Add and Remove vertex in Adjacency Matrix representation of Graph
Last Updated :
14 Mar, 2023
A graph is a presentation of a set of entities where some pairs of entities are linked by a connection. Interconnected entities are represented by points referred to as vertices, and the connections between the vertices are termed as edges. Formally, a graph is a pair of sets (V, E), where V is a collection of vertices, and E is a collection of edges joining a pair of vertices.

A graph can be represented by using an Adjacency Matrix.

Initialization of Graph: The adjacency matrix will be depicted using a 2D array, a constructor will be used to assign the size of the array and each element of that array will be initialized to 0. Showing that the degree of each vertex in the graph is zero.
C++
class Graph {
private:
// number of vertices
int n;
// adjacency matrix
int g[10][10];
public:
// constructor
Graph(int x)
{
n = x;
// initializing each element of the adjacency matrix to zero
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
g[i][j] = 0;
}
}
}
};
Java
class Graph {
// number of vertices
private int n;
// adjacency matrix
private int[][] g = new int[10][10];
// constructor
Graph(int x)
{
this.n = x;
int i, j;
// initializing each element of the adjacency matrix to zero
for (i = 0; i < n; ++i) {
for (j = 0; j < n; ++j) {
g[i][j] = 0;
}
}
}
}
Python3
class Graph:
# number of vertices
__n = 0
# adjacency matrix
__g =[[0 for x in range(10)] for y in range(10)]
# constructor
def __init__(self, x):
self.__n = x
# initializing each element of the adjacency matrix to zero
for i in range(0, self.__n):
for j in range(0, self.__n):
self.__g[i][j]= 0
C#
class Graph{
// Number of vertices
private int n;
// Adjacency matrix
private int[,] g = new int[10, 10];
// Constructor
Graph(int x)
{
this.n = x;
int i, j;
// Initializing each element of
// the adjacency matrix to zero
for(i = 0; i < n; ++i)
{
for(j = 0; j < n; ++j)
{
g[i, j] = 0;
}
}
}
}
// This code is contributed by ukasp
JavaScript
class Graph {
constructor(x) {
// number of vertices
this.n = x;
// adjacency matrix
this.g = [];
// initializing each element of the adjacency matrix to zero
for (let i = 0; i < this.n; ++i) {
this.g[i] = [];
for (let j = 0; j < this.n; ++j) {
this.g[i][j] = 0;
}
}
}
}
Here the adjacency matrix is g[n][n] in which the degree of each vertex is zero.
Displaying the Graph: The graph is depicted using the adjacency matrix g[n][n] having the number of vertices n. The 2D array(adjacency matrix) is displayed in which if there is an edge between two vertices 'x' and 'y' then g[x][y] is 1 otherwise 0.
C++
void displayAdjacencyMatrix()
{
cout << "\n\n Adjacency Matrix:";
// displaying the 2D array
for (int i = 0; i < n; ++i) {
cout << "\n";
for (int j = 0; j < n; ++j) {
cout << " " << g[i][j];
}
}
}
Java
public void displayAdjacencyMatrix()
{
System.out.print("\n\n Adjacency Matrix:");
// displaying the 2D array
for (int i = 0; i < n; ++i) {
System.out.println();
for (int j = 0; j < n; ++j) {
System.out.print(" " + g[i][j]);
}
}
}
Python3
def displayAdjacencyMatrix(self):
print("\n\n Adjacency Matrix:", end ="")
# displaying the 2D array
for i in range(0, self.__n):
print()
for j in range(0, self.__n):
print("", self.__g[i][j], end ="")
C#
public void DisplayAdjacencyMatrix()
{
Console.Write("\n\n Adjacency Matrix:");
// Displaying the 2D array
for (int i = 0; i < n; ++i)
{
Console.WriteLine();
for (int j = 0; j < n; ++j)
{
Console.Write(" " + g[i,j]);
}
}
}
JavaScript
function displayAdjacencyMatrix() {
console.log("\n\n Adjacency Matrix:");
// displaying the 2D array
for (let i = 0; i < n; ++i) {
let row = "";
for (let j = 0; j < n; ++j) {
row += " " + g[i][j];
}
console.log(row);
}
}
The above method is a public member function of the class Graph which displays the graph using an adjacency matrix.
