Adjacency List Representation
Last Updated :
07 Nov, 2024
An adjacency list is a data structure used to represent a graph where each node in the graph stores a list of its neighboring vertices.
1. Adjacency List for Directed graph:
Consider an Directed and Unweighted graph G with 3 vertices and 3 edges. For the graph G, the adjacency list would look like:
C++
#include <iostream>
#include <vector>
using namespace std;
// Function to add an edge between two vertices
void addEdge(vector<vector<int>>& adj, int u, int v) {
adj[u].push_back(v);
}
void displayAdjList(const vector<vector<int>>& adj) {
for (int i = 0; i < adj.size(); i++) {
cout << i << ": ";
for (int j : adj[i]) {
cout << j << " ";
}
cout << endl;
}
}
int main() {
// Create a graph with 3 vertices and 3 edges
int V = 3;
vector<vector<int>> adj(V);
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
cout << "Adjacency List Representation:" << endl;
displayAdjList(adj);
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
class GfG {
// Function to add an edge between two vertices
static void addEdge(List<List<Integer>> adj, int u, int v) {
adj.get(u).add(v);
}
static void displayAdjList(List<List<Integer>> adj) {
for (int i = 0; i < adj.size(); i++) {
System.out.print(i + ": ");
for (int j : adj.get(i)) {
System.out.print(j + " ");
}
System.out.println();
}
}
public static void main(String[] args) {
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<Integer>> adj = new ArrayList<>();
for (int i = 0; i < V; i++) {
adj.add(new ArrayList<>());
}
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
System.out.println("Adjacency List Representation:");
displayAdjList(adj);
}
}
Python
# Function to add an edge between two vertices
def addEdge(adj, u, v):
adj[u].append(v)
def displayAdjList(adj):
for i in range(len(adj)):
print(f"{i}: ", end="")
for j in adj[i]:
print(f"{j} ", end="")
print()
def main():
# Create a graph with 3 vertices and 3 edges
V = 3
adj = [[] for _ in range(V)]
# Now add edges one by one
addEdge(adj, 1, 0)
addEdge(adj, 1, 2)
addEdge(adj, 2, 0)
print("Adjacency List Representation:")
displayAdjList(adj)
if __name__ == "__main__":
main()
C#
using System;
using System.Collections.Generic;
class GfG
{
// Function to add an edge between two vertices
static void addEdge(List<List<int>> adj, int u, int v)
{
adj[u].Add(v);
}
static void displayAdjList(List<List<int>> adj)
{
for (int i = 0; i < adj.Count; i++)
{
Console.Write(i + ": ");
foreach (int j in adj[i])
{
Console.Write(j + " ");
}
Console.WriteLine();
}
}
static void Main(string[] args)
{
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<int>> adj = new List<List<int>>();
for (int i = 0; i < V; i++)
{
adj.Add(new List<int>());
}
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
Console.WriteLine("Adjacency List Representation:");
displayAdjList(adj);
}
}
JavaScript
// Function to add an edge between two vertices
function addEdge(adj, u, v) {
adj[u].push(v);
}
function displayAdjList(adj) {
for (let i = 0; i < adj.length; i++) {
let line = i + ": ";
for (let j of adj[i]) {
line += j + " ";
}
console.log(line);
}
}
function main() {
// Create a graph with 3 vertices and 3 edges
let V = 3;
let adj = Array.from({ length: V }, () => []);
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
console.log("Adjacency List Representation:");
displayAdjList(adj);
}
main();
OutputAdjacency List Representation:
0:
1: 0 2
2: 0
2. Adjacency List for Undirected graph:
Consider an Undirected and Unweighted graph G with 3 vertices and 3 edges. For the graph G, the adjacency list would look like:
C++
#include <iostream>
#include <vector>
using namespace std;
// Function to add an edge between two vertices
void addEdge(vector<vector<int>>& adj, int u, int v) {
adj[u].push_back(v);
adj[v].push_back(u);
}
void displayAdjList(vector<vector<int>>& adj) {
for (int i = 0; i < adj.size(); i++) {
cout << i << ": ";
for (int j : adj[i]) {
cout << j << " ";
}
cout << endl;
}
}
int main() {
// Create a graph with 3 vertices and 3 edges
int V = 3;
vector<vector<int>> adj(V);
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
cout << "Adjacency List Representation:" << endl;
displayAdjList(adj);
