Add and Remove Edge in Adjacency Matrix representation of a Graph
Last Updated :
30 Jun, 2021
Prerequisites: Graph and its representations
Given an adjacency matrix g[][] of a graph consisting of N vertices, the task is to modify the matrix after insertion of all edges[] and removal of edge between vertices (X, Y). In an adjacency matrix, if an edge exists between vertices i and j of the graph, then g[i][j] = 1 and g[j][i] = 1. If no edge exists between these two vertices, then g[i][j] = 0 and g[j][i] = 0.
Examples:
Input: N = 6, Edges[] = {{0, 1}, {0, 2}, {0, 3}, {0, 4}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}}, X = 2, Y = 3
Output:
Adjacency matrix after edge insertion:
0 1 1 1 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 1 1 0 0 1
1 0 1 0 0 0
0 0 1 1 0 0
Adjacency matrix after edge removal:
0 1 1 1 1 0
1 0 0 1 0 0
1 0 0 0 1 1
1 1 0 0 0 1
1 0 1 0 0 0
0 0 1 1 0 0
Explanation:
The graph and the corresponding adjacency matrix after insertion of edges:
The graph after removal and adjacency matrix after removal of edge between vertex X and Y:
Input: N = 6, Edges[] = {{0, 1}, {0, 2}, {0, 3}, {0, 4}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}}, X = 3, Y = 5
Output:
Adjacency matrix after edge insertion:
0 1 1 1 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 1 1 0 0 1
1 0 1 0 0 0
0 0 1 1 0 0
Adjacency matrix after edge removal:
0 1 1 1 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 1 1 0 0 0
1 0 1 0 0 0
0 0 1 0 0 0
Approach:
Initialize a matrix of dimensions N x N and follow the steps below:
- Inserting an edge: To insert an edge between two vertices suppose i and j, set the corresponding values in the adjacency matrix equal to 1, i.e. g[i][j]=1 and g[j][i]=1 if both the vertices i and j exists.
- Removing an edge: To remove an edge between two vertices suppose i and j, set the corresponding values in the adjacency matrix equal to 0. That is, set g[i][j]=0 and g[j][i]=0 if both the vertices i and j exists.
Below is the implementation of the above approach:
C++
// C++ program to add and remove edge
// in the adjacency matrix of a graph
#include <iostream>
using namespace std;
class Graph {
private:
// Number of vertices
int n;
// Adjacency matrix
int g[10][10];
public:
// Constructor
Graph(int x)
{
n = x;
// Initializing each element of the
// adjacency matrix to zero
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
g[i][j] = 0;
}
}
}
// Function to display adjacency matrix
void displayAdjacencyMatrix()
{
// Displaying the 2D matrix
for (int i = 0; i < n; i++) {
cout << "\n";
for (int j = 0; j < n; j++) {
cout << " " << g[i][j];
}
}
}
// Function to update adjacency
// matrix for edge insertion
void addEdge(int x, int y)
{
// Checks if the vertices
// exist in the graph
if ((x < 0) || (x >= n)) {
cout << "Vertex" << x
<< " does not exist!";
}
if ((y < 0) || (y >= n)) {
cout << "Vertex" << y
<< " does not exist!";
}
// Checks if it is a self edge
if (x == y) {
cout << "Same Vertex!";
}
else {
// Insert edge
g[y][x] = 1;
g[x][y] = 1;
}
}
// Function to update adjacency
// matrix for edge removal
void removeEdge(int x, int y)
{
// Checks if the vertices
// exist in the graph
if ((x < 0) || (x >= n)) {
cout << "Vertex" << x
<< " does not exist!";
}
if ((y < 0) || (y >= n)) {
cout << "Vertex" << y
<< " does not exist!";
}
// Checks if it is a self edge
if (x == y) {
cout << "Same Vertex!";
}
else {
// Remove edge
g[y][x] = 0;
g[x][y] = 0;
}
}
};
// Driver Code
int main()
{
int N = 6, X = 2, Y = 3;
Graph obj(N);
// Adding edges to the graph
obj.addEdge(0, 1);
obj.addEdge(0, 2);
obj.addEdge(0, 3);
obj.addEdge(0, 4);
obj.addEdge(1, 3);
obj.addEdge(2, 3);
