Puzzles, Games, and Tricks: Understanding the Mystery and Magic of Numbers
()
About this ebook
Related to Puzzles, Games, and Tricks
Related ebooks
Riddles in Mathematics: A Book of Paradoxes Rating: 4 out of 5 stars4/5The Original Area Mazes, Volume 2: 100 More Addictive Puzzles to Solve with Simple Math—and Clever Logic! Rating: 0 out of 5 stars0 ratingsThe Complete Book of Fun Maths: 250 Confidence-boosting Tricks, Tests and Puzzles Rating: 2 out of 5 stars2/5Riddles, Puzzles and Brain Teasers Rating: 0 out of 5 stars0 ratingsThe Great Book of Riddles, Quizzes and Games: An Enormous Three-in-One Anthology Rating: 0 out of 5 stars0 ratingsPuzzlemaster Deck: 75 Brain Twisters Rating: 0 out of 5 stars0 ratingsMary's Logic Puzzles Rating: 0 out of 5 stars0 ratingsBrain Teaser Cryptogram Puzzles Rating: 0 out of 5 stars0 ratingsGood Job, Brain!: Trivia, Quizzes and More Fun From the Popular Pub Quiz Podcast Rating: 5 out of 5 stars5/5Mind-Boggling Word Puzzles Rating: 5 out of 5 stars5/5Riddles and Brain Teasers: Train Your Brain Like Ancient Greek Philosophers Rating: 4 out of 5 stars4/5The Everything Lateral Thinking Puzzles Book: Hundreds of Puzzles to Help You Think Outside the Box Rating: 0 out of 5 stars0 ratingsPuzzlemaster Deck: 75 Mind Bogglers Rating: 0 out of 5 stars0 ratingsThe Big Brain Puzzle Book Rating: 3 out of 5 stars3/5Only for geniuses! Rating: 0 out of 5 stars0 ratingsThe Great Book of Trivia: 1000 Questions and Answers to Engage all Minds. Rating: 0 out of 5 stars0 ratingsFive-Minute Brain Workout: Games and Puzzles to Keep Your Mind Sharp and Supple Rating: 0 out of 5 stars0 ratingsBrain Games: Brain Teasers, Logic Tests, and Puzzles to Exercise Your Mind Rating: 0 out of 5 stars0 ratings101 Amazing Brainteasers: Riddles and Puzzles for All Ages Rating: 0 out of 5 stars0 ratingsPuzzles and Words Rating: 0 out of 5 stars0 ratingsThe Great Book of Games: A Compendium of Fun Rating: 0 out of 5 stars0 ratings101 Amazing Brain Teasers, Riddles and Trick Questions: Great Fun for Kids Rating: 5 out of 5 stars5/5Codes, Ciphers and Secret Writing Rating: 4 out of 5 stars4/5Jumble® Circus: A Three-Ring Puzzle Extravaganza! Rating: 1 out of 5 stars1/5Big Book of Family Games: 101 Original Family & Group Games that Don't Need Charging! Rating: 0 out of 5 stars0 ratingsWhat Would You Rather Choose? Road Trip Activity Book Rating: 0 out of 5 stars0 ratingsRiddles at Home Rating: 0 out of 5 stars0 ratingsThe Hidden Paw's Third 50 Puzzles Rating: 0 out of 5 stars0 ratingsThe Everything Large-Print Crossword Dictionary: Finding a solution has never been easier! Rating: 5 out of 5 stars5/5Code Word Puzzles Rating: 4 out of 5 stars4/5
Games & Activities For You
True Facts That Sound Like Bull$#*t: 500 Insane-But-True Facts That Will Shock and Impress Your Friends Rating: 3 out of 5 stars3/5101 Fun Personality Quizzes: Who Are You . . . Really?! Rating: 3 out of 5 stars3/5The Artist's Way Workbook Rating: 4 out of 5 stars4/5The Book of English Magic Rating: 0 out of 5 stars0 ratingsHow to Draw Anything Anytime: A Beginner's Guide to Cute and Easy Doodles (Over 1,000 Illustrations) Rating: 5 out of 5 stars5/5The Everything Lateral Thinking Puzzles Book: Hundreds of Puzzles to Help You Think Outside the Box Rating: 0 out of 5 stars0 ratingsThe Best F*cking Activity Book Ever: Irreverent (and Slightly Vulgar) Activities for Adults Rating: 2 out of 5 stars2/5The Monsters Know What They're Doing: Combat Tactics for Dungeon Masters Rating: 4 out of 5 stars4/5Mental Math Secrets - How To Be a Human Calculator Rating: 5 out of 5 stars5/5What If? 10th Anniversary Edition: Serious Scientific Answers to Absurd Hypothetical Questions Rating: 4 out of 5 stars4/5How To Beat Anyone