
Understanding Idiomatic Traversals Backwards and Forwards

Richard Bird
Jeremy Gibbons

Department of Computer Science,
University of Oxford, Wolfson Building,

Parks Rd, Oxford OX1 3QD, UK
{bird,jg}@cs.ox.ac.uk

Stefan Mehner
Janis Voigtländer

Institut für Informatik,
Universität Bonn,

Römerstr. 164, 53117 Bonn, Germany
{mehner,jv}@cs.uni-bonn.de

Tom Schrijvers

Department of Applied Mathematics and
Computer Science, Ghent University,
Krijgslaan 281, 9000 Gent, Belgium

tom.schrijvers@ugent.be

Abstract
We present new ways of reasoning about a particular class of
effectful Haskell programs, namely those expressed as idiomatic
traversals. Starting out with a specific problem about labelling
and unlabelling binary trees, we extract a general inversion law,
applicable to any monad, relating a traversal over the elements of
an arbitrary traversable type to a traversal that goes in the opposite
direction. This law can be invoked to show that, in a suitable
sense, unlabelling is the inverse of labelling. The inversion law,
as well as a number of other properties of idiomatic traversals, is
a corollary of a more general theorem characterising traversable
functors as finitary containers: an arbitrary traversable object can
be decomposed uniquely into shape and contents, and traversal
be understood in terms of those. Proof of the theorem involves
the properties of traversal in a special idiom related to the free
applicative functor.

Life can only be understood backwards;
but it must be lived forwards.

— Søren Kierkegaard

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Program and
recursion schemes, Type structure; D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Data types
and structures, Polymorphism; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords applicative functors; finitary containers; idioms; mon-
ads; traversable functors

1. Introduction
How does the presence of effects change our ability to reason about
functional programs? More specifically, can we formulate useful
equational laws about particular classes of effectful programs in
the same way as we can for pure functions? These questions have

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Haskell ’13, September 23–24, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2383-3/13/09. . . $15.00.
http://dx.doi.org/10.1145/2503778.2503781

been around for some time, but such laws have been thin on the
ground. The primary purpose of this paper is to state and prove one
such law, the inversion law of monadic traversals.

Our point of departure is a paper by Hutton and Fulger (2008).
In it, they pose a deliberately simple example involving labelling
binary trees. Their objective was to find some way of demonstrat-
ing that the labelling, expressed using the state monad, generates
distinct labels. The method they gave for solving the problem was
to reduce stateful computations to pure functions that accept and
return a state, and to carry out the necessary equational reasoning
with pure functions alone.

We formulate an essentially equivalent version of the labelling
problem in terms of a second effectful process that unlabels a
binary tree, with the intention of arguing that unlabelling is the
inverse of labelling. But our proof method is quite different: it
relies on a single equational law about inverting effectful traversals.
Moreover, in applying that law, the effects can be produced by an
arbitrary monad, not just the state monad, the traversals can be over
an arbitrary traversable type, not just binary trees, and all legitimate
traversal strategies are allowed.

Apart from formulating the inversion law, the main technical
contribution of the paper is the means of proving it. To do so
we state and prove a powerful general result that, given a fixed
traversal strategy for a type, characterises an arbitrary member of
the type (and traversals over it) in terms of its shape and contents.
The characterisation depends on traversing with a specific idiom
derived from the free applicative functor. We claim that the theorem
is a pivotal tool in the study of idiomatic traversals, and some of its
other uses are explored in the paper.

Before we start, we make a remark about our equational frame-
work. Although we employ Haskell notation to define types and
functions, these entities are to be interpreted in the category Set
of sets and total functions, not the Haskell category of domains
and continuous functions. In particular, algebraic datatypes will
consist of finite structures only. We also distinguish typographi-
cally between arbitrary but fixed types (in uppercase sans serif) and
polymorphic type variables (in lowercase italics); for example, a
particular instance of the Functor type class will have a method
fmap :: (a→ b)→ F a→ F b.

2. Tree labelling
Here is the tree datatype in question:

data Tree a = Tip a | Bin (Tree a) (Tree a)

In our version of the labelling problem, trees are annotated with
additional elements drawn from an infinite stream, the stream being
threaded through the computation via the state monad:

label ::Tree a→ State [b] (Tree (a,b))
label (Tip x)

= do {(y : ys)← get;put ys;return (Tip (x,y))}
label (Bin u v)

= do {u′← label u;v′← label v;return (Bin u′ v′)}

For notational convenience we have written the infinite streams
using Haskell list syntax, but they should not be thought of as an
algebraic datatype—for example, they might be defined by total
functions over the natural numbers.

The property that Hutton and Fulger wished to prove is that tree
elements are annotated with distinct labels. Because our version is
polymorphic in the label type, we cannot talk about distinctness; in-
stead, we require that the labels used are drawn without repetition
from the given stream—consequently, if the stream has no dupli-
cates, the labels will be distinct. In turn, this is a corollary of the
following property: the sequence of labels used to label the tree,
when prepended back on to the stream of unused labels, forms the
original input stream of labels. The function labels extracts the an-
notations:

labels ::Tree (a,b)→ [b]
labels (Tip (a,b)) = [b]
labels (Bin u v) = labels u++ labels v

Hutton and Fulger’s formulation of the labelling problem boils
down to the assertion (essentially their Lemma 7) that

runState (label t) xs = (u,ys) ⇒ labels u++ ys = xs

for all trees t and streams xs. Observe that the two functions label
and labels are written in quite different styles, the first as an ef-
fectful monadic program and the second as a pure function. Hence
their combination requires flattening the state abstraction via the
runState function. Unifying the two styles entails either writing
label in a pure style (which is possible, but which amounts to falling
back to first principles), or writing labels in an effectful style. Hut-
ton and Fulger took the former approach; we take the latter.

As a first step, we might—with a little foresight—define unla-
belling as an effectful program in the following way:

unlabel ::Tree (a,b)→ State [b] (Tree a)
unlabel (Tip (x,y))

= do {ys← get;put (y : ys);return (Tip x)}
unlabel (Bin u v)

= do {v′← unlabel v;u′← unlabel u;return (Bin u′ v′)}

Unlabelling a tip means putting the second component of the label
back on the stream. Unlabelling a node is like labelling one, but
with a crucial difference: the process has to proceed in the opposite
direction. After all, if you put on your socks and then your shoes
in the morning, then in the evening you take off your shoes before
taking off your socks. This insight is fundamental in what follows.

Now we can rewrite the requirement above in the form

runState (label t) xs = (u,ys) ⇒
runState (unlabel u) ys = (t,xs)

Better, we can write the requirement without recourse to runState:

unlabel<=< label = return

where <=< denotes Kleisli composition in a monad:

(g<=< f) x = do {y← f x;z← g y;return z}

But this is still an unsatisfactory way to formulate the problem,
because label and unlabel are specific to the state monad and to
binary trees. Instead, we argue that the labelling problem is but an
instance of a more general one about effectful traversals. As far as
possible, any reasoning should be abstracted both from the specific

computational effect and the specific datatype. We encapsulate
the effects as idioms (also called applicative functors) as defined
by McBride and Paterson (2008), rather than the more familiar
monads. Every monad is an idiom, but idioms are more flexible
and have better compositional properties than monads, properties
that we will need to exploit. And we encapsulate the data in terms
of idiomatic traversals, also introduced by McBride and Paterson,
and studied in more depth by Gibbons and Oliveira (2009) and
Jaskelioff and Rypáček (2012).

3. Idiomatic traversals
According to McBride and Paterson (2008) a traversable datatype
T is one that supports two interdefinable functions traverse and
dist. For our purposes it suffices to concentrate entirely on traverse.
This function applies a given effectful function to every element in
a given T-structure, accumulating all the effects in order. In the case
of a monadic idiom and when the type is lists, one possible choice
for the operation is the monadic map mapM from the Haskell
Prelude. Here is a cut-down version of the Traversable class in the
Haskell library Data.Traversable:

class Functor t⇒ Traversable t where
traverse ::Applicative m⇒ (a→ m b)→ t a→ m (t b)

As an instance of the Functor class, each traversable type must
satisfy the laws fmap id = id and fmap g ◦ fmap f = fmap (g ◦ f)
that apply to all functors.

