Open In App

Area of Triangle using Side-Angle-Side (length of two sides and the included angle)

Last Updated : 19 Dec, 2021
Comments
Improve
Suggest changes
Like Article
Like
Report

Given two integers A, B representing the length of two sides of a triangle and an integer K representing the angle between them in radian, the task is to calculate the area of the triangle from the given information.
Examples: 
 

Input: a = 9, b = 12, K = 2 
Output: 49.1 
Explanation: 
Area of triangle = 1 / 2 * (9 * 12 * Sin 2) = 35.12
Input: A = 2, B = 4, K = 1 
Output: 3.37 
 


Approach: 
Consider the following triangle ABC with sides A, B, C, and an angle K between sides A and B
 


Then, the area of the triangle can be calculated using the Side-Angle-Side formula: 
 

Area (ABC) = \frac{1}{2} \ A * B * sin(K)     
 


Below is the implementation of the above approach: 
 

C++
// C++ program to calculate 
// the area of a triangle when 
// the length of two adjacent 
// sides and the angle between 
// them is provided 
#include <bits/stdc++.h>
using namespace std;

float Area_of_Triangle(int a, int b, int k) 
{ 
    float area = (float)((1 / 2.0) * 
                          a * b * (sin(k))); 

    return area; 
} 

// Driver Code 
int main()
{ 
    int a = 9; 
    int b = 12; 
    int k = 2; 

    // Function Call 
    float ans = Area_of_Triangle(a, b, k); 

    // Print the final answer 
    cout << ans << endl;
} 

// This code is contributed by Ritik Bansal
Java
// Java program to calculate
// the area of a triangle when 
// the length of two adjacent 
// sides and the angle between
// them is provided
class GFG{

// Function to return the area of 
// triangle using Side-Angle-Side
// formula 
static float Area_of_Triangle(int a, int b,
                                     int k)
{
    float area = (float)((1 / 2.0) * 
                      a * b * Math.sin(k));

    return area;
}

// Driver Code 
public static void main(String[] args)
{
    int a = 9;
    int b = 12;
    int k = 2;

    // Function Call
    float ans = Area_of_Triangle(a, b, k);

    // Print the final answer
    System.out.printf("%.1f",ans);
}
}

// This code is contributed by sapnasingh4991
Python3
# Python3 program to calculate
# the area of a triangle when 
# the length of two adjacent 
# sides and the angle between
# them is provided

import math 

# Function to return the area of 
# triangle using Side-Angle-Side
# formula 
def Area_of_Triangle(a, b, k): 

    area =(1 / 2) * a * b * math.sin(k)

    return area 

# Driver Code 
a = 9
b = 12
k = 2

# Function Call 
ans = Area_of_Triangle(a, b, k) 

# Print the final answer 
print(round(ans, 2)) 
 
C#
// C# program to calculate
// the area of a triangle when 
// the length of two adjacent 
// sides and the angle between
// them is provided
using System;
class GFG{

// Function to return the area of 
// triangle using Side-Angle-Side
// formula 
static float Area_of_Triangle(int a, int b,
                                     int k)
{
    float area = (float)((1 / 2.0) * 
                  a * b * Math.Sin(k));

    return area;
}

// Driver Code 
public static void Main(String[] args)
{
    int a = 9;
    int b = 12;
    int k = 2;

    // Function Call
    float ans = Area_of_Triangle(a, b, k);

    // Print the readonly answer
    Console.Write("{0:F1}", ans);
}
}

// This code is contributed by sapnasingh4991
JavaScript
<script>
// javascript program to calculate
// the area of a triangle when 
// the length of two adjacent 
// sides and the angle between
// them is provided// Function to return the area of 
// triangle using Side-Angle-Side
// formula 

function Area_of_Triangle(a , b, k)
{
    var area = ((1 / 2.0) * 
                      a * b * Math.sin(k));

    return area;
}

// Driver Code 
var a = 9;
var b = 12;
var k = 2;

// Function Call
var ans = Area_of_Triangle(a, b, k);

// Print the final answer
document.write(ans.toFixed(1));

// This code is contributed by 29AjayKumar 
</script>

Output: 
49.1

 

Time Complexity: O(1) 
Auxiliary Space: O(1)
 


Similar Reads