Program to check Strong Number
Last Updated :
18 Dec, 2023
Strong Numbers are the numbers whose sum of factorial of digits is equal to the original number. Given a number, check if it is a Strong Number or not.
Examples:
Input : n = 145
Output : Yes
Sum of digit factorials = 1! + 4! + 5!
= 1 + 24 + 120
= 145
Input : n = 534
Output : No
1) Initialize sum of factorials as 0.
2) For every digit d, do following
a) Add d! to sum of factorials.
3) If sum factorials is same as given
number, return true.
4) Else return false.
An optimization is to precompute factorials of all numbers from 0 to 10.
C++
// C++ program to check if a number is
// strong or not.
#include <bits/stdc++.h>
using namespace std;
int f[10];
// Fills factorials of digits from 0 to 9.
void preCompute()
{
f[0] = f[1] = 1;
for (int i = 2; i<10; ++i)
f[i] = f[i-1] * i;
}
// Returns true if x is Strong
bool isStrong(int x)
{
int factSum = 0;
// Traverse through all digits of x.
int temp = x;
while (temp)
{
factSum += f[temp%10];
temp /= 10;
}
return (factSum == x);
}
// Driver code
int main()
{
preCompute();
int x = 145;
isStrong(x) ? cout << "Yes\n" : cout << "No\n";
x = 534;
isStrong(x) ? cout << "Yes\n" : cout << "No\n";
return 0;
}
Java
// Java program to check if
// a number is Strong or not
class CheckStrong
{
static int f[] = new int[10];
// Fills factorials of digits from 0 to 9.
static void preCompute()
{
f[0] = f[1] = 1;
for (int i = 2; i<10; ++i)
f[i] = f[i-1] * i;
}
// Returns true if x is Strong
static boolean isStrong(int x)
{
int factSum = 0;
// Traverse through all digits of x.
int temp = x;
while (temp>0)
{
factSum += f[temp%10];
temp /= 10;
}
return (factSum == x);
}
// main function
public static void main (String[] args)
{
// calling preCompute
preCompute();
// first pass
int x = 145;
if(isStrong(x))
{
System.out.println("Yes");
}
else
System.out.println("No");
// second pass
x = 534;
if(isStrong(x))
{
System.out.println("Yes");
}
else
System.out.println("No");
}
}
Python3
# Python program to check if a number is
# strong or not.
f = [None] * 10
# Fills factorials of digits from 0 to 9.
def preCompute() :
f[0] = f[1] = 1;
for i in range(2,10) :
f[i] = f[i-1] * i
# Returns true if x is Strong
def isStrong(x) :
factSum = 0
# Traverse through all digits of x.
temp = x
while (temp) :
factSum = factSum + f[temp % 10]
temp = temp // 10
return (factSum == x)
# Driver code
preCompute()
x = 145
if(isStrong(x) ) :
print ("Yes")
else :
print ("No")
x = 534
if(isStrong(x)) :
print ("Yes")
else:
print ("No")
# This code is contributed by Nikita Tiwari.
C#
// C# program to check if
// a number is Strong or not
using System;
class CheckStrong
{
static int []f = new int[10];
// Fills factorials of digits from 0 to 9.
static void preCompute()
{
f[0] = f[1] = 1;
for (int i = 2; i < 10; ++i)
f[i] = f[i - 1] * i;
}
// Returns true if x is Strong
static bool isStrong(int x)
{
int factSum = 0;
// Traverse through all digits of x.
int temp = x;
while (temp > 0)
{
factSum += f[temp % 10];
temp /= 10;
}
return (factSum == x);
}
// Driver Code
public static void Main ()
{
// calling preCompute
preCompute();
// first pass
int x = 145;
if(isStrong(x))
{
Console.WriteLine("Yes");
}
else
Console.WriteLine("No");
// second pass
x = 534;
if(isStrong(x))
{
Console.WriteLine("Yes");
}
else
Console.WriteLine("No");
}
}
// This code is contributed by Nitin Mittal.
JavaScript
<script>
// Javascript program to check if a number is
// strong or not.
let f = new Array(10);
// Fills factorials of digits from 0 to 9.
function preCompute()
{
f[0] = f[1] = 1;
for (let i = 2; i<10; ++i)
f[i] = f[i-1] * i;
}
// Returns true if x is Strong
function isStrong(x)
{
let factSum = 0;
// Traverse through all digits of x.
let temp = x;
while (temp)
{
factSum += f[temp%10];
temp = Math.floor(temp/10);
}
return (factSum == x);
}
// Driver code
preCompute();
let x = 145;
isStrong(x) ? document.write("Yes" + "<br>") :
document.write("No" + "<br>");
x = 534;
isStrong(x) ? document.write("Yes" + "<br>") :
document.write("No" + "<br>");
//This code is contributed by Mayank Tyagi
</script>
PHP
<?php
// PHP program to check if a number
// is strong or not.