Adding Edges between Vertices in the Graph: To add edges between two existing vertices such as vertex 'x' and vertex 'y' then the elements g[x][y] and g[y][x] of the adjacency matrix will be assigned to 1, depicting that there is an edge between vertex 'x' and vertex 'y'.
C++
void addEdge(int x, int y)
{
// checks if the vertex exists in the graph
if ((x >= n) || (y > n)) {
cout << "Vertex does not exists!";
}
// checks if the vertex is connecting to itself
if (x == y) {
cout << "Same Vertex!";
}
else {
// connecting the vertices
g[y][x] = 1;
g[x][y] = 1;
}
}
Java
public void addEdge(int x, int y)
{
// checks if the vertex exists in the graph
if ((x >= n) || (y > n)) {
System.out.println("Vertex does not exists!");
}
// checks if the vertex is connecting to itself
if (x == y) {
System.out.println("Same Vertex!");
}
else {
// connecting the vertices
g[y][x] = 1;
g[x][y] = 1;
}
}
Python3
def addEdge(self, x, y):
# checks if the vertex exists in the graph
if(x>= self.__n) or (y >= self.__n):
print("Vertex does not exists !")
# checks if the vertex is connecting to itself
if(x == y):
print("Same Vertex !")
else:
# connecting the vertices
self.__g[y][x]= 1
self.__g[x][y]= 1
C#
public void AddEdge(int x, int y)
{
// checks if the vertex exists in the graph
if ((x >= n) || (y > n))
{
Console.WriteLine("Vertex does not exists!");
}
// checks if the vertex is connecting to itself
if (x == y)
{
Console.WriteLine("Same Vertex!");
}
else
{
// connecting the vertices
g[y, x] = 1;
g[x, y] = 1;
}
}
JavaScript
function addEdge(x, y) {
// checks if the vertex exists in the graph
if ((x >= n) || (y > n)) {
console.log("Vertex does not exist!");
}
// checks if the vertex is connecting to itself
if (x === y) {
console.log("Same Vertex!");
}
else {
// connecting the vertices
g[y][x] = 1;
g[x][y] = 1;
}
}
Here the above method is a public member function of the class Graph which connects any two existing vertices in the Graph.
Adding a Vertex in the Graph: To add a vertex in the graph, we need to increase both the row and column of the existing adjacency matrix and then initialize the new elements related to that vertex to 0.(i.e the new vertex added is not connected to any other vertex)
C++
void addVertex()
{
// increasing the number of vertices
n++;
int i;
// initializing the new elements to 0
for (i = 0; i < n; ++i) {
g[i][n - 1] = 0;
g[n - 1][i] = 0;
}
}
Java
public void addVertex()
{
// increasing the number of vertices
n++;
int i;
// initializing the new elements to 0
for (i = 0; i < n; ++i) {
g[i][n - 1] = 0;
g[n - 1][i] = 0;
}
}
Python3
def addVertex(self):
# increasing the number of vertices
self.__n = self.__n + 1;
# initializing the new elements to 0
for i in range(0, self.__n):
self.__g[i][self.__n-1]= 0
self.__g[self.__n-1][i]= 0
JavaScript
function addVertex() {
// increasing the number of vertices
n++;
let i;
// initializing the new elements to 0
for (i = 0; i < n; ++i) {
g[i][n - 1] = 0;
g[n - 1][i] = 0;
}
}
C#
public void addVertex()
{
// increasing the number of vertices
n++;
int i;
// initializing the new elements to 0
for (i = 0; i < n; ++i) {
g[i, n - 1] = 0;
g[n - 1, i] = 0;
}
}
The above method is a public member function of the class Graph which increments the number of vertices by 1 and the degree of the new vertex is 0.