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
class GfG {
// Function to add an edge between two vertices
static void addEdge(List<List<Integer>> adj, int u, int v) {
adj.get(u).add(v);
adj.get(v).add(u);
}
static void displayAdjList(List<List<Integer>> adj) {
for (int i = 0; i < adj.size(); i++) {
System.out.print(i + ": ");
for (int j : adj.get(i)) {
System.out.print(j + " ");
}
System.out.println();
}
}
public static void main(String[] args) {
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<Integer>> adj = new ArrayList<>();
for (int i = 0; i < V; i++) {
adj.add(new ArrayList<>());
}
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
System.out.println("Adjacency List Representation:");
displayAdjList(adj);
}
}
Python
# Function to add an edge between two vertices
def addEdge(adj, u, v):
adj[u].append(v)
adj[v].append(u)
def displayAdjList(adj):
for i in range(len(adj)):
print(f"{i}: ", end="")
for j in adj[i]:
print(f"{j} ", end="")
print()
def main():
# Create a graph with 3 vertices and 3 edges
V = 3
adj = [[] for _ in range(V)]
# Now add edges one by one
addEdge(adj, 1, 0)
addEdge(adj, 1, 2)
addEdge(adj, 2, 0)
print("Adjacency List Representation:")
displayAdjList(adj)
if __name__ == "__main__":
main()
C#
using System;
using System.Collections.Generic;
class GfG
{
// Function to add an edge between two vertices
static void addEdge(List<List<int>> adj, int u, int v)
{
adj[u].Add(v);
adj[v].Add(u);
}
static void displayAdjList(List<List<int>> adj)
{
for (int i = 0; i < adj.Count; i++)
{
Console.Write(i + ": ");
foreach (int j in adj[i])
{
Console.Write(j + " ");
}
Console.WriteLine();
}
}
static void Main(string[] args)
{
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<int>> adj = new List<List<int>>();
for (int i = 0; i < V; i++)
{
adj.Add(new List<int>());
}
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
Console.WriteLine("Adjacency List Representation:");
displayAdjList(adj);
}
}
JavaScript
// Function to add an edge between two vertices
function addEdge(adj, u, v) {
adj[u].push(v);
adj[v].push(u);
}
function displayAdjList(adj) {
for (let i = 0; i < adj.length; i++) {
let line = i + ": ";
for (let j of adj[i]) {
line += j + " ";
}
console.log(line);
}
}
function main() {
// Create a graph with 3 vertices and 3 edges
let V = 3;
let adj = Array.from({ length: V }, () => []);
// Now add edges one by one
addEdge(adj, 1, 0);
addEdge(adj, 1, 2);
addEdge(adj, 2, 0);
console.log("Adjacency List Representation:");
displayAdjList(adj);
}
main();
OutputAdjacency List Representation:
0: 1 2
1: 0 2
2: 1 0
3. Adjacency List for Directed and Weighted graph:
Consider an Directed and Weighted graph G with 3 vertices and 3 edges. For the graph G, the adjacency list would look like:
C++
#include <iostream>
#include <vector>
using namespace std;
// Function to add an edge between two vertices
void addEdge(vector<vector<pair<int,int>>>& adj, int u, int v, int w) {
adj[u].push_back({v,w});
}
void displayAdjList(vector<vector<pair<int,int>>>& adj) {
for (int i = 0; i < adj.size(); i++) {
cout << i << ": ";
for (auto &j : adj[i]) {
cout << "{"<<j.first << ", "<<j.second<<"} ";
}
cout << endl;
}
}
int main() {
// Create a graph with 3 vertices and 3 edges
int V = 3;
vector<vector<pair<int,int>>> adj(V);
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
cout << "Adjacency List Representation:" << endl;
displayAdjList(adj);
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
import java.util.AbstractMap.SimpleEntry;
// Function to add an edge between two vertices
class GfG {
static void addEdge(List<List<SimpleEntry<Integer, Integer>>> adj, int u, int v, int w) {
adj.get(u).add(new SimpleEntry<>(v, w));
}
static void displayAdjList(List<List<SimpleEntry<Integer, Integer>>> adj) {
for (int i = 0; i < adj.size(); i++) {
System.out.print(i + ": ");
for (SimpleEntry<Integer, Integer> j : adj.get(i)) {
System.out.print("{" + j.getKey() + ", " + j.getValue() + "} ");
}
System.out.println();
}
}
public static void main(String[] args) {
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<SimpleEntry<Integer, Integer>>> adj = new ArrayList<>();
for (int i = 0; i < V; i++) {
