Explore 1.5M+ audiobooks & ebooks free for days

From $11.99/month after trial. Cancel anytime.

Short Mysteries You Solve with Math! / ¡Misterios cortos que resuelves con matemáticas!
Short Mysteries You Solve with Math! / ¡Misterios cortos que resuelves con matemáticas!
Short Mysteries You Solve with Math! / ¡Misterios cortos que resuelves con matemáticas!
Ebook421 pages2 hours

Short Mysteries You Solve with Math! / ¡Misterios cortos que resuelves con matemáticas!

Rating: 0 out of 5 stars

()

Read preview

About this ebook

Got a minute? Have we got a mystery for you!

Our best-selling math title is now available in a bilingual edition! It fills a huge void at a time when the need—and interest—in bilingual education has never been greater. These mysteries have a clever twist—you have to be a super sleuth, tapping into your math wisdom and critical thinking skills to solve them. Each story, presented in both English and Spanish, takes just one minute to read and challenges your knowledge in a variety of math disciplines. These brainteasers keep you engaged and eager to learn more. This bilingual edition of One Minute Mysteries: 65 Short Mysteries You Solve With Math! was written by the father-daughter team that brought you the three award-winning One MinuteMysteries books. This entertaining and educational book is great for kids, grown-ups, educators, and anyone who loves good mysteries, good math, or both!

Praised by the National Council of Teachers of Mathematics
Recommended by the National Science Teachers Association
"Brain Child" Award Winner
LanguageEnglish
PublisherScience, Naturally
Release dateAug 1, 2017
ISBN9781938492235
Short Mysteries You Solve with Math! / ¡Misterios cortos que resuelves con matemáticas!

Read more from Eric Yoder

Related to Short Mysteries You Solve with Math! / ¡Misterios cortos que resuelves con matemáticas!

Related ebooks

Children's For You

View More

Reviews for Short Mysteries You Solve with Math! / ¡Misterios cortos que resuelves con matemáticas!

Rating: 0 out of 5 stars
0 ratings

0 ratings0 reviews

What did you think?

Tap to rate

Review must be at least 10 words

    Book preview

    Short Mysteries You Solve with Math! / ¡Misterios cortos que resuelves con matemáticas! - Eric Yoder

    Math at Home

    Matemáticas

    en casa

    Heavy Toll

    A speeding ticket? What? Suzy’s father said as he opened the day’s mail.

    What’s the matter, Daddy? Suzy asked.

    Well, Suzy, this ticket says that we were speeding on the toll road we took when we were driving back from the state science fair last weekend, he explained.

    As drivers entered the road, they got a receipt showing the time and exit number. The exit numbers were also mileage markers. When they got off the road, drivers had to pay different amounts depending on how far they went.

    Are you sure they’re right? Suzy asked. What does it say?

    Well, it says that we got on at exit 64 at 12:13 p.m., then got off the road at exit 148 at 1:33 p.m., he said. And it says the speed limit was 55 miles an hour. I thought it was 65. How can they know if we were speeding? he asked. I didn’t see any police cars.

    It’s too bad, but they’re right, Suzy said.

    How do you know? he asked.

    Cuota pesada

    —¿Qué? ¿Una multa por exceso de velocidad? —exclamó el padre de Suzy al abrir la correspondencia del día.

    —¿Qué pasa, papá? —preguntó Suzy.

    —Bueno, Suzy, esta multa indica que estábamos manejando a exceso de velocidad en la autopista de cuota cuando regresábamos de la feria científica estatal la semana pasada —explicó.

    Al entrar en la autopista, a los conductores se les entrega un recibo que muestra la hora y el número de la salida. Los números de las salidas también marcaban las millas. Al salir de la autopista, los conductores pagan el monto correspondiente a la distancia que han recorrido.

    —¿Estás seguro de que tienen razón? —preguntó Suzy—. ¿Qué dice la multa?

    —Bueno, dice que entramos por la salida 64 a las 12:13 p.m., y luego nos salimos de la carretera por la salida 148 a la 1:33 p.m. —dijo—. Y dice que el límite de velocidad era de 55 millas por hora. Creía que era de 65. No vi ningún carro de la policía.

    —Qué lástima, pero tienen razón —respondió Suzy.

    —¿Cómo lo sabes? —preguntó él.

    Heavy Toll

    If we got on the road at 12:13 and got off at 1:33, that means we were on the road for 1 hour and 20 minutes, or 80 minutes, Suzy explained. Since the exit numbers are mileage markers, the distance between exits 64 and 148 is 84 miles: 148 minus 64. That means we went 84 miles in 80 minutes. That’s more than 1 mile per minute, which is more than 60 miles per hour. So we were speeding, since the speed limit was 55 miles per hour.

