
Under consideration for publication in J. Functional Programming 1

The Essence of the Iterator Pattern

Jeremy Gibbons and Bruno C. d. S. Oliveira
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD, UK
http://www.comlab.ox.ac.uk/jeremy.gibbons/
http://www.comlab.ox.ac.uk/bruno.oliveira/

Abstract

The ITERATOR pattern gives a clean interface for element-by-element access to a collection, in-
dependent of the collection’s shape. Imperative iterations using the pattern have two simultaneous
aspects:mappingandaccumulating. Various existing functional models of iteration capture one or
other of these aspects, but not both simultaneously. We argue that McBride and Paterson’sapplicative
functors, and in particular the correspondingtraverseoperator, do exactly this, and therefore capture
the essence of the ITERATOR pattern. Moreover, they do so in a way that nicely supports modular
programming. We present some axioms for traversal, discussmodularity concerns, and illustrate with
a simple example, thewordcountproblem.

1 Introduction

Perhaps the most familiar of the so-called Gang of Four design patterns (Gammaet al.,
1995) is the ITERATOR pattern, which ‘provides a way to access the elements of an ag-
gregate object sequentially without exposing its underlying representation’. Traditionally,
this is achieved by identifying an ITERATOR interface that presents operations to initialize
an iteration, to access the current element, to advance to the next element, and to test for
completion; collection objects are expected to implement this interface, usually indirectly
via a subobject. Essential to the pattern is the idea that elements are accessed sequentially,
but independently of their ‘position’ in the collection; for example, labelling each element
of a tree with its index in left-to-right order fits the pattern, but labelling each element with
its depth does not.

This traditional version of the pattern is sometimes calledan EXTERNAL ITERATOR.
An alternative INTERNAL ITERATOR approach assigns responsibility for managing the
traversal to the collection instead of the client: the client needs only to provide an operation,
which the collection applies to each of its elements. The latter approach is simpler to use,
but less flexible; for example, it is not possible for the iteration to affect the order in which
elements are accessed, nor to terminate the iteration early. By ‘iteration’ in this paper we
mean the INTERNAL ITERATOR approach — not EXTERNAL ITERATORs, nor iteration in
the sense of Pascal’sfor loop.

An external iterator interface has been included in the Javaand the C# libraries since
their inception. Syntactic sugar supporting use of the interface, in the form of theforeach

2 Jeremy Gibbons and Bruno Oliveira

public static int loop〈MyObj〉 (IEnumerable〈MyObj〉 coll){
int n = 0;
foreach (MyObj objin coll){

n = n+ 1;
obj.touch();
}
return n;
}

Fig. 1. Iterating over a collection in C#.

construct, has been present in C# since the first version and in Java since version 1.5. This
syntactic sugar effectively represents internal iterators in terms of external iterators; its use
makes code cleaner and simpler, although it gives privileged status to the specific iteration
interface chosen, entangling the language and its libraries.

In Figure 1 we show an application of C#’sforeach construct: a methodloopthat iterates
over a collection, counting the elements but simultaneously interacting with each of them.
The method is parametrized by the typeMyObj of collection elements; this parameter is
used twice, once to constrain the collectioncoll passed as a parameter, and again as a
type for the local variableobj. The collection itself is rather unconstrained; it only hasto
implement theIEnumerable〈MyObj〉 interface.

In this paper, we investigate the structure of iterations over collection elements like that
shown in Figure 1. We emphasize that we want to capture both aspects of the methodloop
and iterations like it:mappingover the elements, and simultaneouslyaccumulatingsome
measure of those elements. Moreover, we aim to do soholistically, treating the iteration
as an abstraction in its own right; this leads us naturally toa higher-order presentation.
We also want to develop analgebraof such iterations, with combinators for composing
them and laws for reasoning about them; this leads us towardsa functional approach.
We argue that McBride and Paterson’sapplicative functors(McBride & Paterson, 2008),
and in particular the correspondingtraverseoperator, have exactly the right properties.
Finally, we will argue thattraverseand its laws are ideally suited to modular development,
whereby more complex programs can be obtained by composing simpler ones together,
and compositions may be transformed by the application of the laws.

The rest of this paper is structured as follows. Section 2 reviews a variety of earlier
approaches to capturing the essence of iterations functionally. Section 3 presents McBride
and Paterson’s notions of applicative functors and traversals. These two sections summarise
previous work; our present contribution starts in Section 4, with a more detailed look at
traversals. In Section 5 we propose a collection of laws of traversal, and in Section 6 we
illustrate the use of some of these laws in the context of a simple example, thewordcount
problem. Section 7 concludes.

2 Functional iteration

In this section, we review a number of earlier approaches to capturing the essence of itera-
tion. In particular, we look at a variety of datatype-generic recursion operators: maps, folds,
unfolds, crushes, and monadic maps. The traversals we discuss in Section 4 generalise most
of these.

The Essence of the Iterator Pattern 3

2.1 Origami

In theorigamistyle of programming (Meijeret al., 1991; Gibbons, 2002; Gibbons, 2003),
the structure of programs is captured by higher-order recursion operators such asmap,
fold andunfold. These can be madedatatype-generic(Jansson & Jeuring, 1997; Gibbons,
2006a), parametrised by the shape of the underlying datatype, as shown below.

class Bifunctor swhere
bimap:: (a→ b)→ (c→ d)→ s a c→ s b d

data Fix s a= In{out:: s a(Fix s a)}

map :: Bifunctor s⇒ (a→ b)→ Fix s a→ Fix s b
map f = In ◦bimap f (map f) ◦out

fold :: Bifunctor s⇒ (s a b→ b)→ Fix s a→ b
fold f = f ◦bimap id(fold f) ◦out

unfold :: Bifunctor s⇒ (b→ s a b)→ b→ Fix s a
unfold f = In ◦bimap id(unfold f) ◦ f

For a suitable binary type constructors, the recursive datatypeFix s a is the fixpoint
(up to isomorphism) in the second argument ofs for a given typea in the first argument;
the constructorIn and destructorout witness the implied isomorphism. The type class
Bifunctor captures those binary type constructors appropriate for determining the shapes
of datatypes: the ones with abimapoperator that essentially locates elements of each of
the two type parameters. Technically,bimapshould also satisfy the laws

bimap id id = id -- identity
bimap(f ◦h) (g◦k) = bimap f g◦bimap h k -- composition

but this constraint is not expressed in the type class declaration.
The recursion patternmapcaptures iterations that modify each element of a collection

independently; thus,map touchcaptures the mapping aspect of the C# loop in Figure 1,
but not the accumulating aspect.

At first glance, it might seem that the datatype-genericfold captures the accumulating
aspect; but the analogy is rather less clear for a non-linearcollection. In contrast to the C#
method above, which is sufficiently generic to apply to non-linear collections, a datatype-
generic counting operation defined usingfold would need a datatype-generic numeric alge-
bra as the fold body. Such a thing could be defined polytypically (Jansson & Jeuring, 1997;
Hinze & Jeuring, 2003), but the fact remains thatfold in isolation does not encapsulate the
datatype genericity.

Essential to iteration in the sense we are using the term is linear access to collection
elements; this was the problem withfold. One might consider a datatype-generic operation
to yield a linear sequence of collection elements from possibly non-linear structures, for
example byunfolding to a list. This could be done (though as with thefold problem,
it requires additionally a datatype-generic sequence coalgebra as the unfold body); but
even then, this would address only the accumulating aspect of the C# iteration, and not
the mapping aspect — it discards the shape of the original structure. Moreover, for some
datatypes the sequence of elements is not definable as an unfold (Gibbonset al., 2001).