adj.add(new ArrayList<>());
}
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
System.out.println("Adjacency List Representation:");
displayAdjList(adj);
}
}
Python
# Function to add an edge between two vertices
def addEdge(adj, u, v, w):
adj[u].append((v, w))
def displayAdjList(adj):
for i in range(len(adj)):
print(f"{i}: ", end="")
for j in adj[i]:
print(f"{{{j[0]}, {j[1]}}} ", end="")
print()
def main():
# Create a graph with 3 vertices and 3 edges
V = 3
adj = [[] for _ in range(V)]
# Now add edges one by one
addEdge(adj, 1, 0, 4)
addEdge(adj, 1, 2, 3)
addEdge(adj, 2, 0, 1)
print("Adjacency List Representation:")
displayAdjList(adj)
if __name__ == "__main__":
main()
C#
using System;
using System.Collections.Generic;
// Function to add an edge between two vertices
class GfG
{
static void addEdge(List<List<KeyValuePair<int, int>>> adj, int u, int v, int w)
{
adj[u].Add(new KeyValuePair<int, int>(v, w));
}
static void displayAdjList(List<List<KeyValuePair<int, int>>> adj)
{
for (int i = 0; i < adj.Count; i++)
{
Console.Write(i + ": ");
foreach (var j in adj[i])
{
Console.Write("{" + j.Key + ", " + j.Value + "} ");
}
Console.WriteLine();
}
}
static void Main(string[] args)
{
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<KeyValuePair<int, int>>> adj = new List<List<KeyValuePair<int, int>>>();
for (int i = 0; i < V; i++)
{
adj.Add(new List<KeyValuePair<int, int>>());
}
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
Console.WriteLine("Adjacency List Representation:");
displayAdjList(adj);
}
}
JavaScript
// Function to add an edge between two vertices
function addEdge(adj, u, v, w) {
adj[u].push([v, w]);
}
function displayAdjList(adj) {
for (let i = 0; i < adj.length; i++) {
let line = i + ": ";
for (let j of adj[i]) {
line += `{${j[0]}, ${j[1]}} `;
}
console.log(line);
}
}
function main() {
// Create a graph with 3 vertices and 3 edges
let V = 3;
let adj = Array.from({ length: V }, () => []);
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
console.log("Adjacency List Representation:");
displayAdjList(adj);
}
main();
OutputAdjacency List Representation:
0:
1: {0, 4} {2, 3}
2: {0, 1}
4. Adjacency List for Undirected and Weighted graph:
Consider an Undirected and Weighted graph G with 3 vertices and 3 edges. For the graph G, the adjacency list would look like:
C++
#include <iostream>
#include <vector>
using namespace std;
// Function to add an edge between two vertices
void addEdge(vector<vector<pair<int,int>>>& adj, int u, int v, int w) {
adj[u].push_back({v,w});
adj[v].push_back({u,w});
}
// Function to display the adjacency list
void displayAdjList(vector<vector<pair<int,int>>>& adj) {
for (int i = 0; i < adj.size(); i++) {
cout << i << ": ";
for (auto &j : adj[i]) {
cout << "{"<<j.first << ", "<<j.second<<"} ";
}
cout << endl;
}
}
int main() {
// Create a graph with 3 vertices and 3 edges
int V = 3;
vector<vector<pair<int,int>>> adj(V);
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
cout << "Adjacency List Representation:" << endl;
displayAdjList(adj);
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
import java.util.AbstractMap.SimpleEntry;
// Function to add an edge between two vertices
class GfG {
static void addEdge(List<List<SimpleEntry<Integer, Integer>>> adj, int u, int v, int w) {
adj.get(u).add(new SimpleEntry<>(v, w));
adj.get(v).add(new SimpleEntry<>(u, w));
}
static void displayAdjList(List<List<SimpleEntry<Integer, Integer>>> adj) {
for (int i = 0; i < adj.size(); i++) {
System.out.print(i + ": ");
for (SimpleEntry<Integer, Integer> j : adj.get(i)) {
System.out.print("{" + j.getKey() + ", " + j.getValue() + "} ");
}
System.out.println();
}
}
public static void main(String[] args) {
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<SimpleEntry<Integer, Integer>>> adj = new ArrayList<>();
for (int i = 0; i < V; i++) {
adj.add(new ArrayList<>());
}
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
System.out.println("Adjacency List Representation:");
displayAdjList(adj);
}
}
Python
# Function to add an edge between two vertices
def addEdge(adj, u, v, w):
adj[u].append((v, w))
adj[v].append((u, w))
def displayAdjList(adj):
for i in range(len(adj)):