    To figure it out exactly, she added, 84 miles divided by 80 minutes makes 1.05 miles per minute. Multiplying 1.05 miles per minute by 60 minutes in 1 hour to get miles per hour means we averaged 63 miles per hour.

    Well, we were going less than that for some of the time, her father said.

    Yes, but to average 63 miles an hour, we must have been going faster than that at other times, she said. I hope that ticket isn’t too expensive.

    Cuota pesada

    —Si entramos a las 12:13 y salimos a la 1:33, significa que estuvimos en la autopista por una hora y veinte minutos, u 80 minutos —explicó Susy—. Como los números de las salidas indican el millaje, la distancia entre las salidas 64 y la 148 es de 84 millas: 148 menos 64. Quiere decir que viajamos 84 millas en 80 minutos. Eso es más de una milla por minuto, lo cual es más de 60 millas por hora. Entonces sí íbamos a exceso de velocidad, ya que el límite de velocidad era de 50 millas por hora.

    —Para calcularlo con exactitud —continuó—, 84 millas divididas entre 80 minutos son 1.05 millas por minuto. Si multiplicamos 1.05 millas por minuto por los 60 minutos que hay en una hora para sacar las millas por hora, obtenemos un promedio de 63 millas por hora.

    —Bueno, pero íbamos a menos de eso durante parte del tiempo —dijo el padre.

    —Sí, pero para promediar 63 millas por hora, debimos haber estado viajando aún más rápido que eso durante otros momentos —respondió ella—. Espero que la multa no sea muy alta.

    Roll of the Dice

    Five-minute warning, kids! came their father’s voice from the back yard.

    He was grilling dinner, and he meant it was time for the table to be set. That was one of the three chores that Kimberly, Quentin, and Brian split each evening. The other chores were cleaning up after dinner and taking out the recycling and the trash. The chores were about equal, but, like many evenings, no one wanted to go first.

    Kimberly, who was seven years old, was playing backgammon with Quentin, who was nine, on the screened-in porch where they ate supper during the summer. Eleven-year-old Brian was watching the game.

    Whose turn is it to set the table? Kimberly asked.

    Quentin and Brian shrugged. They didn’t remember either.

    How about we toss a pair of dice for it? Quentin suggested. Whosever age comes up first sets the table, and whosever age comes up second clears it.

    That seems fair, Kimberly said.

    No, it’s not, Brian said

    Sure it is, Quentin said. You can’t control how the dice will come out, so each of us has an equal chance of our age coming up. What can be fairer than that?

    It’s true, you can’t control how the dice will come out, Brian said, but that doesn’t mean our ages have an equal chance of coming up.

    Why wouldn’t they? Kimberly asked.

    Juego de azar

    —¡Cinco minutos, niños! —se oyó la voz del padre desde el patio.

    Estaba asando la cena en la barbacoa, y les estaba llamando para poner la mesa. Esta era una de las tareas que Kimberly, Quentin y Brian se turnaban cada noche; las otras tareas eran limpiar después de cenar y sacar la basura y el material de reciclaje. Las tareas eran casi iguales; sin embargo, al igual que todas las noches, nadie quería ser el primero.

    Kimberly, de siete años, jugaba backgammon con Quentin, de nueve, en el balcón encerrado donde cenaban durante las noches de verano. Brian, de once años, observaba el juego.

    —¿A quién le toca poner la mesa? —preguntó Kimberly.

    Quentin y Brian se encogieron de hombros. Tampoco recordaban.

    —¿Qué les parece si lanzamos los dados para ver a quién le toca? —sugirió Quentin—. Aquel que tenga la edad que salga primero pondrá la mesa, y el que tenga la edad que salga segundo la limpiará.

    —Me parece justo —dijo Kimberly.

    —No, no lo es —respondió Brian.

    —Claro que sí —dijo Quentin—. No podemos controlar el resultado de los dados, por lo que cada uno de nosotros tiene las mismas probabilidades de que le salga la edad. ¿Qué podría ser más justo que eso?

    —Es cierto que no podemos controlar el resultado de los dados —respondió Blake—, pero eso no significa que nuestras edades tengan las mismas probabilidades de salir.

    —¿Por qué no las tendrían? —preguntó Kimberly.

    Roll of the Dice

    When you roll two dice, the combined numbers can fall between two and twelve, Brian said. There’s only one way to get a two—a one on both dice—and only one way to get a twelve—a six on both. There are two ways to get a three or an eleven. To get a three, you can have a one on the first die and a two on the second, or a two on the first die and a one on the second. To get an eleven, you can have a six on the first die and a five on the second, or a five on the first die and a six on the second.