In particular, trees form a traversable type; traversal of a tip
involves visiting its label, and one possible traversal of a binary
node involves traversing the complete left subtree before the right
subtree. To formulate this traversal, we need to review the class of
applicative functors, which is declared by

class Functor m⇒ Applicative m where
pure :: a→ m a
(<∗>) :: m (a→ b)→ m a→ m b

The original name was Idiom, but Haskell uses Applicative; the
words ‘applicative functor’ and ‘idiom’ are interchangeable and we
will use both. The method <∗> is called idiomatic application and
associates to the left in expressions. The methods pure and <∗>
are required to satisfy four laws, called the identity, composition,
homomorphism, and interchange laws, respectively:

pure id<∗>u = u
pure (◦)<∗>u<∗> v<∗>w = u<∗> (v<∗>w)
pure f <∗>pure x = pure (f x)
u<∗>pure x = pure ($x)<∗>u

In addition, the mapping method fmap of the Functor superclass
of Applicative should be related to these methods by the property
fmap f x = pure f <∗> x; indeed, this equation can be used as the
definition of fmap for applicative functors.

Every monad is an idiom. The connection is given by the equa-
tions

pure x = return x
mf <∗>mx = do {f ← mf ;x← mx;return (f x)}

That is, pure computations coincide with the unit of the monad, and
idiomatic application yields the effects of evaluating the function
before the effects of evaluating the argument. For monads the idiom
laws follow from the monad laws:

return x>>= f = f x
m>>= return = m
(m>>= f)>>=g = m>>=(λx→ f x>>=g)

Now we can define traverse for trees. One possible implemen-
tation is as follows:

instance Traversable Tree where
traverse f (Tip x)

= pure Tip<∗> f x
traverse f (Bin u v)

= pure Bin<∗> traverse f u<∗> traverse f v

Another choice is to traverse the complete right subtree before the
left one. And these are not the only two possible traversals. One
could give a valid definition for traversing a tree in breadth-first
order. Moreover, there is nothing at the moment to prevent us from
defining a traverse that ignores part of the tree, or visits some
subtree twice. For example, we might have defined

traverse f (Bin u v)
= pure (const Bin)<∗> traverse f u<∗> traverse f u

<∗> traverse f v

We would like to forbid such duplicitous definitions, and the way
to do it is to impose constraints on lawful definitions of traverse,
constraints we will examine in the next section. We return to the
question of duplicitous traversals in Section 7.

Tree labelling can be formulated as a tree traversal using the
monadic idiom State:

label ::Tree a→ State [b] (Tree (a,b))
label = traverse adorn

The body of the traversal consumes a single label from the stream,
using it to adorn a single tree element:

adorn :: a→ State [b] (a,b)
adorn x = do {(y : ys)← get;put ys;return (x,y)}

Well and good, but the next problem is how to define unlabel.
The function strip removes the additional label, returning it to the
stream:

strip :: (a,b)→ State [b] a
strip (x,y) = do {ys← get;put (y : ys);return x}

However, we cannot define unlabel by unlabel = traverse strip,
because the traversal is in the same direction as for label and we
need one that goes in the opposite direction. What we have to
provide is a function, treverse say, such that

unlabel = treverse strip

and then hope to be able to prove that unlabel<=< label = return.
But can we do so without having to write a completely separate
treverse function?

Yes, we can, by defining treverse in terms of traverse and
a ‘backwards’ idiom. For each idiom M there is a correspond-
ing idiom Backwards M with effects sequenced in the oppo-
site order. This statement is not true when ‘idiom’ is replaced
by ‘monad’, which is why we generalise from monads to id-
ioms. We use the concepts and semantics from the Haskell library
Control.Applicative.Backwards (the name forwards for the acces-
sor is awkward but standard).

newtype Backwards m a = Backwards {forwards :: m a}
instance Applicative m⇒ Applicative (Backwards m) where

pure x = Backwards (pure x)
Backwards mf <∗>Backwards mx

= Backwards (pure (flip ($))<∗>mx<∗>mf)

Reversing the order of effects allows us to define treverse:

treverse :: (Traversable t,Applicative m)⇒
(a→ m b)→ t a→ m (t b)

treverse f = forwards◦ traverse (Backwards◦ f)

Now we arrive at the central question: given an arbitrary monad M,
what are sufficient conditions for us to be able to assert that

treverse g<=< traverse f = return

for effectful functions f ::A→M B and g ::B→M A? The ques-
tion makes sense for monads but not for arbitrary idioms, because
Kleisli composition <=< is an operator only on monadic compu-
tations; that is why we still need to discuss monads, despite using
idiomatic traversals. The answer to the question is not surprising:
it is when g<=< f = return. We call this result the inversion law of
monadic traversals. The solution to the tree labelling problem is a
simple instance of the inversion law:

unlabel<=< label
= [[definitions]]

treverse strip<=< traverse adorn
= [[since strip<=<adorn = return]]

return

We prove the inversion law in full generality, for all lawful imple-
mentations of traverse over any traversable type, and for all mon-
ads. The reader is warned that the proof involves some heavy cal-
culational machinery, though many of the details are relegated to
an appendix. In fact, we prove a general representation theorem for
traversable functors, from which the inversion law follows.

We begin in the next section with what it means for an im-
plementation of traverse to be lawful. It is essential to enforce
some laws: even just the special case unlabel<=< label = return of
the inversion law breaks when a traversal is duplicitous, say. One
might think that duplication causes no problems, since it will oc-
cur both in the forwards and in the backwards traversal, and the
duplicate effects will cancel out. But this is not what happens.
Simply consider the duplicitous definition of traverse for binary
trees given above; for tree = Bin (Tip ’a’) (Tip ’b’), we have
runState ((unlabel<=< label) tree) [1 . .] = (tree, [2,2,3,4,5, . . .]).

4. The laws of traversal
Firstly, we introduce a notational device, used throughout the rest
of the paper, that may help with readability. Both traversable types
and idioms are functors, so we can map over them with one and the
same generic function fmap. However, uses of, say, fmap (fmap f)
can prove confusing: which fmap refers to which functor? Accord-
ingly we will employ two synonyms for fmap, namely imap to sig-
nify mapping over an idiom, and tmap to signify mapping over a
traversable type.

Secondly, to avoid possible ambiguity when discussing the four
type parameters in the type

traverse :: (Traversable t,Applicative m)⇒
(a→ m b)→ t a→ m (t b)

we will refer to a and b as ‘the elements’, m as ‘the idiom’, and t as
‘the datatype’. Bear in mind that by the word ‘datatype’ we do not
mean just Haskell algebraic datatypes; t could be instantiated to any
type constructor, for example T a = (∀b.b→ (b→ b)→ b)→ a.

The first law of traverse is the one called the unitarity law by
Jaskelioff and Rypáček (2012), and concerns the identity idiom:

newtype Identity a = Identity {runIdentity :: a}
instance Applicative Identity where

pure x = Identity x
Identity f <∗> Identity x = Identity (f x)

The unitarity law is simply that

traverse Identity = Identity

The second law of traverse is called the linearity law by Jaskelioff
and Rypáček, and concerns idiom composition. Idioms compose
nicely, in exactly the way that monads do not:

data Compose m n a = Compose (m (n a))
instance (Applicative m,Applicative n)⇒

Applicative (Compose m n) where
pure x = Compose (pure (pure x))
Compose mf <∗>Compose mx

= Compose (pure (<∗>)<∗>mf <∗>mx)

We can introduce an idiomatic composition operator:

(<◦>) :: (Applicative m,Applicative n)⇒
(b→ n c)→ (a→ m b)→ a→ Compose m n c

g<◦> f = Compose◦ imap g◦ f

The linearity law of traverse states that

traverse g<◦> traverse f = traverse (g<◦> f)

The remaining two properties of traverse concern naturality.
Recall the type of traverse given above. First off, traverse is natural
in the elements, both a and b. Naturality in a means that for all
functions g ::A′→ A we have

traverse f ◦ tmap g = traverse (f ◦g)

for all f ::A→M B. Naturality in b means that for all g ::B→ B′

we have

imap (tmap g)◦ traverse f = traverse (imap g◦ f)

for all f ::A→MB.
The second property is that traverse should also be natural in

the idiom, which is to say that

ϕ ◦ traverse f = traverse (ϕ ◦ f)

for all idiom morphisms ϕ . A polymorphic function ϕ ::M a→N a
is an idiom morphism (from idiom M to idiom N) if it satisfies

ϕ (pure x) = pure x
ϕ (mf <∗>mx) = ϕ mf <∗>ϕ mx

(From these two equations it follows that ϕ itself is natural, that
is, ϕ ◦ imap g = imap g◦ϕ for all g ::A→ A′.) That concludes the
constraints we impose on lawful traversals.

One consequence of those constraints is the purity law:

traverse pure = pure

This follows from the unitarity law, traverse being natural in the
idiom, and the fact that pure ◦ runIdentity is an idiom morphism
from Identity to any idiom M.