We might also explore the possibility of combining some of these approaches. For
example, it is clear from the definitions above thatmap is an instance offold. Moreover,

4 Jeremy Gibbons and Bruno Oliveira

the banana split theorem(Fokkinga, 1990) states that two folds in parallel on the same
data structure can be fused into one. Therefore, a map and a fold in parallel fuse to a single
fold, yielding both a new collection and an accumulated measure, and might therefore be
considered to capture both aspects of the C# iteration. However, we feel that this is an
unsatisfactory solution: it may indeed simulate or implement the same behaviour, but it is
no longer manifest that the shape of the resulting collection is related to that of the original.

2.2 Crush

Meertens (1996) generalised APL’s ‘reduce’ to acrush operation,〈〈⊕〉〉 :: t a→ a for
binary operator(⊕) :: a→ a→ a with a unit, polytypically over the structure of a regular
functort. For example,〈〈+〉〉 polytypically sums a collection of numbers. For projections,
composition, sum and fixpoint, there is an obvious thing to do, so the only ingredients that
need to be provided are the binary operator (for products) and a constant (for units). Crush
captures the accumulating aspect of the C# iteration in Figure 1, accumulating elements
independently of the shape of the data structure, but not themapping aspect.

2.3 Monadic map

One aspect of iteration expressed by neither the origami operators nor crush is the possi-
bility of effects, such as stateful operations or exceptions. Seminal work by Moggi (1991),
popularised by Wadler (1992), showed how such computational effects can be captured in
a purely functional context through the use ofmonads.

class Functor f where
fmap :: (a→ b)→ f a→ f b

class Functor m⇒Monad mwhere
(>>=) :: m a→ (a→m b)→m b
return:: a→m a

satisfying the following laws:
fmap id = id -- identity
fmap(f ◦g) = fmap f◦ fmap g -- composition

return a>>= f = f a -- left unit
mx>>= return = mx -- right unit
(mx>>= f)>>=g = mx>>=(λx→ f x>>=g) -- associativity

Roughly speaking, the typem a for a monadm denotes a computation returning a value of
typea, but in the process possibly having some computational effect corresponding tom;
thereturn operator lifts pure values into the monadic domain, and the ‘bind’ operator>>=
denotes a kind of sequential composition.

Haskell’s standard library (Peyton Jones, 2003) defines amonadic mapfor lists, which
lifts an effectful computation on elements to one on lists:

mapM:: Monad m⇒ (a→m b)→ ([a]→m [b])

Fokkinga (1994) showed how to generalise this from lists to an arbitrary regular functor,
polytypically. Several authors (Meijer & Jeuring, 1995; Moggi et al., 1999; Jansson &
Jeuring, 2002; Pardo, 2005; Kiselyov & Lämmel, 2005) have observed that monadic map
is a promising model of iteration. Monadic maps are very close to theidiomatic traversals

The Essence of the Iterator Pattern 5

that we propose as the essence of imperative iterations; indeed, for monadic applicative
functors, traversal reduces exactly to monadic map. However, we argue that monadic
maps do not capture accumulating iterations as nicely as they might. Moreover, it is well-
known (Jones & Duponcheel, 1993; King & Wadler, 1993) that monads do not compose in
general, whereas applicative functors do; this will give usa richer algebra of traversals.
Finally, monadic maps stumble over products, for which there are two reasonable but
symmetric definitions, coinciding only when the monad is commutative. This stumbling
block forces either a bias to left or right, or a restricted focus on commutative monads, or
an additional complicating parametrisation; in contrast,applicative functors generally have
no such problem, and in fact can exploit it to provide traversal reversal.

Closely related to monadic maps are operations like Haskell’s sequencefunction
sequence::Monad m⇒ [m a]→m [a]

and its polytypic generalisation to arbitrary datatypes. Indeed,sequenceandmapM are
interdefinable:mapM f = sequence◦map f, and sosequence= mapM id. Most writers
on monadic maps have investigated such an operation; Moggiet al. (1999) call itpassive
traversal, Meertens (1998) calls itfunctor pulling, and Pardo (2005) and others have called
it a distributive law. McBride and Paterson introduce the functiondist playing the same
role, but as we shall see, more generally.

3 Applicative Functors

McBride and Paterson (2008) recently introduced the notionof anapplicative functoror
idiom as a generalisation of monads. (‘Idiom’ was the name McBrideoriginally chose,
but he and Paterson now favour the less evocative term ‘applicative functor’. We have a
slight preference for the former, not least because it lendsitself nicely to adjectival uses,
as in ‘idiomatic traversal’. However, out of solidarity, wewill mostly use ‘applicative
functor’ as the noun in this paper, resorting to ‘idiomatic’as the adjective. Note that
Leroy’s parametrised modules that map equal type parameters to equal abstract types
(Leroy, 1995) are a completely different kind of ‘applicative functor’.) Monads allow
the expression of effectful computations within a purely functional language, but they
do so by encouraging animperativeprogramming style (Peyton Jones & Wadler, 1993);
in fact, Haskell’s monadicdo notation is explicitly designed to give an imperative feel.
Since applicative functors generalise monads, they provide the same access to effectful
computations; but they encourage a moreapplicativeprogramming style, and so fit better
within the functional programming milieu. Moreover, as we shall see, applicative functors
strictly generalise monads; they provide features beyond those of monads. This will be
important to us in capturing a wider variety of iterations, and in providing a richer algebra
of those iterations.

Applicative functors are captured in Haskell by the following type class, provided in
recent versions of the GHC hierarchical libraries (GHC Team, 2006).

class Functor m⇒ Applicative mwhere
pure::a→m a
(⊛) ::m (a→ b)→m a→m b

6 Jeremy Gibbons and Bruno Oliveira

Informally,purelifts ordinary values into the idiomatic world, and⊛ provides an idiomatic
flavour of function application. We make the convention that⊛ associates to the left, just
like ordinary function application.

In addition to those of theFunctorclass, applicative functors are expected to satisfy the
following laws.

pure id⊛u = u -- identity
pure(◦)⊛u⊛v⊛w = u⊛ (v⊛w) -- composition
pure f⊛pure x = pure(f x) -- homomorphism
u⊛pure x = pure(λ f → f x)⊛u -- interchange

In case the reader feels the need for some intuition for theselaws, we refer them forwards to
the stream Naperian applicative functor discussed in Section 3.1 below, which we believe
provides the most accessible instance of them.

These four laws are sufficient to rewrite any expression built from the applicative func-
tor operators into a canonical form, consisting of a pure function applied to a series of
idiomatic arguments:pure f ⊛ u1 ⊛ · · ·⊛ un. (The composition law read right to left re-
associates applications to the left; the interchange law moves pure functions to the left; and
the homomorphism and identity laws combine multiple or zerooccurrences ofpure into
one.) Hence the sequencing of effects of any applicative computation is fixed; in contrast,
the ‘bind’ operation of a monad allows the result of one computation to affect the choice
and ordering of effects of subsequent computations, a feature therefore not supported by
applicative functors in general.

3.1 Monadic applicative functors

Applicative functors generalise monads; every monad induces an applicative functor, with
the following operations.

newtype M m a= Wrap{unWrap::m a}

instance Monad m⇒ Applicative(M m) where
pure = Wrap◦ return
f ⊛x = Wrap(unWrap f‘ap‘ unWrap x)

(The wrapperM lifts a monad to an applicative functor, and is needed to avoid overlapping
type class instances.) Thepureoperator for a monadic applicative functor is essentially just
the return of the monad, and idiomatic application⊛ is essentially monadic application,
mf ‘ap‘ mx= mf >>=λ f →mx>>=λx→ return(f x), here with the effects of the function
preceding those of the argument — there is another, completely symmetric, definition, with
the effects of the argument preceding those of the function (see Section 4.3). We leave the
reader to verify that the monad laws thus entail the applicative functor laws.