    The pattern goes on that way, Brian said. There are three ways to get either a four or a ten, four ways to get a five or a nine, five ways to get a six or an eight, and six ways to get a seven. That means that when you roll two dice, the number most likely to come up is seven. Since Kimberly is seven years old, she’s the most likely one to have to set the table.

    It won’t necessarily happen that way, though, Quentin said. Any number from two through twelve still can come up.

    True, Brian said. But we’re talking about probability here. On any roll of two dice, the number most probable to come up is Kimberly’s seven. And your age of nine, Quentin, is more probable to come up than my age of eleven.

    Juego de azar

    —Cuando se tiran dos dados, el resultado de la combinación de números puede caer entre los números dos y doce —explicó Brian—. Sólo hay una combinación posible para obtener un dos con uno -uno en ambos dados- y sólo hay una combinación para obtener un doce -seis en ambos dados. Sólo hay dos combinaciones posibles para obtener un tres o un once. Para obtener un tres, se puede sacar un uno en un dado y un dos en el segundo, o un dos en el primero y un uno en el segundo. Para obtener un once, puedes sacar un seis en el primer dado y un cinco en el segundo, o un cinco en el primero y un 6 en el segundo.

    —El patrón continúa de esa manera —dijo Brian—. Hay tres combinaciones para obtener ya sea un cuatro o un diez; cuatro combinaciones para obtener un cinco o un nueve; cinco para obtener un seis o un ocho, y seis para obtener un siete. Eso significa que cuando se lanzan dos dados, el número siete es el que tiene más probabilidades de salir. Como Kimberly tiene siete años, ella tiene la mayor probabilidad de tener que poner la mesa.

    —Pero no necesariamente resultará de esa manera —dijo Quentin—. Cualquier número entre dos y doce puede salir.

    —Es cierto —dijo Brian—, pero estoy hablando de probabilidades. Cada vez que tiremos los dados, el número que tiene más probabilidades de salir es el siete de Kimberly, y es más probable que salga tu edad de

    Pancake Mix-Up

    Mooommm! Meg yelled from the kitchen. Can you please come down here?

    Meg’s family and two other families had rented a house at a ski resort for a long weekend. Each family was going to cook and clean up for one of the three days. It was the morning of Meg’s family’s day.

    While Meg’s mother finished getting dressed, Meg went into the kitchen and started preparing the pancake mix. They had brought individual-sized serving packages of mix. They also had several boxes of cereal and bread to make toast, but everyone had said they wanted pancakes.

    I’ll be there in a minute, Meg. What’s the problem? her mother called.

    I have everything ready to make the pancakes, but each of these packages needs two-thirds of a cup of milk, and there’s no two-thirds measuring cup in this kitchen, Meg called. All they have is a three-fourths measuring cup. Can I just estimate?

    Not if you want the pancakes to be any good, her mother replied.

    Never mind, Meg said a moment later. I have the solution.

    What did you do? her mother asked as she walked into the kitchen.

    Manos en la masa

    —¡Mamáááá! —gritó Meg desde la cocina—. ¿Podrías venir aquí un momento, por favor?

    La familia de Meg y otras dos familias habían alquilado una casa en un centro de esquí durante un fin de semana largo. A cada familia le tocaba cocinar y limpiar uno de los tres días que iban a permanecer allí. Era la mañana del día que le tocaba a la familia de Meg.

    En lo que la madre de Meg se terminaba de vestir, Meg fue a la cocina y empezó a preparar la masa para los panqueques. Habían traído paquetes con porciones individuales de la masa seca. También tenían varias cajas de cereal y pan para tostar, pero todos habían dicho que querían panqueques.

    —Estaré ahí en un minuto, Meg. ¿Cuál es el problema? —preguntó su madre.

    —Ya tengo todo listo para hacer los panqueques, pero para cada paquetito se necesitan 2/3 de una taza de leche y no hay una taza para medir esa cantidad en esta cocina —contestó Meg—. Solo tienen una taza de medir de 3/4. ¿Puedo usar estimados?

    —No si quieres que los panqueques queden bien —le respondió su madre.

    —Olvídalo —dijo Meg tras un momento—. Ya tengo la solución.

    —¿Qué hiciste? —le preguntó la madre al entrar a la cocina.

    Pancake Mix-Up

    I did some math. It’s a question of least common multiples, Meg told her mother. "First, I figured out how many times you’d have to fill each kind of measure to reach

    Enjoying the preview?
    Page 1 of 1