Ford-Fulkerson Algorithm for Maximum Flow Problem
Last Updated :
01 Jun, 2023
The Ford-Fulkerson algorithm is a widely used algorithm to solve the maximum flow problem in a flow network. The maximum flow problem involves determining the maximum amount of flow that can be sent from a source vertex to a sink vertex in a directed weighted graph, subject to capacity constraints on the edges.
The algorithm works by iteratively finding an augmenting path, which is a path from the source to the sink in the residual graph, i.e., the graph obtained by subtracting the current flow from the capacity of each edge. The algorithm then increases the flow along this path by the maximum possible amount, which is the minimum capacity of the edges along the path.
Problem:
Given a graph which represents a flow network where every edge has a capacity. Also, given two vertices source 's' and sink 't' in the graph, find the maximum possible flow from s to t with the following constraints:
- Flow on an edge doesn't exceed the given capacity of the edge.
- Incoming flow is equal to outgoing flow for every vertex except s and t.
For example, consider the following graph from the CLRS book.

The maximum possible flow in the above graph is 23.

Prerequisite : Max Flow Problem Introduction
Ford-Fulkerson Algorithm
The following is simple idea of Ford-Fulkerson algorithm:
- Start with initial flow as 0.
- While there exists an augmenting path from the source to the sink:
- Find an augmenting path using any path-finding algorithm, such as breadth-first search or depth-first search.
- Determine the amount of flow that can be sent along the augmenting path, which is the minimum residual capacity along the edges of the path.
- Increase the flow along the augmenting path by the determined amount.
- Return the maximum flow.
Time Complexity: Time complexity of the above algorithm is O(max_flow * E). We run a loop while there is an augmenting path. In worst case, we may add 1 unit flow in every iteration. Therefore the time complexity becomes O(max_flow * E).
How to implement the above simple algorithm?
Let us first define the concept of Residual Graph which is needed for understanding the implementation.
Residual Graph of a flow network is a graph which indicates additional possible flow. If there is a path from source to sink in residual graph, then it is possible to add flow. Every edge of a residual graph has a value called residual capacity which is equal to original capacity of the edge minus current flow. Residual capacity is basically the current capacity of the edge.
Let us now talk about implementation details. Residual capacity is 0 if there is no edge between two vertices of residual graph. We can initialize the residual graph as original graph as there is no initial flow and initially residual capacity is equal to original capacity. To find an augmenting path, we can either do a BFS or DFS of the residual graph. We have used BFS in below implementation. Using BFS, we can find out if there is a path from source to sink. BFS also builds parent[] array. Using the parent[] array, we traverse through the found path and find possible flow through this path by finding minimum residual capacity along the path. We later add the found path flow to overall flow.
The important thing is, we need to update residual capacities in the residual graph. We subtract path flow from all edges along the path and we add path flow along the reverse edges We need to add path flow along reverse edges because may later need to send flow in reverse direction (See following link for example).
https://www.geeksforgeeks.org/max-flow-problem-introduction/
Below is the implementation of Ford-Fulkerson algorithm. To keep things simple, graph is represented as a 2D matrix.
C++
// C++ program for implementation of Ford Fulkerson
// algorithm
#include <iostream>
#include <limits.h>
#include <queue>
#include <string.h>
using namespace std;
// Number of vertices in given graph
#define V 6
/* Returns true if there is a path from source 's' to sink
't' in residual graph. Also fills parent[] to store the
path */
bool bfs(int rGraph[V][V], int s, int t, int parent[])
{
// Create a visited array and mark all vertices as not
// visited
bool visited[V];
memset(visited, 0, sizeof(visited));
// Create a queue, enqueue source vertex and mark source
// vertex as visited
queue<int> q;
q.push(s);
visited[s] = true;
parent[s] = -1;
// Standard BFS Loop
while (!q.empty()) {
int u = q.front();
q.pop();
for (int v = 0; v < V; v++) {
if (visited[v] == false && rGraph[u][v] > 0) {
// If we find a connection to the sink node,
// then there is no point in BFS anymore We
// just have to set its parent and can return
// true
if (v == t) {
parent[v] = u;
return true;
}
q.push(v);
parent[v] = u;
visited[v] = true;
}
}
}
// We didn't reach sink in BFS starting from source, so
// return false
return false;
}
// Returns the maximum flow from s to t in the given graph
int fordFulkerson(int graph[V][V], int s, int t)
{
int u, v;
// Create a residual graph and fill the residual graph
// with given capacities in the original graph as
// residual capacities in residual graph
int rGraph[V]
[V]; // Residual graph where rGraph[i][j]
// indicates residual capacity of edge
// from i to j (if there is an edge. If
// rGraph[i][j] is 0, then there is not)
for (u = 0; u < V; u++)
for (v = 0; v < V; v++)
rGraph[u][v] = graph[u][v];
int parent[V]; // This array is filled by BFS and to
// store path
int max_flow = 0; // There is no flow initially
// Augment the flow while there is path from source to
// sink
while (bfs(rGraph, s, t, parent)) {
// Find minimum residual capacity of the edges along
// the path filled by BFS. Or we can say find the
// maximum flow through the path found.