Despite its similarity to the linearity law, the equation

traverse g<=< traverse f = traverse (g<=< f)

does not hold in general, not even if all the constraints imposed on
traverse in this section are fulfilled and if additionally g<=< f =
pure (= return) holds. The crucial difference is the order of effects:
on the left the effects of applying f are triggered before those of g,
while on the right the two take turns. The equation is valid however
for so-called commutative monads (Gibbons and Oliveira 2009).

Another observation concerns backwards idioms. Although
Backwards is natural (that is, Backwards ◦ imap g = imap g ◦
Backwards), it is not always an idiom morphism: in general,
there is no relationship between Backwards (mf <∗> mx) and
Backwardsmf <∗>Backwardsmx. On the other hand, Backwards◦
Backwards is an idiom morphism, expressing the fact that reversal
of the order of effects is an involution. Consequently, we can derive
a dual characterisation of traverse in terms of treverse:

traverse f
= [[Backwards is an isomorphism]]

forwards◦ forwards◦Backwards◦Backwards◦ traverse f
= [[Backwards◦Backwards is an idiom morphism]]

forwards◦ forwards◦ traverse (Backwards◦Backwards◦ f)
= [[definition of treverse]]

forwards◦ treverse (Backwards◦ f)

Thus the inversion law can be stated in the dual form:

g<=< f = return ⇒ traverse g<=< treverse f = return

As a final remark to the eagle-eyed reader, one property of
traverse seems to be missing from the list. We have imposed natu-
rality in the elements a,b and in the idiom m, but what about nat-
urality in the datatype t? We will return to exactly this point in
Section 6, where we prove that a restricted kind of naturality in the
datatype follows from the other conditions.

5. The Representation Theorem
Our challenge is to prove the inversion law for any traversable T,
with any definition of traverse over T that satisfies the laws im-
posed in the previous section. The key fact is the Representation
Theorem given below, which establishes that, in the category Set,
traversable datatypes correspond exactly to finitary containers. This
means that every member t ::T A is determined by an arity n, a
shape with n holes, and n elements a1, . . . ,an of type A. Finitary
containers are also known as finitary dependent polynomial func-
tors (Gambino and Hyland 2004), normal functors (Girard 1988),
and shapely functors (Moggi et al. 1999).

We begin with two preliminary definitions. The first concerns
the function contents, which has the general type

contents ::Traversable t⇒ t a→ [a]

This function is defined using traverse in a Const idiom. Provided
A is a type carrying a monoid structure, the functor Const A b = A
determines an idiom in which pure computations yield the neutral
element mempty of A and idiomatic application reduces to the
binary operator mappend of A:

newtype Const a b = Const {getConst :: a}
instance Monoid a⇒ Applicative (Const a) where

pure x = Const mempty
Const x<∗>Const y = Const (mappend x y)

Now we can define

contents ::Traversable t⇒ t a→ [a]
contents = getConst ◦ traverse (λx→ Const [x])

Of course, in the list monoid used here we have mempty = [] and
mappend = (++).

The second definition is as follows.

DEFINITION. Let T be traversable and traverse its traversal func-
tion. A polymorphic function make :: a→ ·· · → a→ T a with n
arguments is called a make function (of arity n), provided that the
following two conditions hold:

tmap f (make x1 . . . xn) = make (f x1) (f x2) . . . (f xn)
contents (make x1 . . . xn) = [x1,x2, . . . ,xn]

for all x1, . . . ,xn of any type A and functions f of type A→ B for
any type B. �

The first condition in the above definition is the naturality prop-
erty associated with polymorphic functions. Note in the second
condition that contents, and hence the property of being a make
function, depends on the given definition of traverse. For example,

λx1 x2 x3 → Bin (Bin (Tip x1) (Tip x2)) (Tip x3) is a make func-
tion for the depth-first traverse of binary trees defined in Section 3,
while λx1 x2 x3→ Bin (Bin (Tip x2) (Tip x3)) (Tip x1) is a make
function for breadth-first traversal. We see that make functions in-
deed serve as an abstract notion of shapes with holes.

THEOREM (Representation Theorem). Let T be traversable and
traverse its traversal function, and let A be given. For every member
t :: T A, there is a unique n, a unique make function make of
arity n, and unique values a1, . . . ,an, all of type A, such that t =
make a1 . . . an. Furthermore, the make function so obtained satisfies

traverse f (make x1 . . . xn)
= pure make<∗> f x1 <∗> f x2 <∗> · · · <∗> f xn

for all xi ::A′ for any type A′, for any idiom M, and any function
f ::A′→MB for any type B. �

The proof is in Section 9 and contains the construction of the unique
representation. Note that make depends both on t and on the given
definition of traverse for T, but not on the elements of t.

The Representation Theorem characterises traverse, but we can
also characterise treverse. Abbreviating Backwards to B, we have

treverse f (make x1 . . . xn)
= [[definition of treverse]]

forwards (traverse (B◦ f) (make x1 . . . xn))
= [[Representation Theorem, and pure f = B (pure f)]]

forwards (B (pure make)<∗>B (f x1)<∗> · · · <∗>B (f xn))
= [[formula for backwards idiom (see below)]]

pure (λxn . . . x1→ make x1 . . . xn)<∗> f xn <∗> · · · <∗> f x1

The formula appealed to in the final step above is that

B (pure f)<∗>B x1 <∗> · · · <∗>B xn
= B (pure (λxn . . . x1→ f x1 . . . xn)<∗> xn <∗> · · · <∗> x1)

The proof is in Appendix A.1.
When the idiom is a monad we have the two specialisations

traverse f (make x1 . . . xn)
= do {y1← f x1;y2← f x2; . . . ;yn← f xn;

return (make y1 y2 . . . yn)}
treverse f (make x1 . . . xn)

= do {yn← f xn; . . . ;y2← f x2;y1← f x1;
return (make y1 y2 . . . yn)}

These facts yield our inversion law. We have:

(treverse g<=< traverse f) (make a1 . . . an)
= [[definition of <=<]]

do {t′← traverse f (make a1 . . . an); treverse g t′}
= [[characterisation of traverse]]

do {x1← f a1; . . . ;xn← f an;
treverse g (make x1 . . . xn)}

= [[characterisation of treverse]]
do {x1← f a1; . . . ;xn← f an;

yn← g xn; . . . ;y1← g x1;
return (make y1 . . . yn)}

Now suppose that g<=< f = return, that is,

do {x← f a;y← g x;return y}= return a

Then by induction on m we can prove for 06 m6 n that

do {x1← f a1; . . . ;xm← f am;
ym← g xm; . . . ;y1← g x1;
return (make y1 . . . ym am+1 . . . an)}

= return (make a1 . . . an)

which for m = n completes the proof of the inversion law. The base
case m = 0 is trivial. The induction step is also straightforward:
thanks to the above cancelling rule and the monad laws, we have:

do {x1← f a1; . . . ;xm← f am;
ym← g xm; . . . ;y1← g x1;
return (make y1 . . . ym am+1 . . . an)}

= do {x1← f a1; . . . ;xm−1← f am−1;
ym−1← g xm−1; . . . ;y1← g x1;
return (make y1 . . . ym−1 am . . . an)}

6. ‘Naturality’ in the datatype
Another consequence of the Representation Theorem is that we
can now prove that traverse is natural in the datatype, at least in
a certain sense. As a first attempt we might ask whether

imap ψ ◦ traverse f = traverse f ◦ψ (1)

holds for all polymorphic ψ ::T a→ T′ a. The traverse on the left
is over T and need bear no relationship to the traverse on the right,
which is over T′. A little reflection should reveal that the equiva-
lence is far too strong; ψ might reorder, drop or duplicate elements,
which will induce reordered, dropped or duplicated effects arising
from traverse on the right, as compared to traverse on the left.

Rather, (1) should be asserted only for ψ that do not reorder,
drop or duplicate elements. To formulate this constraint, we restrict
ψ to contents-preserving functions:

contents = contents◦ψ

In fact, this contents-preservation property is a consequence of (1):

contents
= [[definition of contents]]

getConst ◦ traverse (λx→ Const [x])
= [[property of getConst and imap]]

getConst ◦ imap ψ ◦ traverse (λx→ Const [x])
= [[assumed property (1)]]

getConst ◦ traverse (λx→ Const [x])◦ψ

= [[definition of contents]]
contents◦ψ

A reasonable question to ask now is: Is this property, in conjunction
with the naturality of ψ , also sufficient to establish (1)? Yes, it is,
and the proof is another application of the Representation Theorem.

