgming with effects. Journal of
functional programmingl18(1), 1-13.

Meertens, Lambert. (1996). Calculate polytypicalBages 1-16 ofkuchen, H., & Swierstra, S. D.
(eds),Programming language implementation and logic prograngnirecture Notes in Computer
Science, vol. 1140.

Meertens, Lambert. (1998). Functor pulling. Backhousdafh & Sheard, Tim (eds)Morkshop
on generic programming

Meijer, Erik, & Jeuring, Johan. (1995). Merging monads amidg for functional programmingn:
(Jeuring & Meijer, 1995).

Meijer, Erik, Fokkinga, Maarten, & Paterson, Ross. (19%)nctional programming with bananas,
lenses, envelopes and barbed witages 124-144 oHughes, John (edfrunctional programming
languages and computer architecturkecture Notes in Computer Science, vol. 523. Springer-
Verlag.

Moggi, E., Belle, G., & Jay, C. B. (1999). Monads, shapelydiors and traversals. Hoffman, M.,
Pavlovic, D., & Rosolini, P. (edsfzategory theory in computer science

The Essence of the Iterator Pattern 25

Moggi, Eugenio. (1991). Notions of computation and mondafarmation and computatiqré3(1).

Pardo, Alberto. (2005). Combining datatypes and effecéglvanced functional programming
Lecture Notes in Computer Science, vol. 3622.

Peyton Jones, Simon. (2003)he Haskell 98 language and libraries: The revised rep@ambridge
University Press.

Peyton Jones, Simon L., & Wadler, Philip. (1993). Impemfiynctional programming?ages 71-84
of: Principles of programming languages

Reynolds, John C. (1983). Types, abstraction and paras@tymorphism. Pages 513-523 of:
Information processing 8FElsevier.

Villavicencio, Gustavo, & Oliveira, José Nuno. (2001). Vi@ese program calculation supported by
code slicing.Pages 35-48 of: Eighth working conference on reverse eegimg IEEE.

Wadler, Philip. (1989). Theorems for fre®ages 347-359 of: Functional programming languages
and computer architecturéACM.

Wadler, Philip. (1992). Monads for functional programmiiyoy, M. (ed),Program design calculi:
Proceedings of the Marktoberdorf summer school