For example, theStatemonad uses the following type declaration:
newtype State s a= State{runState:: s→ (a,s)}

and induces a monadic applicative functorM (State s).
A particular subclass of monadic applicative functors corresponds to datatypes of fixed

shape, and is exemplified by the stream functor:
data Stream a= SCons a(Stream a)

The Essence of the Iterator Pattern 7

The pure operator lifts a value to a stream, with infinitely many copies of it; idiomatic
application is a pointwise ‘zip with apply’, taking a streamof functions and a stream of
arguments to a stream of results:

instance Applicative Streamwhere
pure x = xswhere xs= SCons x xs
(SCons f fs)⊛ (SCons x xs) = SCons(f x) (fs⊛xs)

This applicative functor turns out to be equivalent to the one induced by theReadermonad:
newtype Reader r a= Reader{runReader:: r→ a}

where the environment typer is the natural numbers. Computations within the stream
applicative functor tend to perform a transposition of results; they are related to what
Kühne (1999) calls thetransfoldoperator. We find that this applicative functor is the most
accessible one for providing some intuition for the applicative functor laws.

A similar construction works for any fixed-shape datatype: pairs, vectors of lengthn,
matrices of fixed size, infinite binary trees, and so on. PeterHancock calls such datatypes
Naperian, because they support a notion of logarithm. That is, datatype t is Naperian
if t a≃ ap ≃ p→ a for some typep of positions, called the logarithm logt of t. Then
t 1≃ 1p ≃ 1, so the shape is fixed, and familiar properties of Napier’s logarithms arise —
for example, log(t× u) ≃ log t + log u. Naperian functors generally are equivalent to
Readermonads, with the logarithm as environment; nevertheless, we feel that it is worth
identifying this particular subclass of monadic applicative functors as worthy of special
attention. We expect some further connection with data-parallel and numerically intensive
computation, in the style of Jay’s language FISh (Jay & Steckler, 1998), but we leave the
investigation of that connection for future work.

3.2 Monoidal applicative functors

Applicative functors strictly generalise monads; there are applicative functors that do not
arise from monads. A second family of applicative functors,this time non-monadic, arises
from constant functors with monoidal targets. McBride and Paterson call thesephantom
applicative functors, because the resulting type is a phantom type, as opposed to acontainer
type of some kind. Any monoid(/0,⊕) induces an applicative functor, where thepure
operator yields the unit /0 of the monoid and application uses the binary operator⊕.

newtype Const b a= Const{unConst::b}

instance Monoid b⇒ Applicative(Const b) where
pure = Const/0
x⊛y = Const(unConst x⊕unConst y)

Computations within this applicative functor accumulate some measure: for the monoid of
integers with addition, they count or sum; for the monoid of lists with concatenation, they
collect some trace of values; for the monoid of booleans withdisjunction, they encapsulate
linear searches; and so on.

Note that the ‘repeat’ and ‘zip with apply’ operations of thestream Naperian applica-
tive functor can be adapted for ordinary lists (Fridlender &Indrika, 2000) (although this
instance does not seem to arise from a monad):

instance Applicative[] where
pure x = xswhere xs= x :xs

8 Jeremy Gibbons and Bruno Oliveira

(f : fs)⊛ (x : xs) = f x : (fs⊛xs)
⊛ = []

Therefore, lists form applicative functors in three different ways: monadic in the usual way
using cartesian product, when they model non-deterministic evaluation; monoidal using
concatenation, when they model tracing of outputs; and Naperian-inspired using zip, when
they model data-parallel computations.

3.3 Combining applicative functors

Like monads, applicative functors are closed under products; so two independent idiomatic
effects can generally be fused into one, their product.

data (m⊠n) a = Prod{pfst:: m a,psnd:: n a}

(⊗) :: (Functor m,Functor n)⇒ (a→m b)→ (a→ n b)→ (a→ (m⊠n) b)

(f ⊗g) x = Prod (f x) (g x)

instance (Applicative m,Applicative n)⇒ Applicative(m⊠n) where
pure x = Prod (pure x) (pure x)
mf ⊛mx= Prod (pfst mf⊛pfst mx) (psnd mf⊛psnd mx)

Unlike monads in general, applicative functors are also closed under composition; so
two sequentially-dependent idiomatic effects can generally be fused into one, their compo-
sition.

data (m�n) a = Comp{unComp:: m(n a)}

(⊙) :: (Functor n,Functor m)⇒ (b→ n c)→ (a→m b)→ (a→ (m�n) c)
f ⊙g = Comp◦ fmap f◦g

instance (Applicative m,Applicative n)⇒ Applicative(m�n) where
pure x = Comp(pure(pure x))
(Comp mf)⊛ (Comp mx) = Comp(pure(⊛)⊛mf ⊛mx)

The two operators⊗ and⊙ allow us to combine idiomatic computations in two different
ways; we call themparallelandsequential composition, respectively. We will see examples
of both in Sections 4.1 and 6.

3.4 Idiomatic traversal

Two of the three motivating examples McBride and Paterson provide for idiomatic com-
putations — sequencing a list of monadic effects and transposing a matrix — are instances
of a general scheme they calltraversal. This involves iterating over the elements of a data
structure, in the style of a ‘map’, but interpreting certainfunction applications idiomati-
cally.

traverseList:: Applicative m⇒ (a→m b)→ [a]→m [b]

traverseList f[] = pure[]

traverseList f(x : xs) = pure(:)⊛ f x⊛ traverseList f xs
A special case is for traversal with the identity function, which distributes the data structure
over the idiomatic structure:

distList:: Applicative m⇒ [m a]→m [a]

distList= traverseList id

The Essence of the Iterator Pattern 9

The ‘map within the applicative functor’ pattern of traversal for lists generalises to
any (finite) functorial data structure, even non-regular ones (Bird & Meertens, 1998). We
capture this via a type class ofTraversabledata structures (a slightly more elaborate type
classData.Traversableappears in recent GHC hierarchical libraries (GHC Team, 2006)):

class Functor t⇒ Traversable twhere
traverse::Applicative m⇒ (a→m b)→ t a→m(t b)

traverse f= dist◦ fmap f

dist:: Applicative m⇒ t (m a)→m (t a)

dist= traverse id
For example, here is a datatype of binary trees:
data Tree a= Leaf a| Bin (Tree a) (Tree a)

instance Functor Treewhere
fmap f (Leaf x) = Leaf (f x)
fmap f (Bin t u) = Bin (fmap f t) (fmap f u)

The correspondingtraverseclosely resembles the simplermap, with judicious uses ofpure
and⊛:

instance Traversable Treewhere
traverse f(Leaf x) = pure Leaf⊛ f x
traverse f(Bin t u) = pure Bin⊛ traverse f t⊛ traverse f u

McBride and Paterson propose a special syntax involving ‘idiomatic brackets’, which
would have the effect of inserting the occurrences ofpure and⊛ implicitly; apart from
these brackets, the definition then looks exactly like a definition of fmap. This defini-
tion could be derived automatically (Hinze & Peyton Jones, 2000), or given datatype-
generically once and for all, assuming some universal representation of datatypes such
as sums and products (Hinze & Jeuring, 2003) or (using the definitions ofBifunctor, Fix
andfold from Section 2.1) regular functors (Gibbons, 2003):

class Bifunctor s⇒ Bitraversable swhere
bidist::Applicative m⇒ s(m a) (m b)→m(s a b)

instance Bitraversable s⇒ Traversable(Fix s) where
traverse f= fold (fmap In◦bidist◦bimap f id)

When m is specialised to the identity applicative functor, traversal reduces precisely
(modulo the wrapper) to the functorial map over lists.

newtype Id a = Id{unId:: a}

instance Applicative Idwhere
pure x = Id x
mf ⊛mx= Id ((unId mf) (unId mx))

In the case of a monadic applicative functor, traversal specialises to monadic map,
and has the same uses. In fact, traversal is really just a slight generalisation of monadic
map: generalising in the sense that it applies also to non-monadic applicative functors. We
consider this an interesting insight, because it reveals that monadic map does not require
the full power of a monad; in particular, it does not require the ‘bind’ or ‘join’ operators,
which are unavailable in applicative functors in general.