Let t ::T A. To prove imap ψ (traverse f t) = traverse f (ψ t),
suppose t = make a1 . . . an, where make is given by the Represen-
tation Theorem. Define make′ by

make′ x1 . . . xn = ψ (make x1 . . . xn)

If we can show that make′ satisfies the two conditions of a make
function, then, by the Representation Theorem, make′ is the unique
make function yielding t′ ::T′ A where t′ = ψ t = make′ a1 . . . an.

Here is the proof that make′ is natural:

tmap f (make′ x1 . . . xn)
= [[definition of make′]]

tmap f (ψ (make x1 . . . xn))
= [[ψ is natural]]

ψ (tmap f (make x1 . . . xn))
= [[make is natural]]

ψ (make (f x1) . . . (f xn))
= [[definition of make′]]

make′ (f x1) . . . (f xn)

And here is the contents-property:

contents (make′ x1 . . . xn)
= [[definition of make′]]

contents (ψ (make x1 . . . xn))
= [[ψ is contents-preserving]]

contents (make x1 . . . xn)
= [[contents-property for make]]
[x1, . . . ,xn]

Good: make′ is indeed the make function for t′, with elements
a1, . . . ,an. That means

traverse f t′ = pure make′<∗> f a1 <∗> · · · <∗> f an

It remains to prove that the right-hand side is equal to

imap ψ (traverse f (make a1 . . . an))

For this we need a result which we will call the flattening formula
of <∗>. For brevity, we write

x⊕n
i=1 xi = ((x⊕ x1)⊕ x2)⊕ ·· · ⊕ xn

for any binary operator ⊕. We also introduce the generalised com-
position operator ◦m,n for 06 m6 n, defined by

(g◦m,n f) x1 . . . xn = g x1 . . . xm (f xm+1 . . . xn)

The flattening formula is then

(pure g <∗>m
i=1 xi)<∗> (pure f <∗>n

i=m+1 xi)
= pure (g◦m,n f) <∗>n

i=1 xi
(2)

The proof is given in Appendix A.2. Now we can argue:

imap ψ (traverse f (make a1 . . . an))
= [[Representation Theorem]]

imap ψ (pure make <∗>n
i=1 f ai)

= [[since imap f x = pure f <∗> x]]
pure ψ <∗> (pure make <∗>n

i=1 f ai)
= [[flattening formula of <∗>]]

pure (ψ ◦0,n make) <∗>n
i=1 f ai

= [[definition of make′]]
pure make′ <∗>n

i=1 f ai

Thus, a restricted kind of naturality in the datatype—(1) for all
natural and contents-preserving ψ—does indeed follow from the
laws in Section 4. For brevity, in the rest of the paper we call this
restricted naturality condition ‘naturality’ in the datatype, in quotes.

7. Two other consequences
Here are two other consequences of the Representation Theo-
rem. First, datatypes containing infinite data structures are not
traversable; we illustrate this by proving that in Set the datatype
of streams is not traversable. We define

data Nat= Zero | Succ Nat
type Stream a = Nat→ a

The Functor instance for Stream is given by tmap f g = f ◦ g.
Assume there is a lawful implementation of traverse on streams,
so traverse has type

traverse ::Applicative m⇒
(a→ m b)→ Stream a→ m (Stream b)

Consider nats = id ::Stream Nat, the stream of natural numbers in
ascending order. By the Representation Theorem, there exists an n,
a make function make :: a→ ··· → a→ Stream a of arity n, and
n values a1, . . . ,an ::Nat such that id = make a1 . . . an. It follows
that for every f ::Nat→ Bool we have

f
= [[since id is the identity function]]

f ◦ id
= [[definition of tmap on streams]]

tmap f id
= [[since id = make a1 . . . an]]

tmap f (make a1 . . . an)
= [[naturality of make]]

make (f a1) . . . (f an)

But this implies that any two functions of type Nat→ Bool that
agree on the values a1, . . . ,an must be equal, and this is clearly
not true. The same reasoning shows that for any infinite type K,
the datatype T a = K→ a is not traversable. But for finite K, say
T a = Bool→ a, the datatype is traversable.

The second consequence settles an open question as to whether
all possible lawful definitions of traverse for the same datatype
coincide up to the order of effects: they do. In particular, computing
the contents of an object using different lawful traverse functions
will always result in a permutation of one and the same list.

This second consequence also shows that we cannot have two
lawful traversals over the same datatype of which one is duplicitous
and the other is not. Here, a duplicitous traversal is one that visits
some entries more than once. In particular, showing that the obvi-
ous depth-first traverse of binary trees satisfies the laws rules out
the duplicitous traversal mentioned in Section 3 from being law-
ful. On the other hand, the breadth-first traversal is, of course, a
perfectly legitimate alternative traversal, because the effects are the
same though in a different order. Similarly, half-hearted traversals,
which ignore some entries, are also excluded.

For the proof, suppose we have two lawful implementations
traverse1 and traverse2 for a single T, and both lawful with respect
to the same implementation of tmap for T. Let make1 be any n-ary
make function with respect to traverse1. Let Finn be a finite type
having exactly n values 1, . . . ,n, so make1 1 . . . n is a member of
T Finn. By the Representation Theorem for traverse2 there is an m,
a make function make2 of arity m, and m values a1, . . . ,am such that

make1 1 . . . n = make2 a1 . . . am

Hence, using the naturality of make2 we have

make1 1 . . . n = tmap a (make2 1 . . . m)

where a ::Finm→ Finn is some function such that a i= ai for each i.
Now we switch horses. By the Representation Theorem for

traverse1 there is a p, a make function make′1 of arity p, and p values
b1, . . . ,bp such that

make2 1 . . . m = make′1 b1 . . . bp

Hence, using the naturality of make′1 we have

make2 1 . . . m = tmap b (make′1 1 . . . p)

where b ::Finp→ Finm is some function such that b i = bi. Putting
these two results together (and using naturality twice), we obtain

make1 1 . . . n = make′1 (a (b 1)) . . . (a (b p))

But by the Representation Theorem for traverse1, applied to ex-
actly this member of T Finn, we can conclude that because of
uniqueness make′1 = make1, p = n and that a ◦ b ::Finn → Finn is
the identity function. Moreover, by using various of the equations
we know by now, we obtain

make2 1 . . . m
= tmap b (make′1 1 . . . p)
= tmap b (make1 1 . . . n)
= tmap b (tmap a (make2 1 . . . m))

and thus

make2 1 . . . m = make2 (b (a 1)) . . . (b (a m))

Hence b ◦ a :: Finm → Finm is also the identity function. Thus
m = n because only functions between sets of the same size can

be bijections. Consequently, a and b are two mutually inverse
permutations of 1, . . . ,n.

So we have learned that for every make function make1 with
respect to traverse1 there is a make function make2 with respect
to traverse2 of the same arity, say n, and a permutation a on
1, . . . ,n such that make1 1 . . . n = make2 (a 1) . . . (a n). By natu-
rality of make functions, this implies that for x1, . . . ,xn of arbi-
trary type A, make1 x1 . . . xn = make2 xa(1) . . . xa(n). Specifically,
for every t ::T A which make1 yields, it holds that if contents1 t =
[x1, . . . ,xn], then contents2 t = [xa(1), . . . ,xa(n)]. A similar property
can be stated for arbitrary traversals with traverse1 and traverse2
of the same t with the same effect function (rather than just with
λx→ Const [x]).

8. The batch idiom
The Representation Theorem claims both the existence and unique-
ness of a representation t = make a1 . . . an for each t. The repre-
sentation can be calculated by traversing t with a special function
batch that depends on a specially designed idiom Batch related to
the free idiom (Capriotti and Kaposi 2013). This section is devoted
to explaining batch and Batch, and a related function runWith, and
thus preparing for the proof of the Representation Theorem in Sec-
tion 9. We begin by developing further intuition about what idioms
actually are.

Idiomatic results arise in three ways. Firstly, they arise by
atomic actions that are truly effectful, and thus make essential use
of the idiom; for example, functions like get and put in stateful
computations. Secondly, they arise by lifting pure values into the
idiom, using only the method pure. Finally, they arise by combining
two idiomatic values into one, using idiomatic application <∗>.

In the framework of sets and total functions it is a fact (McBride
and Paterson 2008, Exercise 2) that every idiomatic expression can
be written in the form

pure f <∗>n
i=1 xi

where x1, . . . ,xn are atomic effectful computations. Pure results are
already in this form (take n = 0), and atomic actions x can be
written as pure id<∗> x by applying an idiom law. The interesting
case is the third one about combining two calculations with <∗>.
This is handled by (2), the flattening formula of <∗>.