int path_flow = INT_MAX;
for (v = t; v != s; v = parent[v]) {
u = parent[v];
path_flow = min(path_flow, rGraph[u][v]);
}
// update residual capacities of the edges and
// reverse edges along the path
for (v = t; v != s; v = parent[v]) {
u = parent[v];
rGraph[u][v] -= path_flow;
rGraph[v][u] += path_flow;
}
// Add path flow to overall flow
max_flow += path_flow;
}
// Return the overall flow
return max_flow;
}
// Driver program to test above functions
int main()
{
// Let us create a graph shown in the above example
int graph[V][V]
= { { 0, 16, 13, 0, 0, 0 }, { 0, 0, 10, 12, 0, 0 },
{ 0, 4, 0, 0, 14, 0 }, { 0, 0, 9, 0, 0, 20 },
{ 0, 0, 0, 7, 0, 4 }, { 0, 0, 0, 0, 0, 0 } };
cout << "The maximum possible flow is "
<< fordFulkerson(graph, 0, 5);
return 0;
}
Java
// Java program for implementation of Ford Fulkerson
// algorithm
import java.io.*;
import java.lang.*;
import java.util.*;
import java.util.LinkedList;
class MaxFlow {
static final int V = 6; // Number of vertices in graph
/* Returns true if there is a path from source 's' to
sink 't' in residual graph. Also fills parent[] to
store the path */
boolean bfs(int rGraph[][], int s, int t, int parent[])
{
// Create a visited array and mark all vertices as
// not visited
boolean visited[] = new boolean[V];
for (int i = 0; i < V; ++i)
visited[i] = false;
// Create a queue, enqueue source vertex and mark
// source vertex as visited
LinkedList<Integer> queue
= new LinkedList<Integer>();
queue.add(s);
visited[s] = true;
parent[s] = -1;
// Standard BFS Loop
while (queue.size() != 0) {
int u = queue.poll();
for (int v = 0; v < V; v++) {
if (visited[v] == false
&& rGraph[u][v] > 0) {
// If we find a connection to the sink
// node, then there is no point in BFS
// anymore We just have to set its parent
// and can return true
if (v == t) {
parent[v] = u;
return true;
}
queue.add(v);
parent[v] = u;
visited[v] = true;
}
}
}
// We didn't reach sink in BFS starting from source,
// so return false
return false;
}
// Returns the maximum flow from s to t in the given
// graph
int fordFulkerson(int graph[][], int s, int t)
{
int u, v;
// Create a residual graph and fill the residual
// graph with given capacities in the original graph
// as residual capacities in residual graph
// Residual graph where rGraph[i][j] indicates
// residual capacity of edge from i to j (if there
// is an edge. If rGraph[i][j] is 0, then there is
// not)
int rGraph[][] = new int[V][V];
for (u = 0; u < V; u++)
for (v = 0; v < V; v++)
rGraph[u][v] = graph[u][v];
// This array is filled by BFS and to store path
int parent[] = new int[V];
int max_flow = 0; // There is no flow initially
// Augment the flow while there is path from source
// to sink
while (bfs(rGraph, s, t, parent)) {
// Find minimum residual capacity of the edges
// along the path filled by BFS. Or we can say
// find the maximum flow through the path found.