Removing a Vertex in the Graph: To remove a vertex from the graph, we need to check if that vertex exists in the graph or not and if that vertex exists then we need to shift the rows to the left and the columns upwards of the adjacency matrix so that the row and column values of the given vertex gets replaced by the values of the next vertex and then decrease the number of vertices by 1.In this way that particular vertex will be removed from the adjacency matrix.
C++
void removeVertex(int x)
{
// checking if the vertex is present
if (x > n) {
cout << "\nVertex not present!";
return;
}
else {
int i;
// removing the vertex
while (x < n) {
// shifting the rows to left side
for (i = 0; i < n; ++i) {
g[i][x] = g[i][x + 1];
}
// shifting the columns upwards
for (i = 0; i < n; ++i) {
g[x][i] = g[x + 1][i];
}
x++;
}
// decreasing the number of vertices
n--;
}
}
Java
public void removeVertex(int x)
{
// checking if the vertex is present
if (x > n) {
System.out.println("Vertex not present!");
return;
}
else {
int i;
// removing the vertex
while (x < n) {
// shifting the rows to left side
for (i = 0; i < n; ++i) {
g[i][x] = g[i][x + 1];
}
// shifting the columns upwards
for (i = 0; i < n; ++i) {
g[x][i] = g[x + 1][i];
}
x++;
}
// decreasing the number of vertices
n--;
}
}
Python3
def removeVertex(self, x):
# checking if the vertex is present
if(x>self.__n):
print("Vertex not present !")
else:
# removing the vertex
while(x<self.__n):
# shifting the rows to left side
for i in range(0, self.__n):
self.__g[i][x]= self.__g[i][x + 1]
# shifting the columns upwards
for i in range(0, self.__n):
self.__g[x][i]= self.__g[x + 1][i]
x = x + 1
# decreasing the number of vertices
self.__n = self.__n - 1
C#
public void RemoveVertex(int x)
{
// checking if the vertex is present
if (x > n) {
Console.WriteLine("Vertex not present!");
return;
}
else {
int i;
// removing the vertex
while (x < n) {
// shifting the rows to left side
for (i = 0; i < n; ++i) {
g[i][x] = g[i][x + 1];
}
// shifting the columns upwards
for (i = 0; i < n; ++i) {
g[x][i] = g[x + 1][i];
}
x++;
}
// decreasing the number of vertices
n--;
}
}
JavaScript
function removeVertex(x) {
// checking if the vertex is present
if (x > n) {
console.log("\nVertex not present!");
return;
} else {
let i;
// removing the vertex
while (x < n) {
// shifting the rows to left side
for (i = 0; i < n; ++i) {
g[i][x] = g[i][x + 1];
}
// shifting the columns upwards
for (i = 0; i < n; ++i) {
g[x][i] = g[x + 1][i];
}
x++;
}
// decreasing the number of vertices
n--;
}
}
The above method is a public member function of the class Graph which removes an existing vertex from the graph by shifting the rows to the left and shifting the columns up to replace the row and column values of that vertex with the next vertex and then decreases the number of vertices by 1 in the graph.
Following is a complete program that uses all of the above methods in a Graph.