The batch idiom is a reification of this normal form, mimick-
ing the syntactical building blocks of idiomatic expressions with
its constructors. Instead of actually performing effectful compu-
tations, Batch just provides a structure for the computations to
be performed. This is somewhat reminiscent of batch processing;
hence the name. Moreover, Batch is tailored to gain specific in-
sight into traverse: since the only effectful computations traverse
can ever perform are the results of the function (of type A→MB,
say) given to it as the first argument, all atomic actions will have the
same type (M B, then), and will be obtained from elements of an-
other fixed type (A, then). Hence, Batch is a specialised version of
the type data Free f c = P c | ∀x.Free f (x→ c) :∗: f x, one possible
formulation of the free applicative functor (Capriotti and Kaposi
2013); specialised by avoiding the existential variable x.

Specifically, Batch is declared as a nested datatype (Bird and
Meertens 1998) as follows:

data Batch a b c = P c | Batch a b (b→ c) :∗: a

Like <∗>, the constructor :∗: associates to the left in expressions.
Every member u ::Batch A B C is finite and takes the form

u = P f :∗:ni=1 xi

for some n and some values x1, . . . ,xn of type A, where f is some
function of type B→ ··· → B→ C with n arguments.

Here is the functor instance for Batch:

instance Functor (Batch a b) where
fmap f (P c) = P (f c)
fmap f (u :∗: a) = fmap (f◦) u :∗: a

The applicative functor instance is trickier, but the intuition for the
definition of <∗> is that we want both fmap f x = pure f <∗> x and
the flattening formula of :∗: to hold:

(P g :∗:mi=1 xi)<∗> (P f :∗:ni=m+1 xi)
= P (g◦m,n f) :∗:ni=1 xi

(3)

for 06 m6 n. The applicative functor instance is:

instance Applicative (Batch a b) where
pure = P
P f <∗>P x = P (f x)
(u :∗: a)<∗>P x = (P (($x)◦)<∗>u) :∗: a
u <∗> (v :∗: a) = (P (◦)<∗>u<∗> v) :∗: a

The proof that fmap f x = pure f <∗> x is an easy induction from
the definitions, and the flattening formula (3) is proved in Ap-
pendix A.2. In Appendix A.3 we prove that the last three clauses
above indeed define a total binary operator, and that pure and <∗>
satisfy the necessary idiom laws (and imap the necessary functor
laws), so Batch a b is a lawful instance of the Applicative class.

We are going to consider just one traversal using Batch, namely
traverse batch, where batch is defined by

batch :: a→ Batch a b b
batch x = P id :∗: x

In Appendix A.4 we prove that batch has the useful property

u :∗: x = u<∗>batch x (4)

Repeated applications of this fact give us the translation formula:

P f :∗:ni=1 xi = pure f <∗>n
i=1 batch xi (5)

After some computations have been scheduled for batch pro-
cessing, we may want to execute them. Accordingly we define the
function runWith:

runWith ::Applicative m⇒ (a→ m b)→ Batch a b c→ m c
runWith f (P x) = pure x
runWith f (u :∗: x) = runWith f u<∗> f x

In effect, runWith f replaces the constructors of Batch by the pure
and <∗> of idiom m, while applying f to the contained elements:

runWith f (P g :∗:ni=1 xi) = pure g <∗>n
i=1 f xi

This result has a simple proof by induction, which we omit.
The first fact we need of runWith is that runWith f ◦batch = f :

runWith f (batch x)
= [[definition of batch]]

runWith f (P id :∗: x)
= [[definition of runWith]]

pure id<∗> f x
= [[identity law of idioms]]

f x

The second fact is that, when f ::A→MB, the function runWith f ,
still polymorphic in c, is an idiom morphism from Batch A B to M:

runWith f (pure x) = pure x
runWith f (u<∗> v) = runWith f u<∗> runWith f v

The first equation is immediate by definitions. For the second,
suppose without loss of generality that u and v take the form

u = P g :∗:mi=1 xi
v = P h :∗:ni=m+1 xi

Given what we know about runWith, we obtain

runWith f u = pure g <∗>m
i=1 f xi

runWith f v = pure h <∗>n
i=m+1 f xi

The flattening formula of <∗> (2) now gives

runWith f u<∗> runWith f v = pure (g◦m,n h) <∗>n
i=1 f xi

But we can also appeal to the flattening formula of :∗: (3) to obtain

runWith f (u<∗> v)
= runWith f (P (g◦m,n h) :∗:ni=1 xi)
= pure (g◦m,n h) <∗>n

i=1 f xi

completing the proof that runWith f is an idiom morphism.

9. Proof of the Representation Theorem
Let T be traversable and let t ::T A, so

traverse batch t ::Batch A b (T b)

Crucially, the obtained value is still polymorphic in b. It follows
from the definition of Batch that

traverse batch t = P make :∗:ni=1 ai (6)

for some polymorphic function make :: b → ··· → b → T b of
arity n and n values ai, all of type A. Thus we have constructively
obtained n, make, and a1, . . . ,an. Our aim is to prove that that make
is the unique make function yielding t, and that a1, . . . ,an are the
unique values for which t = make a1 . . . an. Moreover, we want to
prove that the general formula stated for traverse f (make x1 . . . xn)
in the theorem holds.

For illustration, let us first consider a concrete example for (6).
Let T= Tree, t = Bin (Bin (Tip 1) (Tip 2)) (Tip 3), and

instance Traversable Tree where
traverse f (Tip x)

= pure Tip<∗> f x
traverse f (Bin u v)

= pure (flip Bin)<∗> traverse f v<∗> traverse f u

Then it turns out we have

traverse batch t
= P (λx y z→ Bin (Bin (Tip z) (Tip y)) (Tip x)) :∗: 3 :∗: 2 :∗: 1

For the make :: b→ b→ b→ Tree b and a1,a2,a3 extracted from
this, we indeed have t = make a1 a2 a3, and the other claims
(make being a make function, uniqueness, and the formula for
traverse f (make x1 x2 x3)) also hold.

Back to the general case. We start by proving

traverse f t = pure make <∗>n
i=1 f ai (7)

for an arbitrary f ::A→ M B (with A fixed as above, but a free
choice of M and B). This result will be referred to as the weak
construction formula.

traverse f t
= [[since f = runWith f ◦batch]]

traverse (runWith f ◦batch) t
= [[naturality (runWith f is an idiom morphism)]]

runWith f (traverse batch t)
= [[normal form (6)]]

runWith f (P make :∗:ni=1 ai)
= [[property of runWith]]

pure make <∗>n
i=1 f ai

The weak construction formula can be used to prove the recon-
struction formula

t = make a1 . . . an (8)

For the proof we take M to be the identity idiom:

Identity t
= [[unitarity law]]

traverse Identity t
= [[weak construction formula (7)]]

pure make <∗>n
i=1 Identity ai

= [[calculation in the identity idiom]]
Identity (make a1 . . . an)

Dropping the Identity wrapper yields the result.
Putting the two formulae together, we obtain

traverse f (make a1 . . . an) = pure make <∗>n
i=1 f ai

But the Representation Theorem claims more, namely that

traverse f (make x1 . . . xn) = pure make <∗>n
i=1 f xi (9)

for all xi ::A′ and f ::A′ →M B. We call this the strong construc-
tion formula. For the proof it is sufficient (by injectivity of data
constructors) to show that

P (λx1 . . . xn→ traverse f (make x1 . . . xn)) :∗:ni=1 ai
= P (λx1 . . . xn→ pure make <∗>n

i=1 f xi) :∗:ni=1 ai

To this end, we use the linearity law of traverse. For brevity, we
write C instead of Compose:

C (P (λx1 . . . xn→ traverse f (make x1 . . . xn)) :∗:ni=1 ai)
= [[flattening formula of :∗: (3)]]
C (P (traverse f)<∗> (P make :∗:ni=1 ai))

= [[P= pure and property of imap]]
C (imap (traverse f) (P make :∗:ni=1 ai))

= [[normal form (6)]]
C (imap (traverse f) (traverse batch t))

= [[definition of <◦>]]
(traverse f <◦> traverse batch) t

= [[linearity law]]
traverse (f <◦>batch) t

= [[weak construction formula (7)]]
pure make <∗>n

i=1 (f <◦>batch) ai
= [[definition of <◦>]]

pure make <∗>n
i=1 C (imap f (batch ai))

= [[definitions of batch and imap]]
pure make <∗>n

i=1 C (P f :∗: ai)
= [[definition of pure in idiom composition]]
C (pure (pure make)) <∗>n

i=1 C (P f :∗: ai)
= [[definition of pure in batch idiom]]
C (P (pure make)) <∗>n

i=1 C (P f :∗: ai)
= [[formula proved in Appendix A.5]]
C (P (λx1 . . . xn→ pure make <∗>n

i=1 f xi) :∗:ni=1 ai)