obj.addEdge(2, 4);
obj.addEdge(2, 5);
obj.addEdge(3, 5);
cout << "Adjacency matrix after"
<< " edge insertions:\n";
obj.displayAdjacencyMatrix();
obj.removeEdge(X, Y);
cout << "\nAdjacency matrix after"
<< " edge removal:\n";
obj.displayAdjacencyMatrix();
return 0;
}
Java
// Java program to add and remove edge
// in the adjacency matrix of a graph
class Graph {
// Number of vertices
private int n;
// Adjacency matrix
private int[][] g = new int[10][10];
// Constructor
Graph(int x)
{
this.n = x;
// Initializing each element of the
// adjacency matrix to zero
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
g[i][j] = 0;
}
}
}
// Function to display adjacency matrix
public void displayAdjacencyMatrix()
{
// Displaying the 2D matrix
for (int i = 0; i < n; ++i) {
System.out.println();
for (int j = 0; j < n; ++j) {
System.out.print(" " + g[i][j]);
}
}
System.out.println();
}
// Function to update adjacency
// matrix for edge insertion
public void addEdge(int x, int y)
{
// Checks if the vertices exists
if ((x < 0) || (x >= n)) {
System.out.printf("Vertex " + x
+ " does not exist!");
}
if ((y < 0) || (y >= n)) {
System.out.printf("Vertex " + y
+ " does not exist!");
}
// Checks if it is a self edge
if (x == y) {
System.out.println("Same Vertex!");
}
else {
// Insert edge
g[y][x] = 1;
g[x][y] = 1;
}
}
// Function to update adjacency
// matrix for edge removal
public void removeEdge(int x, int y)
{
// Checks if the vertices exists
if ((x < 0) || (x >= n)) {
System.out.printf("Vertex " + x
+ " does not exist!");
}
if ((y < 0) || (y >= n)) {
System.out.printf("Vertex " + y
+ " does not exist!");
}
// Checks if it is a self edge
if (x == y) {
System.out.println("Same Vertex!");
}
else {
// Remove edge
g[y][x] = 0;
g[x][y] = 0;
}
}
}
// Driver Code
class Main {
public static void main(String[] args)
{
int N = 6, X = 2, Y = 3;
Graph obj = new Graph(N);
// Inserting edges
obj.addEdge(0, 1);
obj.addEdge(0, 2);
obj.addEdge(0, 3);
obj.addEdge(0, 4);
obj.addEdge(1, 3);
obj.addEdge(2, 3);
obj.addEdge(2, 4);
obj.addEdge(2, 5);
obj.addEdge(3, 5);
System.out.println("Adjacency matrix after"
+ " edge insertions:");
obj.displayAdjacencyMatrix();
obj.removeEdge(2, 3);
System.out.println("\nAdjacency matrix after"
+ " edge removal:");
obj.displayAdjacencyMatrix();
}
}
Python3
# Python3 program to add and remove edge
# in adjacency matrix representation of a graph
class Graph:
# Number of vertices
__n = 0
# Adjacency matrix
__g = [[0 for x in range(10)]
for y in range(10)]
# Constructor
def __init__(self, x):
self.__n = x
# Initializing each element of
# the adjacency matrix to zero
for i in range(0, self.__n):
for j in range(0, self.__n):
self.__g[i][j] = 0
# Function to display adjacency matrix
def displayAdjacencyMatrix(self):
# Displaying the 2D matrix
for i in range(0, self.__n):
print()
for j in range(0, self.__n):
print("", self.__g[i][j], end = "")
# Function to update adjacency
# matrix for edge insertion
def addEdge(self, x, y):
# Checks if the vertices
# exist in the graph
if (x < 0) or (x >= self.__n):
print("Vertex {} does not exist!".format(x))
if (y < 0) or (y >= self.__n):
print("Vertex {} does not exist!".format(y))
# Checks if it is a self edge
if(x == y):
print("Same Vertex!")
else:
# Adding edge between the vertices
self.__g[y][x] = 1
self.__g[x][y] = 1
# Function to update adjacency
# matrix for edge removal
def removeEdge(self, x, y):
# Checks if the vertices
# exist in the graph
if (x < 0) or (x >= self.__n):
print("Vertex {} does not exist!".format(x))
if (y < 0) or (y >= self.__n):
print("Vertex {} does not exist!".format(y))
# Checks if it is a self edge
if(x == y):
print("Same Vertex!")