At Chess: The Best Chess Tips, Moves, and Tactics to Checkmate Rating: 4 out of 5 stars4/5True Facts That Sound Like Bull$#*t: World History: 500 Preposterous Facts They Definitely Didn’t Teach You in School Rating: 0 out of 5 stars0 ratingsThere's Treasure Inside: The Lion's Share Treasure Rating: 3 out of 5 stars3/5Hunt A Killer: The Detective's Puzzle Book: True-Crime Inspired Ciphers, Codes, and Brain Games Rating: 0 out of 5 stars0 ratings30 Interactive Brainteasers to Warm Up your Brain Rating: 2 out of 5 stars2/5Dungeons & Drawings: An Illustrated Compendium of Creatures Rating: 4 out of 5 stars4/5Codes, Ciphers and Secret Writing Rating: 4 out of 5 stars4/5On Tyranny by Timothy Snyder (Trivia-On-Books) Rating: 3 out of 5 stars3/5Bored Games: 100+ In-Person and Online Games to Keep Everyone Entertained Rating: 5 out of 5 stars5/5The Great Sherlock Holmes Puzzle Book: A Collection of Enigmas to Puzzle Even the Greatest Detective of All Rating: 0 out of 5 stars0 ratingsMurder Most Puzzling: Twenty Mysterious Cases to Solve Rating: 2 out of 5 stars2/5My Best Mathematical and Logic Puzzles Rating: 4 out of 5 stars4/5Live to Tell the Tale: Combat Tactics for Player Characters Rating: 4 out of 5 stars4/5Hillbilly Elegy by J. D. Vance (Trivia-On-Books) Rating: 1 out of 5 stars1/5Quiz Master: 10,000 general knowledge questions Rating: 4 out of 5 stars4/5The Giant Book of Trivia: 1000 Questions and Answers to Engage All Minds Rating: 0 out of 5 stars0 ratings
Reviews for Puzzles, Games, and Tricks
0 ratings0 reviews
Book preview
Puzzles, Games, and Tricks - Jerome S. Meyer
THE WORLD OF NUMBERS
EXPLORING BOTH ENDS OF OUR NUMBER SYSTEM
WE ORDINARY mortals live in a world of numbers just about halfway between the inconceivably large and the incredibly small. The numbers in our lives range between several million in the upper limit to about 1/10000 in the lower limit, and in the daily personal lives of most of us numbers greater than a few thousand or smaller than a sixteenth of an inch seldom appear.
When numbers get into the hundreds of millions or billions they have no meaning for us. We read of the population of the United States being 150,000,000 but can’t possibly conceive such a large number, and numbers like the money for defense or the total national debt—running into the hundreds of billions—-make us yawn and say Well, well.
Of course if you are a banker or the owner of a high-circulation magazine, numbers in the millions don’t faze you; if you are a highly skilled mechanic working in an airplane factory a ten-thousandth of an inch reading on a micrometer is nothing unusual. But who ever hears of a trillion or quadrillion or sextillion or an octo-vigintillionth of a gram in ordinary conversation? These terms, outlandish and impractical as they seem to us, belong to the scientist who not only eats them for breakfast
but uses them to produce the thousands of scientific miracles that make our lives comfortable and our living standards the highest in the world.
To the astronomer a number like 5,000,000,000,000,000,000 miles is all in a day’s work. It represents the distance in miles of a certain nebula or star cluster from the earth. It is 5 quintillion miles or somewhat less than one million light years. A light year is the distance that light, traveling at 186,000 miles per second, will travel in a year. To the atomic physicist a single gram contains about 1,000,000,000,000,000,000,000,000,000 electrons. This is more electrons than there are drops of water in the Atlantic and Pacific Oceans combined! Yes, unlike you and me, these scientists live in a world of numbers far beyond our comprehension, and they are continually playing with the very great or the very small.