C++
// C++ program to add and remove Vertex in Adjacency Matrix
#include <iostream>
using namespace std;
class Graph {
private:
// number of vertices
int n;
// adjacency matrix
int g[10][10];
public:
// constructor
Graph(int x)
{
n = x;
// initializing each element of the adjacency matrix to zero
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
g[i][j] = 0;
}
}
}
void displayAdjacencyMatrix()
{
cout << "\n\n Adjacency Matrix:";
// displaying the 2D array
for (int i = 0; i < n; ++i) {
cout << "\n";
for (int j = 0; j < n; ++j) {
cout << " " << g[i][j];
}
}
}
void addEdge(int x, int y)
{
// checks if the vertex exists in the graph
if ((x >= n) || (y > n)) {
cout << "Vertex does not exists!";
}
// checks if the vertex is connecting to itself
if (x == y) {
cout << "Same Vertex!";
}
else {
// connecting the vertices
g[y][x] = 1;
g[x][y] = 1;
}
}
void addVertex()
{
// increasing the number of vertices
n++;
int i;
// initializing the new elements to 0
for (i = 0; i < n; ++i) {
g[i][n - 1] = 0;
g[n - 1][i] = 0;
}
}
void removeVertex(int x)
{
// checking if the vertex is present
if (x > n) {
cout << "\nVertex not present!";
return;
}
else {
int i;
// removing the vertex
while (x < n) {
// shifting the rows to left side
for (i = 0; i < n; ++i) {
g[i][x] = g[i][x + 1];
}
// shifting the columns upwards
for (i = 0; i < n; ++i) {
g[x][i] = g[x + 1][i];
}
x++;
}
// decreasing the number of vertices
n--;
}
}
};
int main()
{
// creating objects of class Graph
Graph obj(4);
// calling methods
obj.addEdge(0, 1);
obj.addEdge(0, 2);
obj.addEdge(1, 2);
obj.addEdge(2, 3);
// the adjacency matrix created
obj.displayAdjacencyMatrix();
// adding a vertex to the graph
obj.addVertex();
// connecting that vertex to other existing vertices
obj.addEdge(4, 1);
obj.addEdge(4, 3);
// the adjacency matrix with a new vertex
obj.displayAdjacencyMatrix();
// removing an existing vertex in the graph
obj.removeVertex(1);
// the adjacency matrix after removing a vertex
obj.displayAdjacencyMatrix();
return 0;
}
Java
// Java program to add and remove Vertex in Adjacency Matrix
class Graph
{
// number of vertices
private int n;
// adjacency matrix
private int[][] g = new int[10][10];
// constructor
Graph(int x)
{
this.n = x;
int i, j;
// initializing each element of
// the adjacency matrix to zero
for (i = 0; i < n; ++i)
{
for (j = 0; j < n; ++j)
{
g[i][j] = 0;
}
}
}
public void displayAdjacencyMatrix()
{
System.out.print("\n\n Adjacency Matrix:");
// displaying the 2D array
for (int i = 0; i < n; ++i)
{
System.out.println();
for (int j = 0; j < n; ++j)
{
System.out.print(" " + g[i][j]);
}
}
}
public void addEdge(int x, int y)
{
// checks if the vertex exists in the graph
if ((x >= n) || (y > n))
{
System.out.println("Vertex does not exists!");
}
// checks if the vertex is connecting to itself
if (x == y)
{
System.out.println("Same Vertex!");
}
else
{
// connecting the vertices
g[y][x] = 1;
g[x][y] = 1;
}
}
public void addVertex()
{
// increasing the number of vertices
n++;
int i;
// initializing the new elements to 0
for (i = 0; i < n; ++i)
{
g[i][n - 1] = 0;
g[n - 1][i] = 0;
}
}
public void removeVertex(int x)
{
// checking if the vertex is present
if (x > n)
{
System.out.println("Vertex not present!");
return;
}
else
{
int i;
// removing the vertex
while (x < n)
{
// shifting the rows to left side
for (i = 0; i < n; ++i)
{
g[i][x] = g[i][x + 1];
}
// shifting the columns upwards
for (i = 0; i < n; ++i)
{
g[x][i] = g[x + 1][i];
}
x++;
}
// decreasing the number of vertices
n--;
}
}
}
class Main
{
public static void main(String[] args)
{
// creating objects of class Graph
Graph obj = new Graph(4);
// calling methods
obj.addEdge(0, 1);
obj.addEdge(0, 2);
obj.addEdge(1, 2);
obj.addEdge(2, 3);
// the adjacency matrix created
obj.displayAdjacencyMatrix();
// adding a vertex to the graph
obj.addVertex();
// connecting that vertex to other existing vertices
obj.addEdge(4, 1);
obj.addEdge(4, 3);
// the adjacency matrix with a new vertex
obj.displayAdjacencyMatrix();
// removing an existing vertex in the graph
obj.removeVertex(1);
// the adjacency matrix after removing a vertex
obj.displayAdjacencyMatrix();
}
}
Python3
# Python program to add and remove Vertex in Adjacency Matrix
class Graph:
# number of vertices
__n = 0
# adjacency matrix
__g =[[0 for x in range(10)] for y in range(10)]
# constructor
def __init__(self, x):
self.__n = x
# initializing each element of the adjacency matrix to zero
for i in range(0, self.__n):
for j in range(0, self.__n):
self.__g[i][j]= 0
def displayAdjacencyMatrix(self):
print("\n\n Adjacency Matrix:", end ="")
# displaying the 2D array
for i in range(0, self.__n):
print()
for j in range(0, self.__n):
print("", self.__g[i][j], end ="")
def addEdge(self, x, y):
# checks if the vertex exists in the graph
if(x>= self.__n) or (y >= self.__n):
print("Vertex does not exists !")