int path_flow = Integer.MAX_VALUE;
for (v = t; v != s; v = parent[v]) {
u = parent[v];
path_flow
= Math.min(path_flow, rGraph[u][v]);
}
// update residual capacities of the edges and
// reverse edges along the path
for (v = t; v != s; v = parent[v]) {
u = parent[v];
rGraph[u][v] -= path_flow;
rGraph[v][u] += path_flow;
}
// Add path flow to overall flow
max_flow += path_flow;
}
// Return the overall flow
return max_flow;
}
// Driver program to test above functions
public static void main(String[] args)
throws java.lang.Exception
{
// Let us create a graph shown in the above example
int graph[][] = new int[][] {
{ 0, 16, 13, 0, 0, 0 }, { 0, 0, 10, 12, 0, 0 },
{ 0, 4, 0, 0, 14, 0 }, { 0, 0, 9, 0, 0, 20 },
{ 0, 0, 0, 7, 0, 4 }, { 0, 0, 0, 0, 0, 0 }
};
MaxFlow m = new MaxFlow();
System.out.println("The maximum possible flow is "
+ m.fordFulkerson(graph, 0, 5));
}
}
Python
# Python program for implementation
# of Ford Fulkerson algorithm
from collections import defaultdict
# This class represents a directed graph
# using adjacency matrix representation
class Graph:
def __init__(self, graph):
self.graph = graph # residual graph
self. ROW = len(graph)
# self.COL = len(gr[0])
'''Returns true if there is a path from source 's' to sink 't' in
residual graph. Also fills parent[] to store the path '''
def BFS(self, s, t, parent):
# Mark all the vertices as not visited
visited = [False]*(self.ROW)
# Create a queue for BFS
queue = []
# Mark the source node as visited and enqueue it
queue.append(s)
visited[s] = True
# Standard BFS Loop
while queue:
# Dequeue a vertex from queue and print it
u = queue.pop(0)
# Get all adjacent vertices of the dequeued vertex u
# If a adjacent has not been visited, then mark it
# visited and enqueue it
for ind, val in enumerate(self.graph[u]):
if visited[ind] == False and val > 0:
# If we find a connection to the sink node,
# then there is no point in BFS anymore
# We just have to set its parent and can return true
queue.append(ind)
visited[ind] = True
parent[ind] = u
if ind == t:
return True
# We didn't reach sink in BFS starting
# from source, so return false
return False
# Returns the maximum flow from s to t in the given graph
def FordFulkerson(self, source, sink):
# This array is filled by BFS and to store path
parent = [-1]*(self.ROW)
max_flow = 0 # There is no flow initially
# Augment the flow while there is path from source to sink
while self.BFS(source, sink, parent) :
# Find minimum residual capacity of the edges along the
# path filled by BFS. Or we can say find the maximum flow
# through the path found.
path_flow = float("Inf")
s = sink
while(s != source):
path_flow = min (path_flow, self.graph[parent[s]][s])
s = parent[s]
# Add path flow to overall flow
max_flow += path_flow
# update residual capacities of the edges and reverse edges
# along the path
v = sink
while(v != source):
u = parent[v]
self.graph[u][v] -= path_flow
self.graph[v][u] += path_flow
v = parent[v]
return max_flow
# Create a graph given in the above diagram
graph = [[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0]]
g = Graph(graph)
source = 0; sink = 5
print ("The maximum possible flow is %d " % g.FordFulkerson(source, sink))
# This code is contributed by Neelam Yadav
C#
// C# program for implementation
// of Ford Fulkerson algorithm
using System;
using System.Collections.Generic;
public class MaxFlow {
static readonly int V = 6; // Number of vertices in
// graph
/* Returns true if there is a path
from source 's' to sink 't' in residual
graph. Also fills parent[] to store the
path */
bool bfs(int[, ] rGraph, int s, int t, int[] parent)
{
// Create a visited array and mark
// all vertices as not visited
bool[] visited = new bool[V];
for (int i = 0; i < V; ++i)
visited[i] = false;
// Create a queue, enqueue source vertex and mark
// source vertex as visited
List<int> queue = new List<int>();
queue.Add(s);
visited[s] = true;
parent[s] = -1;
// Standard BFS Loop
while (queue.Count != 0) {
int u = queue[0];
queue.RemoveAt(0);
for (int v = 0; v < V; v++) {
if (visited[v] == false
&& rGraph[u, v] > 0) {
// If we find a connection to the sink
// node, then there is no point in BFS
// anymore We just have to set its parent
// and can return true
if (v == t) {
parent[v] = u;
return true;
}
queue.Add(v);
parent[v] = u;
visited[v] = true;
}
}
}
// We didn't reach sink in BFS starting from source,
// so return false
return false;
}
// Returns the maximum flow
// from s to t in the given graph
int fordFulkerson(int[, ] graph, int s, int t)
{
int u, v;
// Create a residual graph and fill
// the residual graph with given
// capacities in the original graph as
// residual capacities in residual graph
// Residual graph where rGraph[i,j]
// indicates residual capacity of
// edge from i to j (if there is an
// edge. If rGraph[i,j] is 0, then
// there is not)
int[, ] rGraph = new int[V, V];
for (u = 0; u < V; u++)
for (v = 0; v < V; v++)
rGraph[u, v] = graph[u, v];
// This array is filled by BFS and to store path
int[] parent = new int[V];
int max_flow = 0; // There is no flow initially
// Augment the flow while there is path from source
// to sink
while (bfs(rGraph, s, t, parent)) {
// Find minimum residual capacity of the edges
// along the path filled by BFS. Or we can say
// find the maximum flow through the path found.