$f[10] = array();
// Fills factorials of digits
// from 0 to 9.
function preCompute()
{
global $f;
$f[0] = $f[1] = 1;
for ($i = 2; $i < 10; ++$i)
$f[$i] = $f[$i - 1] * $i;
}
// Returns true if x is Strong
function isStrong($x)
{
global $f;
$factSum = 0;
// Traverse through all digits of x.
$temp = $x;
while ($temp)
{
$factSum += $f[$temp % 10];
$temp = (int)$temp / 10;
}
return ($factSum == $x);
}
// Driver code
preCompute();
$x = 145;
if(isStrong(!$x))
echo "Yes\n";
else
echo "No\n";
$x = 534;
if(isStrong($x))
echo "Yes\n";
else
echo "No\n";
// This code is contributed by jit_t
?>
Time Complexity: O(logn)
Auxiliary Space: O(1), since constant extra space has been taken.
Approach#2: Using Iterative Method
This approach converts the input number into a list of its digits. It then computes the factorial sum of each digit and adds them up. If the final sum is equal to the input number, it returns "Yes", otherwise it returns "No".
Algorithm
1. Define a function is_strong(n) that takes a number n as input.
2. Convert the number to a string and get its digits.
3. Calculate the factorial of each digit using an iterative method.
4. Sum the factorials of all digits.
5. If the sum is equal to the number n, return "Yes", otherwise return "No".
C++
// C++ code addition
#include <iostream>
#include <vector>
#include <string>
using namespace std;
string is_strong(int n) {
// Convert the number to an array of digits
vector<int> digits;
int temp = n;
// Loop through each digit
while (temp != 0) {
digits.insert(digits.begin(), temp % 10);
temp /= 10;
}
int factorial_sum = 0;
// Calculate the factorial of the digit
for (int d : digits) {
int f = 1;
for (int i = 1; i <= d; i++) {
f *= i;
}
// Add the factorial to the sum
factorial_sum += f;
}
// Check if the sum of factorials is equal to the original number
if (factorial_sum == n) {
return "Yes";
} else {
return "No";
}
}
int main() {
int n = 145;
cout << is_strong(n) << endl;
return 0;
}
// The code is contributed by Arushi Goel.
Java
import java.util.ArrayList;
public class Main {
// Function to check if a number is a strong number
static String isStrong(int n)
{
// Convert the number to an array of digits
ArrayList<Integer> digits = new ArrayList<>();
int temp = n;
// Loop through each digit
while (temp != 0) {
digits.add(0, temp % 10);
temp /= 10;
}
int factorialSum = 0;
// Calculate the factorial of each digit and add to
// the sum
for (int d : digits) {
int f = 1;
for (int i = 1; i <= d; i++) {
f *= i;
}
factorialSum += f;
}
// Check if the sum of factorials is equal to the
// original number
if (factorialSum == n) {
return "Yes";
}
else {
return "No";
}
}
// Driver's code
public static void main(String[] args)
{
// Test case
int n = 145;
// Displaying whether the number is strong or not
System.out.println(isStrong(n));
}
}
Python3
def is_strong(n):
digits = [int(d) for d in str(n)]
factorial_sum = 0
for d in digits:
f = 1
for i in range(1, d+1):
f *= i
factorial_sum += f
if factorial_sum == n:
return "Yes"
else:
return "No"
n=145
print(is_strong(n))
C#
using System;
class Program
{
static string IsStrong(int n)
{
// Convert the number to an array of digits
char[] digits = n.ToString().ToCharArray();
int factorialSum = 0;
// Loop through each digit
foreach (char digit in digits)
{
int d = int.Parse(digit.ToString());
int f = 1;
// Calculate the factorial of the digit
for (int i = 1; i <= d; i++)
{
f *= i;
}
// Add the factorial to the sum
factorialSum += f;
}
// Check if the sum of factorials is equal to the original number
return (factorialSum == n) ? "Yes" : "No";
}
static void Main()
{
int n = 145;
Console.WriteLine(IsStrong(n));
}
}
JavaScript
// Function to check if a number is a strong number
function is_strong(n) {
// Convert the number to an array of digits
let digits = Array.from(String(n), Number);
let factorial_sum = 0;
// Loop through each digit
for (let d of digits) {
let f = 1;
// Calculate the factorial of the digit
for (let i = 1; i <= d; i++) {
f *= i;
}
// Add the factorial to the sum
factorial_sum += f;
}
// Check if the sum of factorials is equal to the original number
if (factorial_sum == n) {
return "Yes";
} else {
return "No";
}
}
let n = 145;
console.log(is_strong(n));
Time Complexity: O(kn^2), where k is the number of digits in the number and n is the maximum value of a digit
Auxiliary Space: O(k), where k is the number of digits in the number.
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read