# checks if the vertex is connecting to itself
if(x == y):
print("Same Vertex !")
else:
# connecting the vertices
self.__g[y][x]= 1
self.__g[x][y]= 1
def addVertex(self):
# increasing the number of vertices
self.__n = self.__n + 1;
# initializing the new elements to 0
for i in range(0, self.__n):
self.__g[i][self.__n-1]= 0
self.__g[self.__n-1][i]= 0
def removeVertex(self, x):
# checking if the vertex is present
if(x>self.__n):
print("Vertex not present !")
else:
# removing the vertex
while(x<self.__n):
# shifting the rows to left side
for i in range(0, self.__n):
self.__g[i][x]= self.__g[i][x + 1]
# shifting the columns upwards
for i in range(0, self.__n):
self.__g[x][i]= self.__g[x + 1][i]
x = x + 1
# decreasing the number of vertices
self.__n = self.__n - 1
# creating objects of class Graph
obj = Graph(4);
# calling methods
obj.addEdge(0, 1);
obj.addEdge(0, 2);
obj.addEdge(1, 2);
obj.addEdge(2, 3);
# the adjacency matrix created
obj.displayAdjacencyMatrix();
# adding a vertex to the graph
obj.addVertex();
# connecting that vertex to other existing vertices
obj.addEdge(4, 1);
obj.addEdge(4, 3);
# the adjacency matrix with a new vertex
obj.displayAdjacencyMatrix();
# removing an existing vertex in the graph
obj.removeVertex(1);
# the adjacency matrix after removing a vertex
obj.displayAdjacencyMatrix();
C#
// C# program to add and remove Vertex in Adjacency Matrix
using System;
public class Graph
{
// number of vertices
private int n;
// adjacency matrix
private int[,] g = new int[10, 10];
// constructor
public Graph(int x)
{
this.n = x;
int i, j;
// initializing each element of the adjacency matrix to zero
for (i = 0; i < n; ++i)
{
for (j = 0; j < n; ++j)
{
g[i, j] = 0;
}
}
}
public void displayAdjacencyMatrix()
{
Console.Write("\n\n Adjacency Matrix:");
// displaying the 2D array
for (int i = 0; i < n; ++i)
{
Console.WriteLine();
for (int j = 0; j < n; ++j)
{
Console.Write(" " + g[i, j]);
}
}
}
public void addEdge(int x, int y)
{
// checks if the vertex exists in the graph
if ((x >= n) || (y > n))
{
Console.WriteLine("Vertex does not exists!");
}
// checks if the vertex is connecting to itself
if (x == y)
{
Console.WriteLine("Same Vertex!");
}
else
{
// connecting the vertices
g[y, x] = 1;
g[x, y] = 1;
}
}
public void addVertex()
{
// increasing the number of vertices
n++;
int i;
// initializing the new elements to 0
for (i = 0; i < n; ++i)
{
g[i, n - 1] = 0;
g[n - 1, i] = 0;
}
}
public void removeVertex(int x)
{
// checking if the vertex is present
if (x > n)
{
Console.WriteLine("Vertex not present!");
return;
}
else
{
int i;
// removing the vertex
while (x < n)
{
// shifting the rows to left side
for (i = 0; i < n; ++i)
{
g[i, x] = g[i, x + 1];
}
// shifting the columns upwards
for (i = 0; i < n; ++i)
{
g[x, i] = g[x + 1, i];
}
x++;
}
// decreasing the number of vertices
n--;
}
}
}
public class GFG
{
// Driver code
public static void Main(String[] args)
{
// creating objects of class Graph
Graph obj = new Graph(4);
// calling methods
obj.addEdge(0, 1);
obj.addEdge(0, 2);
obj.addEdge(1, 2);
obj.addEdge(2, 3);