int path_flow = int.MaxValue;
for (v = t; v != s; v = parent[v]) {
u = parent[v];
path_flow
= Math.Min(path_flow, rGraph[u, v]);
}
// update residual capacities of the edges and
// reverse edges along the path
for (v = t; v != s; v = parent[v]) {
u = parent[v];
rGraph[u, v] -= path_flow;
rGraph[v, u] += path_flow;
}
// Add path flow to overall flow
max_flow += path_flow;
}
// Return the overall flow
return max_flow;
}
// Driver code
public static void Main()
{
// Let us create a graph shown in the above example
int[, ] graph = new int[, ] {
{ 0, 16, 13, 0, 0, 0 }, { 0, 0, 10, 12, 0, 0 },
{ 0, 4, 0, 0, 14, 0 }, { 0, 0, 9, 0, 0, 20 },
{ 0, 0, 0, 7, 0, 4 }, { 0, 0, 0, 0, 0, 0 }
};
MaxFlow m = new MaxFlow();
Console.WriteLine("The maximum possible flow is "
+ m.fordFulkerson(graph, 0, 5));
}
}
/* This code contributed by PrinciRaj1992 */
JavaScript
<script>
// Javascript program for implementation of Ford
// Fulkerson algorithm
// Number of vertices in graph
let V = 6;
// Returns true if there is a path from source
// 's' to sink 't' in residual graph. Also
// fills parent[] to store the path
function bfs(rGraph, s, t, parent)
{
// Create a visited array and mark all
// vertices as not visited
let visited = new Array(V);
for(let i = 0; i < V; ++i)
visited[i] = false;
// Create a queue, enqueue source vertex
// and mark source vertex as visited
let queue = [];
queue.push(s);
visited[s] = true;
parent[s] = -1;
// Standard BFS Loop
while (queue.length != 0)
{
let u = queue.shift();
for(let v = 0; v < V; v++)
{
if (visited[v] == false &&
rGraph[u][v] > 0)
{
// If we find a connection to the sink
// node, then there is no point in BFS
// anymore We just have to set its parent
// and can return true
if (v == t)
{
parent[v] = u;
return true;
}
queue.push(v);
parent[v] = u;
visited[v] = true;
}
}
}
// We didn't reach sink in BFS starting
// from source, so return false
return false;
}
// Returns the maximum flow from s to t in
// the given graph
function fordFulkerson(graph, s, t)
{
let u, v;
// Create a residual graph and fill the
// residual graph with given capacities
// in the original graph as residual
// capacities in residual graph
// Residual graph where rGraph[i][j]
// indicates residual capacity of edge
// from i to j (if there is an edge.
// If rGraph[i][j] is 0, then there is
// not)
let rGraph = new Array(V);
for(u = 0; u < V; u++)
{
rGraph[u] = new Array(V);
for(v = 0; v < V; v++)
rGraph[u][v] = graph[u][v];
}
// This array is filled by BFS and to store path
let parent = new Array(V);
// There is no flow initially
let max_flow = 0;
// Augment the flow while there
// is path from source to sink
while (bfs(rGraph, s, t, parent))
{
// Find minimum residual capacity of the edges
// along the path filled by BFS. Or we can say
// find the maximum flow through the path found.