Dropping the C wrapper yields the result.
The next task is to show that make is a make function. We have:

Identity (tmap f (make x1 . . . xn))
= [[unitarity law]]

traverse Identity (tmap f (make x1 . . . xn))
= [[traverse is natural in the elements]]

traverse (Identity ◦ f) (make x1 . . . xn)
= [[strong construction formula (9)]]

pure make <∗>n
i=1 Identity (f xi)

= [[calculation in the identity idiom]]
Identity (make (f x1) . . . (f xn))

Dropping the Identity wrapper yields the first make condition. It
remains to show that make satisfies the contents-property. Since
contents is defined as a traversal, we again use the strong construc-
tion formula:

contents (make x1 . . . xn)
= [[definition of contents]]

getConst (traverse (λx→ Const [x]) (make x1 . . . xn))
= [[strong construction formula (9)]]

getConst (pure make <∗>n
i=1 Const [xi])

= [[definitions of pure and <∗> in Const idiom]]
getConst (Const ([]++n

i=1 [xi]))
= [[definitions of getConst and ++]]
[x1, . . . ,xn]

We have shown that, given t :: T A, there exists some make
function make and values a1, . . . ,an of type A (in fact, defined
by (6)) such that t = make a1 . . . an. But what about uniqueness?
Perhaps there is some other representation t = µ b1 . . . bm with
some make function µ of arity m and elements b1, . . . ,bm. To prove
that there is not, suppose we can show that for any make function
µ :: b→ ··· → b→ T b of arity m

traverse f (µ x1 . . . xm) = pure µ <∗>m
i=1 f xi (10)

for all xi ::A′ and f ::A′ →M B. This generalises the strong con-
struction formula (9) in that µ is no longer defined by (6).

Now assume that for t = make a1 . . . an there is some other
representation t = µ b1 . . . bm, so the following equation holds:

make a1 . . . an = µ b1 . . . bm

Then by (10) we have

pure make <∗>n
i=1 f ai = pure µ <∗>m

i=1 f bi

In particular, taking f = batch and using the translation formula (5),
we obtain

P make :∗:ni=1 ai = P µ :∗:mi=1 bi

and so n = m, ai = bi for each i, and make = µ .
It remains to prove (10), for a given make function µ of arity m.

To this end, define make′ by the condition

traverse batch (µ 1 . . . m) = P make′ :∗:p
i=1 ki

for some p and natural numbers k1, . . . ,kp. This condition is (6) for
µ 1 . . . m and the previous results persist, especially the reconstruc-
tion formula (8) and the strong construction formula (9):

µ 1 . . . m = make′ k1 . . . kp
traverse f (make′ x1 . . . xp) = pure make′ <∗>p

i=1 f xi

We also know make′ to be a make function.
Now we can argue:

[1, . . . ,m]
= [[since µ is a make function by assumption]]

contents (µ 1 . . . m)
= [[reconstruction formula (8) in the above version]]

contents (make′ k1 . . . kp)
= [[since make′ is also a make function]]
[k1, . . . ,kp]

So p = m, ki = i and thus µ 1 . . . m = make′ 1 . . . m. Finally we
have, for any x1, . . . ,xm, and taking x to be some function for which
x i = xi for 16 i6 m,

µ x1 . . . xm
= [[since µ is a make function, thus natural]]

tmap x (µ 1 . . . m)
= [[µ 1 . . . m = make′ 1 . . . m, just shown]]

tmap x (make′ 1 . . . m)
= [[since make′ is also a make function]]

make′ x1 . . . xm

Hence µ = make′ and (10) is proved, because in the case of µ =
make′ it is the strong construction formula (9) in the above version
for make′.

10. Discussion
We started out with a simple problem about effectful functions
on the state monad and binary trees, and came up with a general
inversion law that was independent of both the nature of the effects
and the details of the datatype. Though simple to state, proof of
the law seemed difficult—until we came up with the right tool.
This tool is the Representation Theorem in Section 5, relating
traversable data structures and their traversals to their shape and
contents. So in addition to proving a simple program correct, we
have discovered and developed a useful new tool.

Like many cherished tools in a crowded toolbox, the Represen-
tation Theorem is surprisingly versatile. Using it, we have resolved
several more general open questions, in addition to the specific
programming problem we designed it for: the property of ‘natu-
rality’ in the datatype, the illegality of half-hearted and duplici-
tous traversals (Gibbons and Oliveira 2009), the correspondence
between traversable datatypes and finitary containers (Moggi et al.
1999), and more precisely the bijection between traversal strate-
gies for a data structure (shape) and permutations of its elements
(Jaskelioff and Rypáček 2012).

More generally, all there is to know about lawful instances of
Traversable can be learned from the Representation Theorem, be-
cause it is equivalent to the laws. Indeed, the theorem implies all
the laws of traverse (which—without naturality in b, as the atten-
tive reader may have noticed—suffice to establish the theorem).

The correspondence between traversable functors and finitary
containers, long held as a folklore belief and the essence of our
representation theorem, was independently proved by O’Connor
and Jaskelioff (2012). Their proof, in Coq, is quite different from
ours. It relies on coalgebraic machinery that did not surface in our
proof. The two proofs share reliance on a special idiom related to
the free applicative functor, though: in their case, that specialised
idiom is the dependent type Πn:N (Vec A n,Vec B n→ C), which
is isomorphic to our type Batch A B C. We could have used size-
indexed vectors, too; after all, one can fake dependent types quite
well in Haskell these days. Instead, we have made judicious use of
meta-level indexing (such as ‘◦m,n’) and ellipses (‘. . .’) throughout;
all these notations could easily be defined inductively, and the
corresponding proofs made explicitly inductive.

There are still some avenues for future work.

• We believe that for a large range of datatypes T (including all
regular datatypes), the naturality properties of traverse (but not
‘naturality’ in the datatype) actually hold for all polymorphic
functions of type Applicativem⇒ (a→m b)→T a→m (T b);
they should be free theorems (Wadler 1989; Voigtländer 2009).

• We conjecture the maybe somewhat surprising fact that, in Set,
the monadic variant of traverse’s type is no more accommo-
dating than the idiomatic one. In general, there are more in-
habitants of a type of the form Monad m⇒ τ than of one of
the form Applicative m⇒ τ , where m is a free type variable
in τ . After all, since every monad is an idiom, the terms writ-
ten under the monad constraint can use the applicative prim-
itives pure and <∗> as well as the more expressive monadic
primitive >>=. Since not every idiom is a monad, the converse
is not true. Nevertheless, we conjecture that for every term
t ::Monad m⇒ (a→ m b)→ T a→ m (T b) there is a term
t′ ::Applicative m⇒ (a→ m b)→ T a→ m (T b) such that
t = t′ when m is instantiated to any monad. Hence, even if we
are interested mainly in monadic traversals, there is nothing to
be gained from restricting to monads.

Acknowledgements
This paper has been through a long period of gestation, and has ben-
efitted from interaction with numerous colleagues. We would like
to thank the members of IFIP Working Group 2.1 and of the Al-
gebra of Programming group in Oxford; Conor McBride and Ross
Paterson, for helpful discussions; the anonymous referees of previ-
ous versions; Graham Hutton and Diane Fulger (Hutton and Fulger
2008), from whom we learnt about the tree relabelling problem;
and especially Ondřej Rypáček, for sharing with us the unpublished
note (Rypáček 2010) that pointed us towards the notion of ‘natural-
ity’ in the datatype discussed in Section 6.

Jeremy Gibbons was supported by EPSRC grant EP/G034516/1
on Reusability and Dependent Types. Stefan Mehner was supported
by DFG grant VO 1512-1/2.

References
R. Bird and L. Meertens. Nested datatypes. In Mathematics of Program

Construction, volume 1422 of Lecture Notes in Computer Science, pages
52–67. Springer, 1998. doi: 10.1007/BFb0054285.

P. Capriotti and A. Kaposi. Free applicative functors. University
of Nottingham. http://paolocapriotti.com/blog/2013/04/03/
free-applicative-functors/, Apr. 2013.

N. Gambino and M. Hyland. Wellfounded trees and dependent polynomial
functors. In Types for Proofs and Programs, volume 3085 of Lecture
Notes in Computer Science, pages 210–225. Springer, 2004. doi: 10.
1007/978-3-540-24849-1 14.

J. Gibbons and B. C. d. S. Oliveira. The essence of the Iterator pattern.
Journal of Functional Programming, 19(3,4):377–402, 2009. doi: 10.
1017/S0956796809007291.