Of course they don’t write these giants or pigmies out in ciphers: that would be a waste of time and space. They merely represent them in powers of 10. The exponent tells the number of ciphers, so when you see 10²⁴ you know that it means 1 with 24 zeroes after the 1. When you see 10−18 you know that it is a fraction with 1 in the numerator and 1 followed by 18 zeros in the denominator:
When the physicist speaks of the mass of the earth being 5.9 × 10²⁷ grams he saves himself from writing 5,900,000,000,000,000,000,000,000,000 grams. When he tells us that the energy locked up in a pound of matter is 4 × 10²³ ergs he can’t be bothered to write 400,000,000,000,000,000,000,000. We shall meet numbers in this section that are of this amazingly large or small order, so we might as well get used to the mathematical way of writing them.
NUMBER GIANTS–HOW MUCH IS A BILLION?
SUPPOSE YOU had a billion dollars and, in your desire to be entirely unique, you decided to invest it, without interest or dividends, in a very bad stock company. Now suppose the corporation was so poorly run that it succeeded in losing a thousand dollars of your money every day in the week and still managed to stay in business. It would take more than two thousand years for you to lose that billion dollars!
Again assuming that you are seventeen years old and started now to count up to a billion, one count every second, day and night without stopping to eat or sleep. Of course you couldn’t do this without going on shifts, so we’ll assume that two of your seventeen-year-old friends help you out. By the time you reached a billion you would be in your late forties.
If your fountain pen were enlarged one billion times it would be 95,000 miles long and 8,000 miles high. The cap of your pen would be big enough to enclose the earth, whose diameter is roughly 7,900 miles. But a billion is only 10⁹ and that is a mere nothing compared to the real giants. Suppose it were possible to tear a sheet of paper of a certain size and of about the thickness of this page, in half; and then to tear the pieces again in half, and then again in half, and to keep this up for fifty tearings. Each time you would be doubling the number of sheets of paper. The question is: How high a pile would fifty tearings make, and how big a sheet would you need to begin with, to get final sheets of about the size of this page? The answer is incredible but it can be easily verified. It is 2 raised to the 50th power and turns out to be 1,125,899,906,842,624 sheets of paper. Since each sheet would measure about one third of a square foot, this comes to 375,299,968,947,541 square feet or over 13,000,000 square miles, or a little less than one quarter the land area of the entire earth. Figuring 400 of these sheets to the inch, we would have a pile about 2,860,000,000,000 inches high. Divide this by 12 and we get about 230,000,000,000 feet. Now one million feet come to approximately 190 miles, so the pile would be more than 38,000,000 miles high!
Then there is the story of the ancient king who, being under obligation to one of his subjects, offered to reward him in any way he desired. The subject, a man of mathematical mind and modest tastes, simply asked for a chess board with one grain of wheat on the first square, two on the second, four on the third and so on, doubling the grains each time until all the squares on the board were accounted for. The old king was delighted and relieved with this simple request but was soon sorry that he granted it. To account for every square on the board in this fashion the king had to supply 2⁶³ + 1 grains of wheat which, in round numbers, is 9,460,000,000,000,000,000. Now, assuming that there are 250 grains in a cubic inch and 2,150 cubic inches in a bushel, one bushel will contain about 540,000 grains of wheat. This number, then, would amount to 17,382,000,000,000 bushels. Since the yearly output of wheat of the entire United States is a little more than 1 billion bushels it would take this nation 16,000 years to satisfy this modest
subject of the king. The story goes no further but the chances are the king lost his temper and the subject lost his head long before the 64th square of the chess board was reached.