let path_flow = Number.MAX_VALUE;
for(v = t; v != s; v = parent[v])
{
u = parent[v];
path_flow = Math.min(path_flow,
rGraph[u][v]);
}
// Update residual capacities of the edges and
// reverse edges along the path
for(v = t; v != s; v = parent[v])
{
u = parent[v];
rGraph[u][v] -= path_flow;
rGraph[v][u] += path_flow;
}
// Add path flow to overall flow
max_flow += path_flow;
}
// Return the overall flow
return max_flow;
}
// Driver code
// Let us create a graph shown in the above example
let graph = [ [ 0, 16, 13, 0, 0, 0 ],
[ 0, 0, 10, 12, 0, 0 ],
[ 0, 4, 0, 0, 14, 0 ],
[ 0, 0, 9, 0, 0, 20 ],
[ 0, 0, 0, 7, 0, 4 ],
[ 0, 0, 0, 0, 0, 0 ] ];
document.write("The maximum possible flow is " +
fordFulkerson(graph, 0, 5));
// This code is contributed by avanitrachhadiya2155
</script>
OutputThe maximum possible flow is 23
Time Complexity : O(|V| * E^2) ,where E is the number of edges and V is the number of vertices.
Space Complexity :O(V) , as we created queue.
The above implementation of Ford Fulkerson Algorithm is called Edmonds-Karp Algorithm. The idea of Edmonds-Karp is to use BFS in Ford Fulkerson implementation as BFS always picks a path with minimum number of edges. When BFS is used, the worst case time complexity can be reduced to O(VE2). The above implementation uses adjacency matrix representation though where BFS takes O(V2) time, the time complexity of the above implementation is O(EV3) (Refer CLRS book for proof of time complexity)
This is an important problem as it arises in many practical situations. Examples include, maximizing the transportation with given traffic limits, maximizing packet flow in computer networks.
Dinc's Algorithm for Max-Flow.
Exercise:
Modify the above implementation so that it that runs in O(VE2) time.
Similar Reads
Graph Algorithms
Graph algorithms are methods used to manipulate and analyze graphs, solving various range of problems like finding the shortest path, cycles detection. If you are looking for difficulty-wise list of problems, please refer to Graph Data Structure.BasicsGraph and its representationsBFS and DFS Breadth
3 min read
Introduction to Graph Data Structure
Graph Data Structure is a non-linear data structure consisting of vertices and edges. It is useful in fields such as social network analysis, recommendation systems, and computer networks. In the field of sports data science, graph data structure can be used to analyze and understand the dynamics of
15+ min read
Graph and its representations
A Graph is a non-linear data structure consisting of vertices and edges. The vertices are sometimes also referred to as nodes and the edges are lines or arcs that connect any two nodes in the graph. More formally a Graph is composed of a set of vertices( V ) and a set of edges( E ). The graph is den
12 min read
Types of Graphs with Examples
A graph is a mathematical structure that represents relationships between objects by connecting a set of points. It is used to establish a pairwise relationship between elements in a given set. graphs are widely used in discrete mathematics, computer science, and network theory to represent relation
9 min read
Basic Properties of a Graph
A Graph is a non-linear data structure consisting of nodes and edges. The nodes are sometimes also referred to as vertices and the edges are lines or arcs that connect any two nodes in the graph. The basic properties of a graph include: Vertices (nodes): The points where edges meet in a graph are kn
4 min read
Applications, Advantages and Disadvantages of Graph
Graph is a non-linear data structure that contains nodes (vertices) and edges. A graph is a collection of set of vertices and edges (formed by connecting two vertices). A graph is defined as G = {V, E} where V is the set of vertices and E is the set of edges. Graphs can be used to model a wide varie
7 min read
Transpose graph
Transpose of a directed graph G is another directed graph on the same set of vertices with all of the edges reversed compared to the orientation of the corresponding edges in G. That is, if G contains an edge (u, v) then the converse/transpose/reverse of G contains an edge (v, u) and vice versa. Giv
9 min read
Difference Between Graph and Tree
Graphs and trees are two fundamental data structures used in computer science to represent relationships between objects. While they share some similarities, they also have distinct differences that make them suitable for different applications. Difference Between Graph and Tree What is Graph?A grap
2 min read
BFS and DFS on Graph
Breadth First Search or BFS for a Graph
Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Depth First Search or DFS for a Graph