J.-Y. Girard. Normal functors, power series and λ -calculus. Annals of Pure
and Applied Logic, 37(2):129–177, 1988. doi: 10.1016/0168-0072(88)
90025-5.

G. Hutton and D. Fulger. Reasoning About Effects: Seeing the Wood
Through the Trees. In Trends in Functional Programming, pre-
proceedings, Nijmegen, The Netherlands, 2008.

M. Jaskelioff and O. Rypáček. An investigation of the laws of traversals.
In Mathematically Structured Functional Programming, volume 76 of
Electronic Proceedings in Theoretical Computer Science, pages 40–49,
2012. doi: 10.4204/EPTCS.76.5.

C. McBride and R. Paterson. Applicative programming with effects.
Journal of Functional Programming, 18(1):1–13, 2008. doi: 10.1017/
S0956796807006326.

E. Moggi, G. Bellè, and B. Jay. Monads, shapely functors, and traversals.
Electronic Notes in Theoretical Computer Science, 29:187–208, 1999.
doi: 10.1016/S1571-0661(05)80316-0. Proceedings of Category Theory
and Computer Science.

R. O’Connor and M. Jaskelioff. On the static nature of traversals. http:
//r6.ca/blog/20121209T182914Z.html, Dec. 2012.

O. Rypáček. Labelling polynomial functors: A coherent approach.
Manuscript, Mar. 2010.

J. Voigtländer. Free theorems involving type constructor classes. In Interna-
tional Conference on Functional Programming, pages 173–184. ACM,
2009. doi: 10.1145/1596550.1596577.

P. Wadler. Theorems for free! In Functional Programming Languages
and Computer Architecture, pages 347–359. ACM, 1989. doi: 10.1145/
99370.99404.

A. Some lengthy but not so interesting proofs
A.1 Formula for backwards idiom
In this appendix (A.1) we extend the notation ⊕n

i=1, defined in
Section 6, to abbreviate repeated application of some operator ⊕
to a sequence of arguments with decreasing rather than increasing
indices:

x⊕1
i=n xi = ((x⊕ xn)⊕ ·· · ⊕ x2)⊕ x1

We prove

B (pure f) <∗>n
i=1 B xi = B (pure (swapn f) <∗>1

i=n xi)

where swapn f xn . . . x1 = f x1 . . . xn, by induction on n. The base
case n = 0 is trivial, as both sides equal B (pure f). The induction
step is

B (pure f) <∗>n+1
i=1 B xi

= [[splitting off the last application]]
B (pure f) <∗>n

i=1 B xi <∗>B xn+1
= [[induction hypothesis]]

B (pure (swapn f) <∗>1
i=n xi)<∗>B xn+1

= [[definition of <∗> in backwards idiom]]

B (pure (flip ($))<∗> xn+1 <∗> (pure (swapn f) <∗>1
i=n xi))

= [[flattening formula of <∗>, see below]]

B (pure (swapn+1 f) <∗>1
i=n+1 xi)

The flattening formula applied in the last step is stated as (2) in
Section 6 as well as in more general form in Appendix A.2, where
it is proved. The justification of its specific application here is that
swapn+1 f xn+1 . . . x1 = flip ($) xn+1 (swapn f xn . . . x1).

A.2 Flattening formula
In this appendix we prove the flattening formula

(pure g⊕m
i=1 xi)<∗> (pure f ⊕n

i=m+1 xi)
= pure (g◦m,n f)⊕n

i=1 xi

for all 0 6 m 6 n, where ◦m,n is as defined in Section 6 and ⊕ is a
binary operator we assume to satisfy three properties:

pure f <∗>pure x = pure (f x)
(u⊕ v)<∗>pure x = pure ($x)<∗> (u⊕ v)
u<∗> (v⊕w) = (pure (◦)<∗>u<∗> v)⊕w

We are interested in two special cases: If ⊕ is idiomatic appli-
cation in some lawful idiom, we get the flattening formula (2). The
three assumed properties are indeed satisfied, as they are simply
the homomorphism, interchange, and composition law for idioms.
If on the other hand ⊕ is the constructor :∗: of the batch idiom, we
get the flattening formula (3). The first and third assumption on ⊕
are the first and third defining clause of <∗> for the batch idiom.
The second assumption also holds:

(u :∗: v)<∗>pure x
= [[second clause of <∗>]]
(pure (($x)◦)<∗>u) :∗: v

= [[first clause of <∗>]]
(pure (◦)<∗>pure ($x)<∗>u) :∗: v

= [[third clause of <∗>]]
pure ($x)<∗> (u :∗: v)

In this case we need not assume <∗> to be lawful.
Now for the proof. We first establish the special case when

m = 0, namely

pure g<∗> (pure f ⊕n
i=1 xi) = pure (g◦0,n f)⊕n

i=1 xi (11)

The proof is by induction on n. The base case n = 0 is just the first
assumption, and for the inductive case we argue:

pure g<∗> (pure f ⊕n+1
i=1 xi)

= [[splitting off the last ⊕]]
pure g<∗> ((pure f ⊕n

i=1 xi)⊕ xn+1)
= [[third assumption]]
(pure (◦)<∗>pure g<∗> (pure f ⊕n

i=1 xi))⊕ xn+1
= [[first assumption]]
(pure ((◦) g)<∗> (pure f ⊕n

i=1 xi))⊕ xn+1

http://dx.doi.org/10.1007/BFb0054285
http://paolocapriotti.com/blog/2013/04/03/free-applicative-functors/
http://paolocapriotti.com/blog/2013/04/03/free-applicative-functors/
http://dx.doi.org/10.1007/978-3-540-24849-1_14
http://dx.doi.org/10.1007/978-3-540-24849-1_14
http://dx.doi.org/10.1017/S0956796809007291
http://dx.doi.org/10.1017/S0956796809007291
http://dx.doi.org/10.1016/0168-0072(88)90025-5
http://dx.doi.org/10.1016/0168-0072(88)90025-5
http://dx.doi.org/10.4204/EPTCS.76.5
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1016/S1571-0661(05)80316-0
http://r6.ca/blog/20121209T182914Z.html
http://r6.ca/blog/20121209T182914Z.html
http://dx.doi.org/10.1145/1596550.1596577
http://dx.doi.org/10.1145/99370.99404
http://dx.doi.org/10.1145/99370.99404

= [[induction hypothesis, since ((◦) g)◦0,n f = g◦0,n+1 f]]

pure (g◦0,n+1 f)⊕n+1
i=1 xi

Using (11), we prove the flattening formula in general, again by
induction on n. The base case 0<n = m is proved by

(pure g⊕m
i=1 xi)<∗>pure f

= [[second assumption]]
pure ($ f)<∗> (pure g⊕m

i=1 xi)
= [[(11)]]

pure (($ f)◦0,m g)⊕m
i=1 xi

= [[simplification—see below]]
pure (g◦m,m f)⊕m

i=1 xi

The simplification is justified by

(($ f)◦0,m g) x1 . . . xm
= ($ f) (g x1 . . . xm)
= g x1 . . . xm f
= (g◦m,m f) x1 . . . xm

For the inductive case, we argue:

(pure g⊕m
i=1 xi)<∗> (pure f ⊕n+1

i=m+1 xi)
= [[splitting off the last ⊕]]
(pure g⊕m

i=1 xi)<∗> ((pure f ⊕n
i=m+1 xi)⊕ xn+1)

= [[third assumption]]
(pure (◦)<∗> (pure g⊕m

i=1 xi)<∗> (pure f ⊕n
i=m+1 xi))

⊕ xn+1
= [[(11)]]
((pure ((◦)◦0,m g)⊕m

i=1 xi)<∗> (pure f ⊕n
i=m+1 xi))⊕ xn+1

= [[induction hypothesis]]
(pure (((◦)◦0,m g)◦m,n f)⊕n

i=1 xi)⊕ xn+1
= [[simplification—see below]]
(pure (g◦m,n+1 f)⊕n

i=1 xi)⊕ xn+1
= [[combining again with the last ⊕]]

pure (g◦m,n+1 f)⊕n+1
i=1 xi

This time, the simplification is justified by

(((◦)◦0,m g)◦m,n f) x1 . . . xn xn+1
= ((◦)◦0,m g) x1 . . . xm (f xm+1 . . . xn) xn+1
= (◦) (g x1 . . . xm) (f xm+1 . . . xn) xn+1
= (g x1 . . . xm ◦ f xm+1 . . . xn) xn+1
= g x1 . . . xm (f xm+1 . . . xn xn+1)
= (g◦m,n+1 f) x1 . . . xn+1

A.3 Correctness of the Applicative instance for Batch

Totality The definition of <∗> for the batch idiom is not obviously
total, because its second and third clauses contain recursive calls
that are not structurally smaller than the left-hand side. To prove
that this function is nevertheless total, we introduce a notion of size
for values of batch idiom type:

size ::Batch a b c→ Int
size (P x) = 0
size (u :∗: a) = size u+1

To conclude that the definition of <∗> is indeed terminating, we
show that the sum of the sizes of the arguments for the recursive
calls is smaller than the sum of the sizes of the original arguments.
This property depends mutually on the invariant that size (u<∗>
v) = size u+ size v, so we prove both together by induction on the
sum of the sizes of the arguments.

