Open In App

Find numbers with K odd divisors in a given range

Last Updated : 23 Jun, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given two numbers a and b, and a number k which is odd. The task is to find all the numbers between a and b (both inclusive) having exactly k divisors.
Examples: 
 

Input : a = 2, b = 49, k = 3
Output: 4
// Between 2 and 49 there are four numbers
// with three divisors
// 4 (Divisors 1, 2, 4), 9 (Divisors 1, 3, 9),
// 25 (Divisors 1, 5, 25} and 49 (1, 7 and 49)

Input : a = 1, b = 100, k = 9
Output: 2
// between 1 and 100 there are 36 (1, 2, 3, 4, 6, 9, 12, 18, 36)
// and 100 (1, 2, 4, 5, 10, 20, 25, 50, 100) having exactly 9 
// divisors


 


This problem has simple solution, here we are given that k is odd and we know that only perfect square numbers have odd number of divisors , so we just need to check all perfect square numbers between a and b, and calculate divisors of only those perfect square numbers. 
 

C++
// C++ program to count numbers with k odd
// divisors in a range.
#include<bits/stdc++.h>
using namespace std;

// Utility function to check if number is
// perfect square or not
bool isPerfect(int n)
{
    int s = sqrt(n);

    return (s*s == n);
}

// Utility Function to return count of divisors
// of a number
int divisorsCount(int n)
{
    // Note that this loop runs till square root
    int count=0;
    for (int i=1; i<=sqrt(n)+1; i++)
    {
        if (n%i==0)
        {
            // If divisors are equal, count it
            // only once
            if (n/i == i)
                count += 1;

            // Otherwise print both
            else
                count += 2;
        }
    }
    return count;
}

// Function to calculate all divisors having
// exactly k divisors  between a and b
int kDivisors(int a,int b,int k)
{
    int count = 0; // Initialize result

    // calculate only for perfect square numbers
    for (int i=a; i<=b; i++)
    {
        // check if number is perfect square or not
        if (isPerfect(i))

            // total divisors of number equals to
            // k or not
            if (divisors(i) == k)
                count++;

    }
    return count;
}

// Driver program to run the case
int main()
{
    int a = 2, b = 49, k = 3;
    cout << kDivisors(a, b, k);
    return 0;
}
Java
// Java program to count numbers
// with k odd divisors in a range.
import java.io.*;
import java.math.*;

class GFG {
    
    // Utility function to check if 
    // number is perfect square or not
    static boolean isPerfect(int n)
    {
        int s = (int)(Math.sqrt(n));
    
        return (s*s == n);
    }
    
    // Utility Function to return 
    // count of divisors of a number
    static int divisorsCount(int n)
    {
        // Note that this loop 
        // runs till square root
        int count=0;
        
      for (int i = 1; i <= Math.sqrt(n) + 1; i++)
      {
        if (n % i == 0)
        {
                
            // If divisors are equal,
            // count it only once
            if (n / i == i)
                count += 1;

            // Otherwise print both
            else
                count += 2;
        }
      }
        return count;
    }
    
    // Function to calculate all 
    // divisors having exactly k 
    // divisors between a and b
    static int kDivisors(int a,int b,int k)
    {
        // Initialize result
        int count = 0; 
    
        // calculate only for 
        // perfect square numbers
        for (int i = a; i <= b; i++)
        {
            // check if number is 
            // perfect square or not
            if (isPerfect(i))
    
                // total divisors of number
                // equals to k or not
                if (divisorsCount(i) == k)
                    count++;
    
        }
        return count;
    }
    
    // Driver program to run the case
    public static void main(String args[])
    {
        int a = 21, b = 149, k = 333;
        System.out.println(kDivisors(a, b, k));
    }
}

// This code is contributed by Nikita Tiwari.
Python3
# Python3 program to count numbers
# with k odd divisors in a range.
import math

# Utility function to check if number 
# is perfect square or not
def isPerfect(n) :
    s = math.sqrt(n)

    return (s * s == n)

# Utility Function to return 
# count of divisors of a number
def divisorsCount(n) :
    
    # Note that this loop runs till 
    # square root
    count = 0
    for i in range(1, (int)(math.sqrt(n) + 2)) :
        
        if (n % i == 0) :
            # If divisors are equal, 
            # count it only once
            if (n // i == i) :
                count = count + 1

            # Otherwise print both
            else :
                count = count + 2
        
    return count
    
# Function to calculate all divisors having
# exactly k divisors between a and b
def kDivisors(a, b, k) :
    count = 0 # Initialize result