In Depth First Search (or DFS) for a graph, we traverse all adjacent vertices one by one. When we traverse an adjacent vertex, we completely finish the traversal of all vertices reachable through that adjacent vertex. This is similar to a tree, where we first completely traverse the left subtree and
13 min read
Applications, Advantages and Disadvantages of Depth First Search (DFS)
Depth First Search is a widely used algorithm for traversing a graph. Here we have discussed some applications, advantages, and disadvantages of the algorithm. Applications of Depth First Search:1. Detecting cycle in a graph: A graph has a cycle if and only if we see a back edge during DFS. So we ca
4 min read
Applications, Advantages and Disadvantages of Breadth First Search (BFS)
We have earlier discussed Breadth First Traversal Algorithm for Graphs. Here in this article, we will see the applications, advantages, and disadvantages of the Breadth First Search. Applications of Breadth First Search: 1. Shortest Path and Minimum Spanning Tree for unweighted graph: In an unweight
4 min read
Iterative Depth First Traversal of Graph
Given a directed Graph, the task is to perform Depth First Search of the given graph.Note: Start DFS from node 0, and traverse the nodes in the same order as adjacency list.Note : There can be multiple DFS traversals of a graph according to the order in which we pick adjacent vertices. Here we pick
10 min read
BFS for Disconnected Graph
In the previous post, BFS only with a particular vertex is performed i.e. it is assumed that all vertices are reachable from the starting vertex. But in the case of a disconnected graph or any vertex that is unreachable from all vertex, the previous implementation will not give the desired output, s
14 min read
Transitive Closure of a Graph using DFS
Given a directed graph, find out if a vertex v is reachable from another vertex u for all vertex pairs (u, v) in the given graph. Here reachable means that there is a path from vertex u to v. The reach-ability matrix is called transitive closure of a graph. For example, consider below graph: GraphTr
8 min read
Difference between BFS and DFS
Breadth-First Search (BFS) and Depth-First Search (DFS) are two fundamental algorithms used for traversing or searching graphs and trees. This article covers the basic difference between Breadth-First Search and Depth-First Search.Difference between BFS and DFSParametersBFSDFSStands forBFS stands fo
2 min read
Cycle in a Graph
Detect Cycle in a Directed Graph
Given the number of vertices V and a list of directed edges, determine whether the graph contains a cycle or not.Examples: Input: V = 4, edges[][] = [[0, 1], [0, 2], [1, 2], [2, 0], [2, 3]]Cycle: 0 â 2 â 0 Output: trueExplanation: The diagram clearly shows a cycle 0 â 2 â 0 Input: V = 4, edges[][] =
15+ min read
Detect cycle in an undirected graph
Given an undirected graph, the task is to check if there is a cycle in the given graph.Examples:Input: V = 4, edges[][]= [[0, 1], [0, 2], [1, 2], [2, 3]]Undirected Graph with 4 vertices and 4 edgesOutput: trueExplanation: The diagram clearly shows a cycle 0 â 2 â 1 â 0Input: V = 4, edges[][] = [[0,
8 min read
Detect Cycle in a directed graph using colors
Given a directed graph represented by the number of vertices V and a list of directed edges, determine whether the graph contains a cycle.Your task is to implement a function that accepts V (number of vertices) and edges (an array of directed edges where each edge is a pair [u, v]), and returns true
9 min read
Detect a negative cycle in a Graph | (Bellman Ford)
Given a directed weighted graph, your task is to find whether the given graph contains any negative cycles that are reachable from the source vertex (e.g., node 0).Note: A negative-weight cycle is a cycle in a graph whose edges sum to a negative value.Example:Input: V = 4, edges[][] = [[0, 3, 6], [1
15+ min read
Cycles of length n in an undirected and connected graph
Given an undirected and connected graph and a number n, count the total number of simple cycles of length n in the graph. A simple cycle of length n is defined as a cycle that contains exactly n vertices and n edges. Note that for an undirected graph, each cycle should only be counted once, regardle
10 min read
Detecting negative cycle using Floyd Warshall
We are given a directed graph. We need compute whether the graph has negative cycle or not. A negative cycle is one in which the overall sum of the cycle comes negative. Negative weights are found in various applications of graphs. For example, instead of paying cost for a path, we may get some adva
12 min read
Clone a Directed Acyclic Graph
A directed acyclic graph (DAG) is a graph which doesn't contain a cycle and has directed edges. We are given a DAG, we need to clone it, i.e., create another graph that has copy of its vertices and edges connecting them. Examples: Input : 0 - - - > 1 - - - -> 4 | / \ ^ | / \ | | / \ | | / \ |
12 min read