print(f"{i}: ", end="")
for j in adj[i]:
print(f"{{{j[0]}, {j[1]}}} ", end="")
print()
def main():
# Create a graph with 3 vertices and 3 edges
V = 3
adj = [[] for _ in range(V)]
# Now add edges one by one
addEdge(adj, 1, 0, 4)
addEdge(adj, 1, 2, 3)
addEdge(adj, 2, 0, 1)
print("Adjacency List Representation:")
displayAdjList(adj)
if __name__ == "__main__":
main()
C#
using System;
using System.Collections.Generic;
// Function to add an edge between two vertices
class GfG
{
static void addEdge(List<List<KeyValuePair<int, int>>> adj, int u, int v, int w)
{
adj[u].Add(new KeyValuePair<int, int>(v, w));
adj[v].Add(new KeyValuePair<int, int>(u, w));
}
static void displayAdjList(List<List<KeyValuePair<int, int>>> adj)
{
for (int i = 0; i < adj.Count; i++)
{
Console.Write(i + ": ");
foreach (var j in adj[i])
{
Console.Write("{" + j.Key + ", " + j.Value + "} ");
}
Console.WriteLine();
}
}
static void Main(string[] args)
{
// Create a graph with 3 vertices and 3 edges
int V = 3;
List<List<KeyValuePair<int, int>>> adj = new List<List<KeyValuePair<int, int>>>();
for (int i = 0; i < V; i++)
{
adj.Add(new List<KeyValuePair<int, int>>());
}
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
Console.WriteLine("Adjacency List Representation:");
displayAdjList(adj);
}
}
JavaScript
// Function to add an edge between two vertices
function addEdge(adj, u, v, w) {
adj[u].push([v, w]);
adj[v].push([u, w]);
}
function displayAdjList(adj) {
for (let i = 0; i < adj.length; i++) {
let line = i + ": ";
for (let j of adj[i]) {
line += `{${j[0]}, ${j[1]}} `;
}
console.log(line);
}
}
function main() {
// Create a graph with 3 vertices and 3 edges
let V = 3;
let adj = Array.from({ length: V }, () => []);
// Now add edges one by one
addEdge(adj, 1, 0, 4);
addEdge(adj, 1, 2, 3);
addEdge(adj, 2, 0, 1);
console.log("Adjacency List Representation:");
displayAdjList(adj);
}
main();
OutputAdjacency List Representation:
0: {1, 4} {2, 1}
1: {0, 4} {2, 3}
2: {1, 3} {0, 1}
Characteristics of the Adjacency List:
- An adjacency list representation uses a list of lists. We store all adjacent of every node together.
- The size of the list is determined by the number of vertices in the graph.
- All adjacent of a vertex are easily available. To find all adjacent, we need only O(n) time where is the number of adjacent vertices.
Applications of the Adjacency List:
Advantages of using an Adjacency list:
- An adjacency list is simple and easy to understand.
- Requires less space compared to adjacency matrix for sparse graphs.
- Easy to traverse through all edges of a graph.
- Adding an vertex is easier compared to adjacency matrix representation.
- Most of the graph algorithms are implemented faster with this representation. For example, BFS and DFS implementations take OIV x V) time, but with Adjacency List representation, we get these in linear time. Similarly Prim's and Dijskstra's algorithms are implemented faster with Adjacency List representation.
Disadvantages of using an Adjacency list:
- Checking if there is an edge between two vertices is costly as we have traverse the adjacency list.
- Not suitable for dense graphs.
What else can you read?
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms
DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Non-linear Components
In electrical circuits, Non-linear Components are electronic devices that need an external power source to operate actively. Non-Linear Components are those that are changed with respect to the voltage and current. Elements that do not follow ohm's law are called Non-linear Components. Non-linear Co
11 min read
Quick Sort
QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials
Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Bubble Sort Algorithm
Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph
Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Data Structures Tutorial
Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Binary Search Algorithm - Iterative and Recursive Implementation
Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm
Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all
Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read