Open In App

Divide first N natural numbers into 3 equal sum subsets

Last Updated : 28 Mar, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an integer N, the task is to check whether the elements from the range [1, N] can be divided into three non-empty equal sum subsets. If possible then print Yes else print No.

Examples: 

Input: N = 5 
Output: Yes 
The possible subsets are {1, 4}, {2, 3} and {5}. 
(1 + 4) = (2 + 3) = (5)

Input: N = 3 
Output: No 

Approach: There are two cases:  

  1. If N ? 3: In this case, it is not possible to divide the elements in the subsets that satisfy the given condition. So, print No.
  2. If N > 3: In this case, it is only possible when the sum of all the elements of the range [1, N] is divisible by 3 which can be easily calculated as sum = (N * (N + 1)) / 2. Now, if sum % 3 = 0 then print Yes else print No.

Below is the implementation of the above approach:  

C++
// C++ implementation of the approach
#include <iostream>
using namespace std;

// Function that returns true
// if the subsets are possible
bool possible(int n)
{

    // If n <= 3 then it is not possible
    // to divide the elements in three subsets
    // satisfying the given conditions
    if (n > 3) {

        // Sum of all the elements
        // in the range [1, n]
        int sum = (n * (n + 1)) / 2;

        // If the sum is divisible by 3
        // then it is possible
        if (sum % 3 == 0) {
            return true;
        }
    }
    return false;
}

// Driver code
int main()
{
    int n = 5;

    if (possible(n))
        cout << "Yes";
    else
        cout << "No";

    return 0;
}
Java
// Java implementation of the approach 
import java.math.*;

class GFG
{

    // Function that returns true 
    // if the subsets are possible 
    public static boolean possible(int n) 
    { 
    
        // If n <= 3 then it is not possible 
        // to divide the elements in three subsets 
        // satisfying the given conditions 
        if (n > 3) 
        { 
    
            // Sum of all the elements 
            // in the range [1, n] 
            int sum = (n * (n + 1)) / 2; 
    
            // If the sum is divisible by 3 
            // then it is possible 
            if (sum % 3 == 0) 
            { 
                return true; 
            } 
        } 
        return false; 
    } 

    // Driver code 
    public static void main(String[] args) 
    { 
        int n = 5; 

        if (possible(n)) 
            System.out.println("Yes"); 
        else
            System.out.println("No");
    }
}

// This code is contributed by Naman_Garg
Python3
# Python3 implementation of the approach 

# Function that returns true 
# if the subsets are possible 
def possible(n) : 

    # If n <= 3 then it is not possible 
    # to divide the elements in three subsets 
    # satisfying the given conditions 
    if (n > 3) :

        # Sum of all the elements 
        # in the range [1, n] 
        sum = (n * (n + 1)) // 2; 

        # If the sum is divisible by 3 
        # then it is possible 
        if (sum % 3 == 0) :
            return True; 
    
    return False; 

# Driver code 
if __name__ == "__main__" : 

    n = 5; 

    if (possible(n)) :
        print("Yes"); 
    else :
        print("No"); 
        
# This code is contributed by AnkitRai01
C#
// C# implementation of the approach 
using System;

class GFG
{
    
// Function that returns true 
// if the subsets are possible 
public static bool possible(int n) 
{ 

    // If n <= 3 then it is not possible 
    // to divide the elements in three subsets 
    // satisfying the given conditions 
    if (n > 3) 
    { 

        // Sum of all the elements 
        // in the range [1, n] 
        int sum = (n * (n + 1)) / 2; 

        // If the sum is divisible by 3 
        // then it is possible 
        if (sum % 3 == 0) 
        { 
            return true; 
        } 
    } 
    return false; 
} 

// Driver code 
static public void Main ()
{
    int n = 5; 

    if (possible(n)) 
        Console.Write("Yes"); 
    else
        Console.Write("No");
}
}

// This code is contributed by ajit
JavaScript
<script>

// Javascript implementation of the approach

// Function that returns true
// if the subsets are possible
function possible(n)
{
    
    // If n <= 3 then it is not possible
    // to divide the elements in three subsets
    // satisfying the given conditions
    if (n > 3)
    {
        
        // Sum of all the elements
        // in the range [1, n]
        let sum = parseInt((n * (n + 1)) / 2);

        // If the sum is divisible by 3
        // then it is possible
        if (sum % 3 == 0) 
        {
            return true;
        }
    }
    return false;
}

// Driver code
let n = 5;

if (possible(n))
    document.write("Yes");
else
    document.write("No");
    
// This code is contributed by rishavmahato348

</script>

Output: 
Yes

 

Time Complexity: O(1)

Auxiliary Space: O(1)


Next Article
Practice Tags :

Similar Reads