// the adjacency matrix created
obj.displayAdjacencyMatrix();
// adding a vertex to the graph
obj.addVertex();
// connecting that vertex to other existing vertices
obj.addEdge(4, 1);
obj.addEdge(4, 3);
// the adjacency matrix with a new vertex
obj.displayAdjacencyMatrix();
// removing an existing vertex in the graph
obj.removeVertex(1);
// the adjacency matrix after removing a vertex
obj.displayAdjacencyMatrix();
}
}
// This code is contributed by PrinciRaj1992
JavaScript
<script>
// Javascript program to add and remove Vertex in Adjacency Matrix
class Graph
{
// constructor
constructor(x)
{
// number of vertices
this.n=x;
// adjacency matrix
this.g = new Array(10);
for(let i=0;i<10;i++)
{
this.g[i]=new Array(10);
for(let j=0;j<10;j++)
{
this.g[i][j]=0;
}
}
}
displayAdjacencyMatrix()
{
document.write("<br><br> Adjacency Matrix:");
// displaying the 2D array
for (let i = 0; i < this.n; ++i)
{
document.write("<br>");
for (let j = 0; j < this.n; ++j)
{
document.write(" " + this.g[i][j]);
}
}
}
addEdge(x,y)
{
// checks if the vertex exists in the graph
if ((x >= this.n) || (y > this.n))
{
document.write("Vertex does not exists!<br>");
}
// checks if the vertex is connecting to itself
if (x == y)
{
document.write("Same Vertex!<br>");
}
else
{
// connecting the vertices
this.g[y][x] = 1;
this.g[x][y] = 1;
}
}
addVertex()
{
// increasing the number of vertices
this.n++;
let i;
// initializing the new elements to 0
for (i = 0; i < this.n; ++i)
{
this.g[i][this.n - 1] = 0;
this.g[this.n - 1][i] = 0;
}
}
removeVertex(x)
{
// checking if the vertex is present
if (x > this.n)
{
document.write("Vertex not present!<br>");
return;
}
else
{
let i;
// removing the vertex
while (x < this.n)
{
// shifting the rows to left side
for (i = 0; i < this.n; ++i)
{
this.g[i][x] = this.g[i][x + 1];
}
// shifting the columns upwards
for (i = 0; i < this.n; ++i)
{
this.g[x][i] = this.g[x + 1][i];
}
x++;
}
// decreasing the number of vertices
this.n--;
}
}
}
// creating objects of class Graph
let obj = new Graph(4);
// calling methods
obj.addEdge(0, 1);
obj.addEdge(0, 2);
obj.addEdge(1, 2);
obj.addEdge(2, 3);
// the adjacency matrix created
obj.displayAdjacencyMatrix();
// adding a vertex to the graph
obj.addVertex();
// connecting that vertex to other existing vertices
obj.addEdge(4, 1);
obj.addEdge(4, 3);
// the adjacency matrix with a new vertex
obj.displayAdjacencyMatrix();
// removing an existing vertex in the graph
obj.removeVertex(1);
// the adjacency matrix after removing a vertex
obj.displayAdjacencyMatrix();
// This code is contributed by rag2127
</script>
Output:
Adjacency Matrix:
0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0
Adjacency Matrix:
0 1 1 0 0
1 0 1 0 1
1 1 0 1 0
0 0 1 0 1
0 1 0 1 0
Adjacency Matrix:
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0
Adjacency matrices waste a lot of memory space. Such matrices are found to be very sparse. This representation requires space for n*n elements, the time complexity of the addVertex() method is O(n), and the time complexity of the removeVertex() method is O(n*n) for a graph of n vertices.