10 Jeremy Gibbons and Bruno Oliveira

For a Naperian applicative functor, traversal transposes results. For example, interpreted
in the pair Naperian applicative functor,traverseList idunzips a list of pairs into a pair of
lists.

For a monoidal applicative functor, traversal accumulatesvalues. The functionreduce
performs that accumulation, given an argument that assignsa value to each element:

reduce:: (Traversable t,Monoid m)⇒ (a→m)→ t a→m
reduce f= unConst◦ traverse(Const◦ f)

The special casecrush(named after Meertens’ operator discussed in Section 2.2, but with
an additional monoidal constraint) applies when the elements are their own values:

crush:: (Traversable t,Monoid m)⇒ t m→m
crush= reduce id

For example, when the monoid is that of integers and addition, traversal sums the elements
of a collection.

tsum::Traversable t⇒ t Integer→ Integer
tsum= crush

4 Traversals as iterators

In this section, we show some representative examples of traversals over data structures,
and capture them usingtraverse.

Before we look at traversals, however, we will introduce a convenient piece of notation.
Recall the identity and constant functors introduced in Section 3:

newtype Id a = Id{unId:: a}
newtype Const b a= Const{unConst:: b}

We will have a number of new datatypes with coercion functions like Id, unId, Constand
unConst. To reduce clutter, we introduce a common notation for such coercions:

class Coerce a b| a→ b where
⇓ ::a→ b
⇑ ::b→ a

The idea is that an instance ofCoerce a bindicates that typea is a new datatype built on
top of an underlying typeb; the function⇓ reveals the underlying value, and the function⇑
wraps it up. The identity functor is an instance of this type class, of course:

instance Coerce(Id a) a where
⇓= unId
⇑= Id

and so are constant functors:
instance Coerce(Const a b) a where
⇓= unConst
⇑= Const

Moreover, instances may be propagated through product:
instance (Coerce(m a) b,Coerce(n a) c)⇒ Coerce((m⊠n) a) (b,c) where
⇓mnx = (⇓ (pfst mnx),⇓ (psnd mnx))
⇑ (x,y) = Prod (⇑ x) (⇑ y)

through composition:

The Essence of the Iterator Pattern 11

instance (Functor m,Functor n,Coerce(m b) c,Coerce(n a) b)⇒

Coerce((m�n) a) c where
⇓= ⇓ ◦ fmap⇓ ◦unComp
⇑= Comp◦ fmap⇑ ◦⇑

and through monad wrapping:
instance Coerce(m a) c⇒ Coerce(M m a) c where
⇓= ⇓ ◦unWrap
⇑= Wrap◦⇑

We will introduce other instances ofCoerceas we need them.

4.1 Shape and contents

In addition to being parametrically polymorphic in the collection elements, the generic
traverseoperation is parametrised along two further dimensions: the datatype being tra-
versed, and the applicative functor in which the traversal is interpreted. Specialising the
latter to lists as a monoid yields a genericcontentsoperation:

contentsBody:: a→ Const[a] b
contentsBody x= ⇑ [x]

contents:: Traversable t⇒ t a→Const[a] (t b)

contents= traverse contentsBody
To obtain a function of the expected typet a→ [a], we need to remove the type coer-

cions. The type classCoerceallows this to be done generically:
run:: (Coerce b c,Traversable t)⇒ (t a→ b)→ t a→ c
run program= ⇓ ◦program

Now we can define the function we expect:
runContents:: Traversable t⇒ t a→ [a]

runContents= run contents
(so thatrunContents= reduce(:[]). The functionrun is applicable to all the other traversals
we define as well, but for the sake of brevity we usually omit the routine definitions.

Thecontentsoperation is in turn the basis for many other generic operations, including
non-monoidal ones such as indexing. Moreover, it yields onehalf of Jay’s decomposition
of datatypes into shape and contents (Jay, 1995). The other half of the decomposition is
obtained simply by a map, which is to say, a traversal interpreted in the identity idiom:

shapeBody:: a→ Id ()

shapeBody = ⇑ ()

shape:: Traversable t⇒ t a→ Id (t ())

shape= traverse shapeBody
This pair of traversals nicely illustrates the two aspects of iterations that we are focussing
on, namely mapping and accumulation. Of course, it is trivial to compose them in parallel
to obtain both halves of the decomposition as a single function, but doing this by tupling
in the obvious way

decompose:: Traversable t⇒ t a→ (Id ⊠Const[a]) (t ())

decompose= shape⊗contents

12 Jeremy Gibbons and Bruno Oliveira

entails two traversals over the data structure. Is it possible to fuse the two traversals into
one? The product of applicative functors allows exactly this, and Section 5.3 justifies this
decomposition of a data structure into shape and contents ina single pass:

decompose= traverse(shapeBody⊗contentsBody)
Moggi et al. (1999) give a similar decomposition, but using a customisedcombination

of monads; we believe that the above component-based approach is simpler.
A similar benefit can be found in the reassembly of a full data structure from separate

shape and contents. This is a stateful operation, where the state consists of the contents
to be inserted; but it is also a partial operation, because the number of elements provided
may be less than the number of positions in the shape. We therefore make use of both the
Statemonad and theMaybemonad, and so we incorporate these two in our framework for
coercions:

instance Coerce(Maybe a) (Maybe a) where
⇓= id
⇑= id

instance Coerce(State s a) (s→ (a,s)) where
⇓= runState
⇑= State

This time, we form the composition of the functors, rather than their product. (As it
happens, the composition of theStateandMaybemonads in this way does in fact form
another monad, but that is not the case for monads in general.)

The central operation in the solution is the partial stateful function that strips the first
element off the list of contents, if this list is non-empty:

reassembleBody:: ()→ (M (State[a])�M Maybe) a
reassembleBody= ⇑ ◦ takeHead

where takeHead [] = (Nothing, [])
takeHead (y :ys) = (Just y,ys)

This is a composite monadic value, using the composition of the two monadsState[a] and
Maybe; traversal using this operation yields a stateful functionfor the whole data structure.

reassemble:: Traversable t⇒ t ()→ (M (State[a])�M Maybe) (t a)

reassemble= traverse reassembleBody
Now it is simply a matter of running this stateful function and discarding any leftover
elements:

runReassemble:: Traversable t⇒ (t (), [a])→Maybe(t a)

runReassemble= fst◦uncurry(run reassemble)
Decomposition and reassembly are partial inverses, in the following sense:

run decompose t= (s,c)⇔ run reassemble s c= (Just t, [])
Moreover, traversal of any data structure may be expressed in terms of list-based traversal
of its contents:

runDecompose xs= (ys,zs)⇒
fmap(curry runReassemble ys) (traverseList f zs) = fmap Just(traverse f xs)

This reinforces the message that traversal concerns the linear processing of contents, pre-
serving but independent of the shape.