else:
# Remove edge from between
# the vertices
self.__g[y][x] = 0
self.__g[x][y] = 0
# Driver code
# Creating an object of class Graph
obj = Graph(6);
# Adding edges to the graph
obj.addEdge(0, 1)
obj.addEdge(0, 2)
obj.addEdge(0, 3)
obj.addEdge(0, 4)
obj.addEdge(1, 3)
obj.addEdge(2, 3)
obj.addEdge(2, 4)
obj.addEdge(2, 5)
obj.addEdge(3, 5)
# Edges added to the adjacency matrix
print("Adjacency matrix after "
"edge insertions:\n")
obj.displayAdjacencyMatrix();
# Removing the edge between vertices
# "2" and "3" from the graph
obj.removeEdge(2, 3);
# The adjacency matrix after
# removing the edge
print("\nAdjacency matrix after "
"edge removal:\n")
obj.displayAdjacencyMatrix();
# This code is contributed by amarjeet_singh
C#
// C# program to add and remove edge
// in adjacency matrix representation
// of a graph
using System;
class Graph{
// Number of vertices
private int n;
// Adjacency matrix
private int[,] g = new int[10, 10];
// Constructor
public Graph(int x)
{
this.n = x;
// Initializing each element of
// the adjacency matrix to zero
for(int i = 0; i < n; ++i)
{
for(int j = 0; j < n; ++j)
{
g[i, j] = 0;
}
}
}
// Function to display adjacency matrix
public void displayAdjacencyMatrix()
{
// Displaying the 2D matrix
for(int i = 0; i < n; ++i)
{
Console.WriteLine();
for(int j = 0; j < n; ++j)
{
Console.Write(" " + g[i, j]);
}
}
}
// Function to update adjacency
// matrix for edge insertion
public void addEdge(int x, int y)
{
// Checks if the vertices exist
// in the graph
if ((x < 0) || (x >= n))
{
Console.WriteLine("Vertex {0} does " +
"not exist!", x);
}
if ((y < 0) || (y >= n))
{
Console.WriteLine("Vertex {0} does " +
"not exist!", y);
}
// Checks if it is a self edge
if (x == y)
{
Console.WriteLine("Same Vertex!");
}
else
{
// Adding edge between the vertices
g[y, x] = 1;
g[x, y] = 1;
}
}
// Function to update adjacency
// matrix for edge removal
public void removeEdge(int x, int y)
{
// Checks if the vertices exist
// in the graph
if ((x < 0) || (x >= n))
{
Console.WriteLine("Vertex {0} does" +
"not exist!", x);
}
if ((y < 0) || (y >= n))
{
Console.WriteLine("Vertex {0} does" +
"not exist!", y);
}
// Checks if it is a self edge
if (x == y)
{
Console.WriteLine("Same Vertex!");
}
else
{
// Remove edge from between
// the vertices
g[y, x] = 0;
g[x, y] = 0;
}
}
}
class GFG{
// Driver code
public static void Main(String[] args)
{
// Creating an object of class Graph
Graph obj = new Graph(6);
// Adding edges to the graph
obj.addEdge(0, 1);
obj.addEdge(0, 2);
obj.addEdge(0, 3);
obj.addEdge(0, 4);
obj.addEdge(1, 3);
obj.addEdge(2, 3);
obj.addEdge(2, 4);
obj.addEdge(2, 5);
obj.addEdge(3, 5);
// Edges added to the adjacency matrix
Console.WriteLine("Adjacency matrix after " +
"edge insertions:\n");
obj.displayAdjacencyMatrix();
// Removing the edge between vertices
// "2" and "3" from the graph
obj.removeEdge(2, 3);
// The adjacency matrix after
// removing the edge
Console.WriteLine("\nAdjacency matrix after " +
"edge removal:");
obj.displayAdjacencyMatrix();
}
}
// This code is contributed by amarjeet_singh
JavaScript
<script>
// Javascript program to add and remove edge
// in adjacency matrix representation
// of a graph
// Number of vertices
var n = 0;
// Adjacency matrix
var g = Array.from(Array(10), ()=>Array(10).fill(0));
// Constructor
function initialize(x)
{
n = x;
// Initializing each element of
// the adjacency matrix to zero
for(var i = 0; i < n; ++i)
{
for(var j = 0; j < n; ++j)
{
g[i][j] = 0;
}
}
}
// Function to display adjacency matrix
function displayAdjacencyMatrix()
{
// Displaying the 2D matrix
for(var i = 0; i < n; ++i)
{
document.write("<br>");
for(var j = 0; j < n; ++j)
{
document.write(" " + g[i][j]);
}
}
}
// Function to update adjacency
// matrix for edge insertion
function addEdge(x, y)
{
// Checks if the vertices exist
// in the graph
if ((x < 0) || (x >= n))
{
document.write(`Vertex ${x} does not exist!`);
}
if ((y < 0) || (y >= n))
{
document.write(`Vertex ${y} does not exist!`);
}
// Checks if it is a self edge
if (x == y)
{
document.write("Same Vertex!<br>");
}
else
{
// Adding edge between the vertices
g[y][x] = 1;
g[x][y] = 1;
}
}
// Function to update adjacency
// matrix for edge removal
function removeEdge(x, y)
{
// Checks if the vertices exist
// in the graph
if ((x < 0) || (x >= n))
{
document.write(`Vertex ${x} does not exist!`);
}
if ((y < 0) || (y >= n))
{
document.write(`Vertex ${y} does not exist!`);
}
// Checks if it is a self edge
if (x == y)
{
document.write("Same Vertex!<br>");
}
else
{
// Remove edge from between
// the vertices
g[y][x] = 0;
g[x][y] = 0;
}
}
// Driver code