Now let us consider a real giant. Let us roughly try to determine the number of molecules of water on the surface of the earth. Of course such a problem is highly impractical and ridiculous but it will serve to show what a real giant looks like. Taking the area of the water on the earth as 140,000,000 square miles and the average depth of the oceans as 2 miles we have a total volume of water of about 280,000,000 cubic miles or, in other words, 2.8 × 10⁸. Now there are 2.6 × 10¹⁰ square centimeters in a square mile and 1.6 × 10⁵ centimeters to a mile. Therefore there are 4.1 × 10¹⁵ cubic centimeters in a cubic mile. Multiplying this by 2.8 × 10⁸ we get 11.5 × 10²³ or 1.15 × 10²⁴ cubic centimeters of water on the face of the earth. It has been quite accurately calculated that there are 27 × 10¹⁸ molecules of water to the cubic centimeter so we conclude that the water molecules on this earth amount to approximately (1.15 × 10²⁴) × (2.7 × 10¹⁹) = 3.1 × 10⁴³. This is otherwise known as 31 million, billion, billion, billion, billion molecules. Written out it looks like this: 31,000,000,000,000,000,000,000,000,000,000,000,000,000,000.
A staggering number is the mass of the sun in grams, which turns out to be 19 with 32 ciphers after it, or 19 × 10³². Of course this is completely incomprehensible and inconceivable, but it still is a dwarf when multiplied by the number of molecules of hydrogen in a gram which is 27 × 10¹⁸. We can then say that the approximate number of molecules of hydrogen which make up the mass of the sun is 510 × 10⁵⁰. If this number seems large to you, consider Eddington’s estimate of the number of electrons in the universe. This turns out to be about 157 × 10⁷⁷ which according to Eddington, who figured it out, is: 15,747,724,136,275,002,577, 605,653,961,181,555,468,044,717,914,527,116,709,366,231,425,076,185,631,031,296.
Now we come to a giant of giants, a number that is so ridiculously large that it never could apply to anything. Oddly enough it can be written with three nines and is represented by 9⁹⁹. This is 9 multiplied by itself 387,420,489 times. Written in numerals the size we are using, the number would stretch for a thousand miles. To read it normally would take more than a week. What it is nobody knows although it does begin with 428,124,773 … and ends with 89. That number of bacteria would overflow the Milky Way. The number of snowflakes that have fallen since the earth began does not even approach this giant. It is more than 4 million times as large as the number of electrons in the universe, which we just discussed.
INFINITY
ANOTHER EXTREMELY important idea in mathematics is infinity. Any quantity that increases without ever stopping will ultimately become and remain greater than any definite number we can name. It will then be infinite. Of course infinity and the infinite are vital terms and concepts in higher mathematics. We have briefly touched on this subject in the section called More and More of Less and Less. The theory of limits and infinite series gives us among other things the trigonometric tables and tables of logarithms.
An excellent example of one practical application of infinity is an elementary principle in navigation. Astronomers and navigators consider that the earth is in the center of a celestial sphere commonly called the heavens. The radius of this sphere—the distance from the earth to the imaginary sphere itself—is infinity. The captain of a ship in midocean takes his sextant and sights on the north star (Polaris).
FIGURE 1
In the diagram, Figure 1, the circle represents the earth. The line OB makes an angle ɸ with the equator and this angle is of course the latitude of the point B. A tangent to the circle at B represents the horizon at latitude B. Now our captain sights on the north star P, which is almost directly above the north pole of the earth. If the radius of the celestial sphere were not considered as infinite the line of sight from B would meet the North Star P in the diagram. But because the radius is infinite, BA becomes parallel to OP. It follows then that the angle AB makes with the line OA is equal to the angle ɸ or the latitude. Our captain can then tell his latitude merely by the angle that Polaris makes with the horizon.
MUCH ADO ABOUT NOTHING
IN CONVERSATION nothing
is a word like any other word and as such can easily be confused with something.
The old riddle, Which would you rather have, complete happiness in life or a ham sandwich?
is a good illustration. The answer is, A ham sandwich. Nothing is better than complete happiness in life, and a ham sandwich is better than nothing.
Here we use nothing as a definite something and, of course, the comparison is ridiculous. In the same way we prove that a cow has nine legs by saying that no cow has five legs and a cow has four legs more than no cow.
The mathematician does not stand for this sort of nonsense. While a layman like Willie’s father may be puzzled and annoyed by the following question, the mathematician has a logical and complete answer for it:
"If I add nothing to 5 I don’t add anything so I don’t change its value. The same holds true when I take nothing away from 5. Now if I multiply 5 by nothing I don’t multiply it by anything and, of course, I leave it