The Essence of the Iterator Pattern 13

4.2 Collection and dispersal

We have found it convenient to consider special cases of effectful traversals, in which
the mapping aspect is independent of the accumulation, and vice versa. The first of these
traversals accumulates elements effectfully, with an operation of typea→m(), but modi-
fies those elements purely and independently of this accumulation, with a function of type
a→ b.

collect:: (Traversable t,Applicative m)⇒ (a→m ())→ (a→ b)→ t a→m(t b)

collect f g= traverse(λa→ pure(λ ()→ g a)⊛ f a)

The C# iteration in Figure 1 is an example, using the applicative functor of theStatemonad
to capture the counting:

loop:: Traversable t⇒ (a→ b)→ t a→M (State Integer) (t b)

loop touch= collect(λa→Wrap(do {n← get;put (n+1)})) touch
The second kind of traversal modifies elements purely but dependent on the state, with a
binary function of typea→ b→ c, evolving this state independently of the elements, via a
computation of typem b:

disperse:: (Traversable t,Applicative m)⇒m b→ (a→ b→ c)→ t a→m (t c)
disperse mb g= traverse(λa→ pure(g a)⊛mb)

An example of this family of traversals is a kind of converse of counting, labelling every
element with its position in order of traversal.

label::Traversable t⇒ t a→M (State Integer) (t Integer)
label= disperse(Wrap step) (curry snd)

step:: State Integer Integer
step= do {n← get;put (n+1); return n}

4.3 Backwards traversal

In contrast to pure maps, the order in which elements are visited in an effectful traversal is
significant; in particular, iterating through the elementsbackwards is observably different
from iterating forwards, because the effects happen in the opposite order. We can capture
this reversal quite elegantly as anapplicative functor adapter:

newtype Backwards m a= Backwards{runBackwards:: m a}

instance Applicative m⇒ Applicative(Backwards m) where
pure = Backwards◦pure
f ⊛x = Backwards(pure(flip ($))⊛ runBackwards x⊛ runBackwards f)

Informally,Backwards mis an applicative functor ifm is, but any effects happen in reverse;
this provides the symmetric ‘backwards’ embedding of monads into applicative functors
referred to in Section 3.1.

Such an adapter can be parcelled up existentially:
data AppAdapter mwhere

AppAdapter::Applicative(g m)⇒

(∀a. m a→ g m a)→ (∀a. g m a→m a)→ AppAdapter m

backwards::Applicative m⇒ AppAdapter m
backwards= AppAdapter Backwards runBackwards

It can be used to define a parametrised traversal:

14 Jeremy Gibbons and Bruno Oliveira

ptraverse:: (Applicative m,Traversable t)⇒
AppAdapter m→ (a→m b)→ t a→m(t b)

ptraverse(AppAdapter insert retrieve) f = retrieve◦ traverse(insert◦ f)
For example, reverse labelling is just labelling, adapted to run backwards:

lebal= ptraverse backwards(λa→ step)
Of course, there is a trivialforwardsadapter too:

newtype Forwards m a= Forwards{runForwards:: m a}

instance Applicative m⇒ Applicative(Forwards m) where
pure = Forwards◦pure
f ⊛x = Forwards(runForwards f⊛ runForwards x)

instance Functor m⇒ Functor(Forwards m) where
fmap f= Forwards◦ fmap f◦ runForwards

forwards::Applicative m⇒ AppAdapter m
forwards= AppAdapter Forwards runForwards

5 Laws of traverse

In line with other type classes such asFunctor andApplicative, we should consider also
what properties the various datatype-specific definitions of traverseought to enjoy.

5.1 Free theorems of traversal

In addition to his popularisation of Moggi’s work on monads,Wadler made Reynolds’ work
on parametricity (Reynolds, 1983) more accessible under the slogan ‘theorems for free’
(Wadler, 1989). This principle states that a parametrically polymorphic function enjoys a
property that follows entirely from its type, without any consideration of its implementa-
tion. The free theorem arising from the type ofdist is

dist◦ fmap(fmap k) = fmap(fmap k) ◦dist
As corollaries, we get the following two free theorems oftraverse:

traverse(g◦h) = traverse g◦ fmap h
traverse(fmap k◦ f) = fmap(fmap k) ◦ traverse f

These laws are not constraints on the implementation ofdist and traverse; they follow
automatically from their types.

5.2 Sequential composition of traversals

We have seen that applicative functors compose: there is an identity applicative functorId
and, for any two applicative functorsm andn, a composite applicative functorm�n. We
impose on implementations ofdist the constraint of respecting this compositional structure.
Specifically, the distributordist should respect the identity applicative functor:

dist◦ fmap Id= Id
and the composition of applicative functors:

dist◦ fmap Comp= Comp◦ fmap dist◦dist
As corollaries, we get analogous properties oftraverse:

The Essence of the Iterator Pattern 15

traverse(Id ◦ f) = Id ◦ fmap f
traverse(Comp◦ fmap f◦g) = Comp◦ fmap(traverse f) ◦ traverse g

Both of these consequences have interesting interpretations. The first says thattraverse
interpreted in the identity applicative functor is essentially just fmap, as mentioned in
Section 3.4. The second provides a fusion rule for the sequential composition of two
traversals; it can be written equivalently as:

traverse(f ⊙g) = traverse f⊙ traverse g

5.3 Idiomatic naturality

We also impose the constraint that the distributordist should benatural in the applicative
functor, as follows. Anapplicative functor transformationφ :: m a→ n a from applicative
functor m to applicative functorn is a homomorphism over the structure of applicative
functors, that is, a polymorphic function (categorically,a natural transformation between
functorsm andn) that respects the applicative functor structure, as follows:

φ (purem a) = puren a
φ (mf ⊛mmx) = φ mf ⊛n φ mx

(Here, the idiomatic operators are subscripted by their idiom for clarity.)
Thendist should satisfy the following naturality property: for applicative functor trans-

formationφ ,
distn ◦ fmapφ = φ ◦distm

One consequence of this naturality property is a ‘purity law’:
traverse pure= pure

This follows, as the reader may easily verify, from the observation thatpurem ◦ unId is
an applicative functor transformation from applicative functorId to applicative functorm.
This is an entirely reasonable property of traversal; one might say that it imposes a con-
straint of shape preservation. (But there is more to it than shape preservation: a traversal
of pairs that flips the two halves necessarily ‘preserves shape’, but breaks this law.) For
example, consider the following definition oftraverseon binary trees, in which the two
children are swapped on traversal:

instance Traversable Treewhere
traverse f(Leaf a) = pure Leaf⊛ f a
traverse f(Bin t u) = pure Bin⊛ traverse f u⊛ traverse f t

With this definition,traverse pure= pure◦mirror , wheremirror reverses a tree, and so the
purity law does not hold; this is because the corresponding definition of dist is not natural
in the applicative functor. Similarly, a definition with twocopies oftraverse f tand none
of traverse f umakestraverse purepurely return a tree in which every right child has been
overwritten with its left sibling. Both definitions are perfectly well-typed, but (according
to our constraints) invalid.

On the other hand, the following definition, in which the traversals of the two children
are swapped, but theBin operator is flipped to compensate, is blameless. The purity law still
applies, and the corresponding distributor is natural in the applicative functor; the effect of
the reversal is that elements of the tree are traversed ‘fromright to left’.

16 Jeremy Gibbons and Bruno Oliveira

instance Traversable Treewhere
traverse f(Leaf a) = pure Leaf⊛ f a
traverse f(Bin t u) = pure(flip Bin)⊛ traverse f u⊛ traverse f t

We consider this to be a reasonable, if rather odd, definitionof traverse.
Another consequence of naturality is a fusion law for the parallel composition of traver-

sals, as defined in Section 3.3:
traverse f⊗ traverse g= traverse(f ⊗g)

This follows from the fact thatpfstandpsndare applicative functor transformations from
Prod m nto m and ton, respectively.

5.4 Sequential composition of monadic traversals

A third consequence of naturality is a fusion law specific to monadic traversals. The natural
form of composition for monadic computations is calledKleisli composition:

(•) :: Monad m⇒ (b→m c)→ (a→m b)→ (a→m c)
(f •g) x = do {y← g x;z← f y; return z}

The monadm is commutativeif, for all mxandmy,
do {x←mx;y←my; return(x,y)} = do {y←my;x←mx; return(x,y)}

When interpreted in the applicative functor of a commutative monadm, traversals with
bodiesf ::b→m candg ::a→m bfuse:

traverse f• traverse g= traverse(f •g)

This follows from the fact thatµ ◦ unCompforms an applicative functor transformation
from m�m to m, for a commutative monadmwith ‘join’ operatorµ (that is,µ = (>>=id)).