1. For the first clause the recursive calls are vacuously smaller:
there are none. Also we have that

size (P f <∗>P x)
= [[first clause of <∗>]]

size (P (f x))
= [[definition of size]]

size (P f)+ size (P x)

2. For the second clause, we have one recursive call.

size (u :∗: a)+ size (P x)
= [[definition of size]]

size u+1
> [[basic arithmetic]]

size u
= [[definition of size]]

size (P (($x)◦))+ size u

Also the invariant is preserved:

size ((u :∗: a)<∗> (P x))
= [[second clause of <∗>]]

size (((P (($x)◦))<∗>u) :∗: a)
= [[definition of size]]

size ((P (($x)◦))<∗>u)+1
= [[induction hypothesis]]

size (P (($x)◦))+ size u+1
= [[definition of size]]

size (u :∗: a)+ size (P x)

3. For the third clause, we have two recursive calls.

(a) For P (◦)<∗>u:

size u+ size (v :∗: a)
= [[definition of size]]

size u+ size v+1
> [[basic arithmetic]]

size u
= [[definition of size]]

size (P (◦))+ size u
(b) For (P (◦)<∗>u)<∗> v:

size u+ size (v :∗: a)
= [[definition of size]]

size u+ size v+1
> [[basic arithmetic]]

size u+ size v
= [[definition of size]]

size (P (◦))+ size u+ size v
= [[induction hypothesis]]

size (P (◦)<∗>u)+ size v

Also the invariant is preserved:

size (u<∗> (v :∗: a))
= [[third clause of <∗>]]

size ((P (◦)<∗>u<∗> v) :∗: a)
= [[definition of size]]

size (P (◦)<∗>u<∗> v)+1
= [[induction hypothesis]]

size u+ size v+1
= [[definition of size]]

size u+ size (v :∗: a)

So the sum of the sizes decreases in recursive calls, and the recur-
sion is well-founded.

Lawfulness Given imap f x = pure f <∗> x (as mentioned, an
easy induction from the definitions), the correctness of the Functor
instance follows from the correctness of the Applicative instance.
Specifically,

imap id x = pure id<∗> x = x

by the identity law of idioms. Also,

imap (g◦ f) x
= [[above property]]

pure (g◦ f)<∗> x
= [[homomorphism law of idioms, twice]]

pure (◦)<∗>pure g<∗>pure f <∗> x
= [[composition law of idioms]]

pure g<∗> (pure f <∗> x)
= [[above property, twice]]

imap g (imap f x)

We will now check the Applicative instance of the batch idiom. In
what follows, u ::Batch A B C, so u = P f :∗:ni=1 ai for some f of
type B→ B→ ··· → B→ C (of arity n) and ai ::A for all i.

The identity law holds by

pure id<∗>u
= [[definitions of pure for Batch and of u]]
P id<∗> (P f :∗:ni=1 ai)

= [[flattening formula of :∗: (3)]]
P f :∗:ni=1 ai

= [[definition of u]]
u

The homomorphism law is trivial:

pure f <∗>pure x = P f <∗>P x = P (f x) = pure (f x)

Next, the interchange law:

u<∗>pure x
= [[definitions]]
P f :∗:ni=1 ai <∗>P x

= [[flattening formula of :∗: (3)]]
P (f ◦n,n x) :∗:ni=1 ai

= [[flattening formula of :∗: (3), since f ◦n,n x = ($x)◦0,n f]]
P ($x)<∗> (P f :∗:ni=1 ai)

= [[definitions]]
pure ($x)<∗>u

For f ◦n,n x=($x)◦0,n f , see the first simplification in Appendix A.2.

Finally, the composition law asserts

pure (◦)<∗>u<∗> v<∗>w = u<∗> (v<∗>w)

Here we need similar formulae for v and w to those we had for u.
The proof comes down to using the flattening formula of :∗: (3) five
times, and we omit the gory details.

A.4 Idiomatic application to batch

We prove u<∗>batch x = u :∗:x, which by the definition of batch is
equivalent to

u<∗> (P id :∗: x) = u :∗: x

To prove the latter equation, we use the defining clauses of <∗> in
the batch idiom. Firstly, if u = P f , we can argue:

P f <∗> (P id :∗: x)
= [[third clause of <∗>]]
(P (◦)<∗>P f <∗>P id) :∗: x

= [[first clause (twice), and f ◦ id = f]]

P f :∗: x
= [[case assumption]]

u :∗: x

Secondly, if u = v :∗: a, we argue:

(v :∗: a)<∗> (P id :∗: x)
= [[third clause]]
(P (◦)<∗> (v :∗: a)<∗>P id) :∗: x

= [[third clause]]
(((P (◦)<∗>P (◦)<∗> v) :∗: a)<∗>P id) :∗: x

= [[first clause]]
(((P ((◦)◦)<∗> v) :∗: a)<∗>P id) :∗: x

= [[second clause]]
(P (($ id)◦)<∗> (P ((◦)◦)<∗> v)) :∗: a :∗: x

= [[composition law of idioms]]
(P (◦)<∗>P (($ id)◦)<∗>P ((◦)◦)<∗> v) :∗: a :∗: x

= [[first clause (twice)]]
(P ((◦) (($ id)◦) ((◦)◦))<∗> v) :∗: a :∗: x

= [[claim, see below]]
(P id<∗> v) :∗: a :∗: x

= [[identity law of idioms]]
v :∗: a :∗: x

= [[case assumption]]
u :∗: x

The claim is that (◦) (($ id)◦) ((◦)◦) = id. For type reasons in the
expression above, the function (◦) (($ id)◦) ((◦)◦) has to take at
least two arguments, so we reason by applying it to two arguments:

(◦) (($ id)◦) ((◦)◦) x y
= ((($ id)◦)◦ ((◦)◦)) x y
= (($ id)◦) ((◦)◦ x) y
= (($ id)◦ (◦)◦ x) y
= ($ id) ((◦) (x y))
= (x y)◦ id
= x y

A.5 Formula for composite of batch and another idiom
We prove the formula

C (P (pure g)) <∗>n
i=1 C (P f :∗: ai)

= C (P (λx1 . . . xn→ pure g <∗>n
i=1 f xi) :∗:ni=1 ai)

by induction over n. The case n = 0 is trivial, since both sides equal
C (P (pure g)). The induction step is:

C (P (pure g)) <∗>n+1
i=1 C (P f :∗: ai)

= [[splitting off the last application]]
(C (P (pure g)) <∗>n

i=1 C (P f :∗: ai))<∗>C (P f :∗: an+1)
= [[induction hypothesis]]
C (P (λx1 . . . xn→ pure g <∗>n

i=1 f xi) :∗:ni=1 ai)
<∗>C (P f :∗: an+1)

= [[definition of <∗> in idiom composition]]
C (pure (<∗>)<∗> (P (λx1 . . . xn→ pure g <∗>n

i=1 f xi)
:∗:ni=1 ai)

<∗> (P f :∗: an+1))
= [[flattening formula of :∗: (3)]]
C ((P (λx1 . . . xn→ (<∗>) (pure g <∗>n

i=1 f xi)) :∗:ni=1 ai)
<∗> (P f :∗: an+1))

= [[flattening formula of :∗: (3)]]
C (P (λx1 . . . xn+1→ (pure g <∗>n

i=1 f xi)<∗> f xn+1)

:∗:n+1
i=1 ai)

= [[combining again with the last application]]

C (P (λx1 . . . xn+1→ pure g <∗>n+1
i=1 f xi) :∗:n+1

i=1 ai)

	1 Introduction
	2 Tree labelling
	3 Idiomatic traversals
	4 The laws of traversal
	5 The Representation Theorem
	6 `Naturality' in the datatype
	7 Two other consequences
	8 The batch idiom
	9 Proof of the Representation Theorem
	10 Discussion
	A Some lengthy but not so interesting proofs
	A.1 Formula for backwards idiom
	A.2 Flattening formula
	A.3 Correctness of the Applicative instance for Batch
	A.4 Idiomatic application to batch
	A.5 Formula for composite of batch and another idiom