    # calculate only for perfect square numbers
    for i in range(a, b + 1) :
        
        # check if number is perfect square or not
        if (isPerfect(i)) :
            # total divisors of number equals to
            # k or not
            if (divisorsCount(i) == k) :
                count = count + 1

    return count

# Driver program to run the case
a = 2
b = 49
k = 3
print(kDivisors(a, b, k))

# This code is contributed by Nikita Tiwari.
C#
// C# program to count numbers with
// k odd divisors in a range.
using System;

class GFG {
    
    // Utility function to check if number 
    // is perfect square or not
    static bool isPerfect(int n)
    {
        int s = (int)(Math.Sqrt(n));
    
        return (s * s == n);
    }
    
    // Utility Function to return 
    // count of divisors of a number
    static int divisorsCount(int n)
    {
        // Note that this loop 
        // runs till square root
        int count=0;
        
    for (int i = 1; i <= Math.Sqrt(n) + 1; i++)
    {
        if (n % i == 0)
        {
                
            // If divisors are equal,
            // count it only once
            if (n / i == i)
                count += 1;

            // Otherwise print both
            else
                count += 2;
        }
    }
        return count;
    }
    
    // Function to calculate all 
    // divisors having exactly k 
    // divisors between a and b
    static int kDivisors(int a, int b, 
                         int k)
    {
        // Initialize result
        int count = 0; 
    
        // calculate only for 
        // perfect square numbers
        for (int i = a; i <= b; i++)
        {
            // check if number is 
            // perfect square or not
            if (isPerfect(i))
    
                // total divisors of number
                // equals to k or not
                if (divisorsCount(i) == k)
                    count++;
    
        }
        return count;
    }
    
    // Driver Code
    public static void Main(String []args)
    {
        int a = 21, b = 149, k = 333;
        Console.Write(kDivisors(a, b, k));
    }
}

// This code is contributed by Nitin Mittal.
PHP
<?php
// PHP program to count numbers
// with k odd divisors in a range.

// function to check if number is
// perfect square or not
function isPerfect($n)
{
    $s = sqrt($n);
    return ($s * $s == $n);
}

// Function to return count
// of divisors of a number
function divisorsCount($n)
{
    
    // Note that this loop 
    // runs till square root
    $count = 0;
    for ($i = 1; $i <= sqrt($n) + 1; $i++)
    {
        if ($n % $i == 0)
        {
            
            // If divisors are equal,
            // count it only once
            if ($n / $i == $i)
                $count += 1;

            // Otherwise print both
            else
                $count += 2;
        }
    }
    return $count;
}

// Function to calculate 
// all divisors having
// exactly k divisors 
// between a and b
function kDivisors($a, $b, $k)
{   
    
    // Initialize result
    $count = 0; 

    // calculate only for 
    // perfect square numbers
    for ($i = $a; $i <= $b; $i++)
    {
        
        // check if number is 
        // perfect square or not
        if (isPerfect($i))

            // total divisors of 
            // number equals to
            // k or not
            if (divisorsCount($i) == $k)
                $count++;

    }
    return $count;
}

    // Driver Code
    $a = 2; 
    $b = 49; 
    $k = 3;
    echo kDivisors($a, $b, $k);
    
// This code is contributed by nitin mittal. 
?>
JavaScript
<script>

// JavaScript program to count numbers with
// k odd divisors in a range.

// Utility function to check if number 
// is perfect square or not
function isPerfect(n)
{
    var s = parseInt((Math.sqrt(n)));

    return (s * s == n);
}

// Utility Function to return 
// count of divisors of a number
function divisorsCount(n)
{
    // Note that this loop 
    // runs till square root
    var count=0;
    
for (var i = 1; i <= parseInt(Math.sqrt(n)) + 1; i++)
{

    if (n % i == 0)
    {
            
        // If divisors are equal,
        // count it only once
        if (parseInt(n / i) == i)
            count += 1;
        // Otherwise print both
        else
            count += 2;
    }
}

    return count;
}

// Function to calculate all 
// divisors having exactly k 
// divisors between a and b
function kDivisors(a, b, k)
{
    // Initialize result
    var count = 0; 

    // calculate only for 
    // perfect square numbers
    for(var i = a; i <= b; i++)
    {
        // check if number is 
        // perfect square or not
        if (isPerfect(i))
        {
            // total divisors of number
            // equals to k or not
            if (divisorsCount(i)==k)
            {
                count++;
            }
        }

    }
    return count;
}

// Driver Code
var a = 2, b = 49, k = 3;
document.write(kDivisors(a, b, k));

</script> 

Output:  

4

Time Complexity: O(nsqrtn) , where n is the range of a and b
Auxiliary Space: O(1)


This problem can be solved more efficiently. Please refer method 2 of below post for an efficient solution.
Number of perfect squares between two given numbers
 


Next Article
Article Tags :
Practice Tags :

Similar Reads