// Creating an object of class Graph
initialize(6);
// Adding edges to the graph
addEdge(0, 1);
addEdge(0, 2);
addEdge(0, 3);
addEdge(0, 4);
addEdge(1, 3);
addEdge(2, 3);
addEdge(2, 4);
addEdge(2, 5);
addEdge(3, 5);
// Edges added to the adjacency matrix
document.write("Adjacency matrix after " +
"edge insertions:<br>");
displayAdjacencyMatrix();
// Removing the edge between vertices
// "2" and "3" from the graph
removeEdge(2, 3);
// The adjacency matrix after
// removing the edge
document.write("<br>Adjacency matrix after " +
"edge removal:<br>");
displayAdjacencyMatrix();
</script>
Output: Adjacency matrix after edge insertions:
0 1 1 1 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 1 1 0 0 1
1 0 1 0 0 0
0 0 1 1 0 0
Adjacency matrix after edge removal:
0 1 1 1 1 0
1 0 0 1 0 0
1 0 0 0 1 1
1 1 0 0 0 1
1 0 1 0 0 0
0 0 1 1 0 0
Time Complexity: Insertion and Deletion of an edge requires O(1) complexity while it takes O(N2) to display the adjacency matrix.
Auxiliary Space: O(N2)
Similar Reads
Add and Remove Edge in Adjacency List representation of a Graph
Prerequisites: Graph and Its RepresentationIn this article, adding and removing edge is discussed in a given adjacency list representation. A vector has been used to implement the graph using adjacency list representation. It is used to store the adjacency lists of all the vertices. The vertex numbe
8 min read
Add and Remove vertex in Adjacency Matrix representation of Graph
A graph is a presentation of a set of entities where some pairs of entities are linked by a connection. Interconnected entities are represented by points referred to as vertices, and the connections between the vertices are termed as edges. Formally, a graph is a pair of sets (V, E), where V is a co
15+ min read
Add and Remove vertex in Adjacency List representation of Graph
Prerequisites: Linked List, Graph Data StructureIn this article, adding and removing a vertex is discussed in a given adjacency list representation. Let the Directed Graph be: The graph can be represented in the Adjacency List representation as: It is a Linked List representation where the head of t
10 min read
Convert Adjacency Matrix to Adjacency List representation of Graph
Prerequisite: Graph and its representations Given a adjacency matrix representation of a Graph. The task is to convert the given Adjacency Matrix to Adjacency List representation. Examples: Input: arr[][] = [ [0, 0, 1], [0, 0, 1], [1, 1, 0] ] Output: The adjacency list is: 0 -> 2 1 -> 2 2 -
6 min read
Graph Representation using Adjacency Matrix in C
A graph is a data structure having a set of vertices and a collection of edges that each connect a pair of vertices. There are several ways to represent a graph in computer memory, and one of them is using an adjacency matrix. An adjacency matrix is a 2D array with one row per vertex and one column
4 min read
Comparison between Adjacency List and Adjacency Matrix representation of Graph
A Graph is a non-linear data structure consisting of nodes and edges. The nodes are sometimes also referred to as vertices and the edges are lines or arcs that connect any two nodes in the graph. In this article, we will understand the difference between the ways of representation of the graph. A gr
4 min read
Adjacency Matrix Representation
Adjacency Matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. An adjacency matrix is a simple and straightforward way to represent graphs and is particularly useful for dense graphs.Table of Conte
8 min read
Primâs MST for Adjacency List Representation | Greedy Algo-6
We recommend reading the following two posts as a prerequisite to this post. Greedy Algorithms | Set 5 (Primâs Minimum Spanning Tree (MST)) Graph and its representationsWe have discussed Prim's algorithm and its implementation for adjacency matrix representation of graphs. The time complexity for th
15+ min read
Dijkstraâs Algorithm for Adjacency List Representation | Greedy Algo-8
The Dijkstra's Algorithm, we can either use the matrix representation or the adjacency list representation to represent the graph, while the time complexity of Dijkstra's Algorithm using matrix representation is O(V^2). The time complexity of Dijkstra's Algorithm using adjacency list representation
15+ min read
Adjacency matrix meaning and definition in DSA
An adjacency matrix is a square matrix of N x N size where N is the number of nodes in the graph and it is used to represent the connections between the vertices of a graph.Graph representation of undirected graph to Adjacency MatrixGraph representation of directed graph to Adjacency MatrixCharacter
2 min read