This fusion law for the Kleisli composition of monadic traversals shows the benefits
of the more general idiomatic traversals quite nicely. Notethat the corresponding more
general fusion law for applicative functors in Section 5.2 allows two different applicative
functors rather than just one; moreover, there are no side conditions concerning commu-
tativity, in contrast to the situation with Kleisli composition. For example, consider the
following programs:

update1 ::a→ State Integer a
update1 x = do {var← get;put (var∗2); return x}

update2 ::a→ State Integer a
update2 x = do {var← get;put (var+1); return x}

monadic1 = traverse update1 • traverse update2
monadic2 = traverse(update1 •update2)

applicative1 = traverse update1⊙ traverse update2
applicative2 = traverse(update1⊙update2)

Becauseupdate1 andupdate2 do not commute,monadic1 6= monadic2 in general; never-
theless,applicative1 = applicative2. The only advantage of the monadic law is that there
is just one level of monad on both sides of the equation; in contrast, the idiomatic law has
two levels of applicative functor, because there is no analogue of the ‘join’ operatorµ .

We conjecture that the monadic traversal fusion law also holds even ifm is not commu-
tative, provided thatf andg themselves commute (f •g = g• f); but this no longer follows

The Essence of the Iterator Pattern 17

from naturality of the distributor in any simple way, and it imposes the alternative constraint
that the three typesa,b,c are equal.

5.5 No duplication of elements

Another way in which a definition oftraversemight cause surprises would be to visit
elements multiple times. (A traversal that skips elements would violate the purity law in
Section 5.3.) For example, consider this definition oftraverseon lists, which visits each
element twice:

instance Traversable[] where
traverse f[] = pure[]

traverse f(x : xs) = pure(const(:))⊛ f x⊛ f x⊛ traverse f xs
Note that this definition still satisfies the purity law. However, it behaves strangely in the
following sense: if the elements are indexed from zero upwards, and then the list of indices
is extracted, the result is not an initial segment of the natural numbers. To make this precise,
we define:

index:: Traversable t⇒ t a→ (t Integer, Integer)
index xs= run label xs0

wherelabel was given in Section 4.2. We might expect for anyxsthat if index xs= (ys,n)

thenrunContents ys= [0. .n−1]; however, with the duplicating definition of traversal for
lists above, we getindex"abc"= (ys,6) whererunContents ys= [1,1,3,3,5,5].

We might impose ‘no duplication’ as a further constraint on traversal, but the charac-
terisation of the constraint in terms of indexing feels rather ad hoc; we are still searching
for a nice theoretical treatment of this condition. For the time being, therefore, we propose
to leave as an observation the fact that some odd definitions of traversal may duplicate
elements.

6 Modular programming with applicative functors

In Section 4, we showed how to model various kinds of iteration — both mapping and
accumulating, and both pure and impure — as instances of the generictraverseoperation.
The extra generality of applicative functors over monads, capturing monoidal as well as
monadic behaviour, is crucial; that justifies our claim thatidiomatic traversal rather than
monadic map is the essence of the ITERATOR pattern.

However, there is an additional benefit of applicative functors over monads, which con-
cerns the modular development of complex iterations from simpler aspects. Hughes (1989)
argues that one of the major contributions of functional programming is in providing
better glue for plugging components together. In this section, we make a corresponding
case for applicative traversals: the improved compositionality of applicative functors over
monads provides better glue for fusion of traversals, and hence better support for modular
programming of iterations.

6.1 An example: wordcount

As an illustration, we consider the Unix word-counting utility wc, which computes the
numbers of characters, words and lines in a text file. The program in Figure 2, based on

18 Jeremy Gibbons and Bruno Oliveira

public static int [] wc〈char〉 (IEnumerable〈char〉 coll){
int nl = 0,nw= 0,nc= 0;
bool state= false;

foreach (char c in coll){
++nc;
if (c≡ ’\n’) ++nl;
if (c≡ ’ ’ ∨ c≡ ’\n’ ∨ c≡ ’\t’){

state= false;
} else if (state≡ false){

state= true;
++nw;

}
}

int [] res= {nc,nw,nl};

return res;
}

Fig. 2. Kernighan and Ritchie’swc program in C#

Kernighan and Ritchie’s version (1988), is a translation ofthe original C program into
C#. This program has become a paradigmatic example in the program comprehension
community (Gallagher & Lyle, 1991; Villavicencio & Oliveira, 2001; Gibbons, 2006b),
since it offers a nice exercise in re-engineering the three separate slices from the one
monolithic iteration. We are going to use it in the other direction: fusing separate simple
slices into one complex iteration.

6.2 Modular iterations, idiomatically

The character-counting slice of thewc program accumulates a result in the integers-as-
monoid applicative functor:

type Count= Const Integer

count::a→ Count b
count = Const1

The body of the iteration simply yields 1 for every element:
cciBody:: Char→Count a
cciBody= count

Traversing with this body accumulates the character count:
cci ::String→Count[a]

cci = traverse cciBody
(Note that the element type of the output collection is unconstrained for traversal in a
monoidal applicative functor, because the result has a phantom type.)

Counting the lines (in fact, the newline characters, thereby ignoring a final ‘line’ that is
not terminated with a newline character) is similar: the difference is simply what number
to use for each element, namely 1 for a newline and 0 for anything else.

test::Bool→ Integer
test b= if b then 1 else 0

With the help of this function, we define:

The Essence of the Iterator Pattern 19

lciBody:: Char→Count a
lciBody c= ⇑ (test(c≡ ’\n’))

lci ::String→Count[a]

lci = traverse lciBody
Counting the words is trickier, because it necessarily involves state. Here, we use the

Statemonad with a boolean state, indicating whether we are currently within a word, and
compose this with the applicative functor for counting:

wciBody:: Char→ (M (State Bool)�Count) a
wciBody c= ⇑ (updateState c) where

updateState::Char→ Bool→ (Integer,Bool)
updateState c w= let s= not(isSpace c) in (test(not w∧ s),s)

wci :: String→ (M (State Bool)�Count) [a]

wci = traverse wciBody
The wrapper actually to extract the word count runs this traversal from an initial state of

False, and discards the final boolean state:
runWci:: String→ Integer
runWci s= fst (run wci s False)

These components may be combined in various ways. For example, character- and line-
counting may be combined to compute a pair of results, using the product of applicative
functors:

clci :: String→ (Count⊠Count) [a]

clci = cci⊗ lci
This composition is inefficient, though, since it performs two traversals over the input.
Happily, the two traversals may be fused into one, as we saw inSection 5.3, giving

clci = traverse(cciBody⊗ lciBody)
in a single pass rather than two.