From the output of the program, the Adjacency Matrix is:

And the Graph depicted by the above Adjacency Matrix is:

Similar Reads
Add and Remove vertex in Adjacency List representation of Graph
Prerequisites: Linked List, Graph Data StructureIn this article, adding and removing a vertex is discussed in a given adjacency list representation. Let the Directed Graph be: The graph can be represented in the Adjacency List representation as: It is a Linked List representation where the head of t
10 min read
Add and Remove Edge in Adjacency Matrix representation of a Graph
Prerequisites: Graph and its representationsGiven an adjacency matrix g[][] of a graph consisting of N vertices, the task is to modify the matrix after insertion of all edges[] and removal of edge between vertices (X, Y). In an adjacency matrix, if an edge exists between vertices i and j of the grap
13 min read
Add and Remove Edge in Adjacency List representation of a Graph
Prerequisites: Graph and Its RepresentationIn this article, adding and removing edge is discussed in a given adjacency list representation. A vector has been used to implement the graph using adjacency list representation. It is used to store the adjacency lists of all the vertices. The vertex numbe
8 min read
Convert Adjacency Matrix to Adjacency List representation of Graph
Prerequisite: Graph and its representations Given a adjacency matrix representation of a Graph. The task is to convert the given Adjacency Matrix to Adjacency List representation. Examples: Input: arr[][] = [ [0, 0, 1], [0, 0, 1], [1, 1, 0] ] Output: The adjacency list is: 0 -> 2 1 -> 2 2 -
6 min read
Graph Representation using Adjacency Matrix in C
A graph is a data structure having a set of vertices and a collection of edges that each connect a pair of vertices. There are several ways to represent a graph in computer memory, and one of them is using an adjacency matrix. An adjacency matrix is a 2D array with one row per vertex and one column
4 min read
Comparison between Adjacency List and Adjacency Matrix representation of Graph
A Graph is a non-linear data structure consisting of nodes and edges. The nodes are sometimes also referred to as vertices and the edges are lines or arcs that connect any two nodes in the graph. In this article, we will understand the difference between the ways of representation of the graph. A gr
4 min read
Adjacency Matrix Representation
Adjacency Matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. An adjacency matrix is a simple and straightforward way to represent graphs and is particularly useful for dense graphs.Table of Conte
8 min read
Primâs MST for Adjacency List Representation | Greedy Algo-6
We recommend reading the following two posts as a prerequisite to this post. Greedy Algorithms | Set 5 (Primâs Minimum Spanning Tree (MST)) Graph and its representationsWe have discussed Prim's algorithm and its implementation for adjacency matrix representation of graphs. The time complexity for th
15+ min read
Dijkstraâs Algorithm for Adjacency List Representation | Greedy Algo-8
The Dijkstra's Algorithm, we can either use the matrix representation or the adjacency list representation to represent the graph, while the time complexity of Dijkstra's Algorithm using matrix representation is O(V^2). The time complexity of Dijkstra's Algorithm using adjacency list representation
15+ min read
Graph Representation using Incidence Matrix in C++
A graph is a non-linear data structure that is represented as a collection of vertices and edges that connect pairs of vertices. One way to represent a graph in computer memory is using an incidence matrix. An incidence matrix is a 2D array where rows represent edges and columns represent vertices.
5 min read