It so happens that both character- and line-counting use thesame applicative functor,
but that is not important here. Exactly the same technique works to combine these two
components with the third:

clwci ::String→ ((Count⊠Count)⊠ (M (State Bool)�Count)) [a]

clwci = traverse(cciBody⊗ lciBody⊗wciBody)
Note that character- and line-counting traversals are monoidal, whereas word-counting is
monadic. For a related example using a Naperian applicativefunctor, consider conducting
an experiment to determine whether the distributions of theletters ‘q’ and ‘u’ in a text are
correlated. This might be modelled as follows:

quiBody:: Char→ Pair Bool
quiBody c= P (c≡ ’q’,c≡ ’u’)

qui::String→ Pair [Bool]
qui = traverse quiBody

wherePair is a datatype of pairs:
newtype Pair a = P (a,a)

made into a Naperian applicative functor in the obvious way.Applyingqui to a string yields
a pair of boolean sequences, representing the graphs of the distributions of these two letters
in the string:

20 Jeremy Gibbons and Bruno Oliveira

run qui"qui"= ([True,False,False], [False,True,False])
Moreover,qui combines nicely with character-counting:

ccqui::String→ (Count⊠Pair) [Bool]
ccqui= cci⊗qui= traverse(cciBody⊗quiBody)

We can also combinequi with the word-counting traversal — although the product of
two applicative functors requires them to agree on the element type, the word-counting
bodywci is agnostic about this type and so combines with anything:

wcqui:: String→ (Pair⊠ (M (State Bool)�Count)) [Bool]
wcqui= qui⊗wci = traverse(quiBody⊗wciBody)

In general, however, component traversals may not be so amenable to composition, and
product may not be the appropriate combinator. Such a situation calls for sequential com-
position⊙ rather than parallel composition⊗ of applicative functors alone. Here, however,
we can’t directly compose querying with counting, because counting discards its argument;
and neither can we compose counting with querying, because querying produces booleans
and counting consumes characters. Instead, we have to use both sequential and parallel
composition, preserving a copy of the input for querying in addition to counting it:

wcqui′ :: String→ ((Id ⊠ (M (State Bool)�Count))�Pair) [Bool]
wcqui′ = traverse(quiBody⊙ (Id⊗wciBody))

6.3 Modular iterations, monadically

It is actually possible to compose the three slices ofwc using monads alone. Let us explore
how that works out, for comparison with the approach using applicative functors.

The first snag is that none of the three slices is actually monadic; we have to cast them
in the monadic mold first. The simple counting slices can be expressed using theWriter
monad:

ccmBody:: Char→Writer Integer Char
ccmBody c= do { tell 1;return c}

ccm::String→Writer Integer String
ccm= mapM ccmBody

lcmBody:: Char→Writer Integer Char
lcmBody c= do { tell (test(c≡ ’\n’)); return c}

lcm::String→Writer Integer String
lcm= mapM lcmBody

Word-counting is stateful, acting on a state of type(Integer,Bool):
wcmBody::Char→ State(Integer,Bool) Char
wcmBody c= let s= not(isSpace c) in do

(n,w)← get
put(n+ test(not w∧ s),s)
return c

wcm:: String→ State(Integer,Bool) String
wcm= mapM wcmBody

This rewriting is a bit unfortunate; however, having rewritten in this way, we can compose
the three traversals into one, and even fuse the three bodies:

The Essence of the Iterator Pattern 21

clwcm= ccm⊗ lcm⊗wcm= mapM(ccmBody⊗ lcmBody⊗wcmBody)
Now let us turn to the Naperian traversal. That too can be expressed monadically: as

observed in Section 3.1, a Naperian functor is equivalent toa Readermonad with the
position being the ‘environment’. In particular, the Naperian applicative functor for the
functorPair is equivalent to the monadReader Bool.

qumBody:: Char→Reader Bool Bool
qumBody c= do {b← ask; return (if b then (c≡ ’q’) else (c≡ ’u’))}

qum:: String→Reader Bool[Bool]
qum= mapM qumBody

We can’t form the parallel composition of this with word-counting, for the same reason as
with the idiomatic approach: the element return types differ. But with monads, we can’t
even form the sequential composition of the two traversals either: the two monads differ,
and Kleisli composition requires two computations in the same monad.

It is sometimes possible to work around the problem of sequential composition of com-
putations in different monads, usingmonad transformers(Jones, 1995). A monad trans-
former t turns a monadm into another monadt m, typically adding some functionality in
the process; the operationlift embeds a monadic value from the simpler space into the more
complex one.

class MonadTrans twhere
lift :: Monad m⇒m a→ t m a

With this facility, there may be many monads providing a certain kind of functionality, so
that functionality too ought to be expressed in a class. For example, the functionality of
theStatemonad can be added to an arbitrary monad using the monad transformerStateT,
yielding a more complex monad with this added functionality:

newtype StateT s m a= StateT{runStateT:: s→m(a,s)}
instance MonadTrans(StateT s) where ...

class Monad m⇒MonadState s m|m→ swhere
get::m s
put:: s→m()

instance MonadState s(State s) where ...

instance Monad m⇒MonadState s(StateT s m) where ...

Now, in the special case of the composition of two different monads in which one is a
monad transformer applied to the other, progress is possible:

(p•) :: (Monad m,MonadTrans t,Monad(t m))⇒

(b→ t m c)→ (a→m b)→ (a→ t m c)
p1p•p2 = p1• (lift ◦p2)

(•q) :: (Monad m,MonadTrans t,Monad(t m))⇒

(b→m c)→ (a→ t m b)→ (a→ t m c)
p1•qp2 = (lift ◦p1) •p2

We can use these constructions to compose sequentially the ‘q’–‘u’ experiment and word-
counting. We need to generalise the type ofwcmBodyfrom theStatemonad specifically to
any monad with the appropriate functionality (and in particular, one withStatefunctional-
ity added to theReadermonad):

22 Jeremy Gibbons and Bruno Oliveira

wcmBody′ ::MonadState(Integer,Bool) m⇒Char→m Char
wcmBody′ c = let s= not(isSpace c) in do

(n,w)← get
put(n+ test(not w∧ s),s)
return c

(Notice that the definition is identical; only the type has changed.) Now querying and
word-counting compose monadically:

quwcm:: String→ StateT(Integer,Bool) (Reader Bool) [Bool]
quwcm= mapM qumBody•qmapM wcmBody′ = mapM(qumBody•qwcmBody′)

This particular pair of monads composes just as well the other way around, because the
typesState s(Reader r a) andReader r(State s a) are isomorphic. So we could instead
use theReaderTmonad transformer to addReaderbehaviour to theStatemonad, and use
the dual composition operationp•. However, both cases are rather awkward, because they
entail having to generalise (perhaps previously-written)components from types involving
specific monads (such asState) to general monad interfaces (such asStateT). Writing the
components that way in the first place might be good practice,but that rule is little comfort
when faced with a body of code that breaks it. Moreover, the monad transformer approach
works only for certain monads, not for all of them; in contrast, composition of applicative
functors is universal.

The upshot is that composition of applicative functors is more flexible than composition
of monads.

7 Conclusions

Monads have long been acknowledged as a good abstraction formodularising certain
aspects of programs. However, composing monads is known to be difficult, limiting their
usefulness. One solution is to use monad transformers, but this requires programs to be
designed initially with monad transformers in mind. Applicative functors have a richer
algebra of composition operators, which can often replace the use of monad transformers;
there is the added advantage of being able to compose applicative but non-monadic com-
putations. We thus believe that applicative functors provide an even better abstraction than
monads for modularisation.

We have argued that idiomatic traversals capture the essence of imperative loops —
both mapping and accumulating aspects. We have stated some properties of traversals and
shown a few examples, but we are conscious that more work needs to be done in both of
these areas.

This work grew out of an earlier discussion of the relationship between design patterns
and higher-order datatype-generic programs (Gibbons, 2006a). Preliminary versions of that
work argued that pure datatype-generic maps are the functional analogue of the ITERATOR

design pattern. It was partly while reflecting on that argument — and its omission of
imperative aspects — that we came to the more refined positionpresented here. Note
that idiomatic traversals, and even pure maps, are more general than object-oriented IT-
ERATORs in at least one sense: it is trivial with our approach to change the type of the
collection elements with a traversal, whereas with an approach based on mutable objects,
this is essentially impossible.

The Essence of the Iterator Pattern 23

As future work, we are exploring properties and generalisations of the specialised traver-
sals collect and disperse. We hope that such specialised operators might enjoy richer
composition properties than do traversals in general, and for example will provide more
insight into therepminexample discussed in the conference version of this paper (Gibbons
& Oliveira, 2006). We also hope to investigate the categorical structure ofdist further:
naturality in the applicative functor appears to be relatedto Beck’s distributive laws (Beck,
1969), and ‘no duplication’ to linear type theories.

8 Acknowledgements

We are grateful to the members of IFIP WG2.1, theAlgebra of Programmingresearch
group at Oxford, theDatatype-Generic Programmingproject at Oxford and Nottingham,
and the anonymous MSFP and JFP referees, whose insightful comments have improved
this paper considerably. Thanks are due especially to ConorMcBride and Ross Paterson,
without whose elegant work on applicative functors this would never have happened. As
well as the clear debt we owe to (McBride & Paterson, 2008), wethank McBride for
pointing us to Hancock’s notion of Naperian functors, and Paterson for the observation
thatdist should be natural in the applicative functor.

References

Beck, Jon. (1969). Distributive laws.Pages 119–140 of:Eckmann, B. (ed),Seminar on triples and
categorical homology theory. Lecture Notes in Mathematics, vol. 80.

Bird, Richard S., & Meertens, Lambert. (1998). Nested datatypes. Pages 52–67 of:Jeuring, Johan
(ed),Proceedings of mathematics of program construction. Lecture Notes in Computer Science,
vol. 1422. Marstrand, Sweden: Springer-Verlag.

Fokkinga, Maarten. (1994).Monadic maps and folds for arbitrary datatypes. Department INF,
Universiteit Twente.

Fokkinga, Maarten M. (1990). Tupling and mutumorphisms.The Squiggolist, 1(4), 81–82.

Fridlender, Daniel, & Indrika, Mia. (2000). Do we need dependent types?Journal of functional
programming, 10(4), 409–415.

Gallagher, K. B., & Lyle, J. R. (1991). Using program slicingin software maintenance.IEEE
transactions on software engineering, 17(8), 751–761.

Gamma, Erich, Helm, Richard, Johnson, Ralph, & Vlissides, John. (1995). Design patterns:
Elements of reusable object-oriented software. Addison-Wesley.

GHC Team. (2006). Haskell hierarchical libraries. http://www.haskell.org/ghc/docs/

latest/html/libraries/.

Gibbons, Jeremy. (2002). Calculating functional programs. Pages 148–203 of:Backhouse, Roland,
Crole, Roy, & Gibbons, Jeremy (eds),Algebraic and coalgebraic methods in the mathematics of
program construction. Lecture Notes in Computer Science, vol. 2297. Springer-Verlag.

Gibbons, Jeremy. (2003). Origami programming.Pages 41–60 of:Gibbons, Jeremy, & de Moor,
Oege (eds),The fun of programming. Cornerstones in Computing. Palgrave.

Gibbons, Jeremy. (2006a). Design patterns as higher-orderdatatype-generic programs.Workshop on
generic programming.

Gibbons, Jeremy. (2006b). Fission for program comprehension. Pages 162–179 of:Uustalu, Tarmo
(ed), Mathematics of program construction. Lecture Notes in Computer Science, vol. 4014.
Springer-Verlag.

24 Jeremy Gibbons and Bruno Oliveira

Gibbons, Jeremy, & Oliveira, Bruno C. d. S. (2006). The essence of the Iterator pattern. McBride,
Conor, & Uustalu, Tarmo (eds),Mathematically-structured functional programming.

Gibbons, Jeremy, Hutton, Graham, & Altenkirch, Thorsten. (2001). When is a function a fold or
an unfold? Electronic notes in theoretical computer science, 44(1). Coalgebraic Methods in
Computer Science.

Hinze, Ralf, & Jeuring, Johan. (2003). Generic Haskell: Practice and theory. Pages 1–56 of:
Backhouse, Roland, & Gibbons, Jeremy (eds),Summer school on generic programming. Lecture
Notes in Computer Science, vol. 2793.

Hinze, Ralf, & Peyton Jones, Simon. (2000). Derivable type classes.International conference on
functional programming.

Hughes, John. (1989). Why functional programming matters.Computer journal, 32(2), 98–107.

Jansson, Patrick, & Jeuring, Johan. (1997). PolyP – a polytypic programming language extension.
Pages 470–482 of: Principles of programming languages.

Jansson, Patrik, & Jeuring, Johan. (2002). Polytypic data conversion programs.Science of computer
programming, 43(1), 35–75.

Jay, Barry, & Steckler, Paul. (1998). The functional imperative: Shape!Pages 139–53 of:Hankin,
Chris (ed),European symposium on programming. Lecture Notes in Computer Science, vol. 1381.

Jay, C. Barry. (1995). A semantics for shape.Science of computer programming, 25, 251–283.

Jeuring, Johan, & Meijer, Erik (eds). (1995).Advanced functional programming. Lecture Notes in
Computer Science, vol. 925.

Jones, Mark P. (1995). Functional programming with overloading and higher-order polymorphism.
In: (Jeuring & Meijer, 1995).

Jones, Mark P., & Duponcheel, Luc. (1993).Composing monads. Tech. rept. RR-1004. Department
of Computer Science, Yale.

Kernighan, Brian W., & Ritchie, Dennis M. (1988).The C programming language. Prentice Hall.

King, David J., & Wadler, Philip. (1993). Combining monads.Launchbury, J., & Sansom, P. M.
(eds),Functional programming, Glasgow 1992. Springer.

Kiselyov, Oleg, & Lämmel, Ralf. (2005).Haskell’s Overlooked Object System. Draft; submitted for
publication.

Kühne, Thomas. (1999). Internal iteration externalized.Pages 329–350 of:Guerraoui, Rachid (ed),
European conference on object-oriented programming. Lecture Notes in Computer Science, vol.
1628.

Leroy, Xavier. (1995). Applicative functors and fully transparent higher-order modules.Pages 142–
153 of: Principles of programming languages.

McBride, Conor, & Paterson, Ross. (2008). Applicative programming with effects. Journal of
functional programming, 18(1), 1–13.

Meertens, Lambert. (1996). Calculate polytypically!Pages 1–16 of:Kuchen, H., & Swierstra, S. D.
(eds),Programming language implementation and logic programming. Lecture Notes in Computer
Science, vol. 1140.

Meertens, Lambert. (1998). Functor pulling. Backhouse, Roland, & Sheard, Tim (eds),Workshop
on generic programming.

Meijer, Erik, & Jeuring, Johan. (1995). Merging monads and folds for functional programming.In:
(Jeuring & Meijer, 1995).

Meijer, Erik, Fokkinga, Maarten, & Paterson, Ross. (1991).Functional programming with bananas,
lenses, envelopes and barbed wire.Pages 124–144 of:Hughes, John (ed),Functional programming
languages and computer architecture. Lecture Notes in Computer Science, vol. 523. Springer-
Verlag.

Moggi, E., Bellè, G., & Jay, C. B. (1999). Monads, shapely functors and traversals. Hoffman, M.,
Pavlovic, D., & Rosolini, P. (eds),Category theory in computer science.

The Essence of the Iterator Pattern 25

Moggi, Eugenio. (1991). Notions of computation and monads.Information and computation, 93(1).

Pardo, Alberto. (2005). Combining datatypes and effects.Advanced functional programming.
Lecture Notes in Computer Science, vol. 3622.

Peyton Jones, Simon. (2003).The Haskell 98 language and libraries: The revised report. Cambridge
University Press.

Peyton Jones, Simon L., & Wadler, Philip. (1993). Imperative functional programming.Pages 71–84
of: Principles of programming languages.

Reynolds, John C. (1983). Types, abstraction and parametric polymorphism. Pages 513–523 of:
Information processing 83. Elsevier.

Villavicencio, Gustavo, & Oliveira, José Nuno. (2001). Reverse program calculation supported by
code slicing.Pages 35–48 of: Eighth working conference on reverse engineering. IEEE.

Wadler, Philip. (1989). Theorems for free!Pages 347–359 of: Functional programming languages
and computer architecture. ACM.

Wadler, Philip. (1992). Monads for functional programming. Broy, M. (ed),Program design calculi:
Proceedings of the Marktoberdorf summer school.

