Python | Lemmatization with NLTK
Last Updated :
02 Jan, 2024
Lemmatization is a fundamental text pre-processing technique widely applied in natural language processing (NLP) and machine learning. Serving a purpose akin to stemming, lemmatization seeks to distill words to their foundational forms. In this linguistic refinement, the resultant base word is referred to as a "lemma." The article aims to explore the use of lemmatization and demonstrates how to perform lemmatization with NLTK.
Lemmatization
Lemmatization is the process of grouping together the different inflected forms of a word so they can be analyzed as a single item. Lemmatization is similar to stemming but it brings context to the words. So, it links words with similar meanings to one word.
Text preprocessing includes both Stemming as well as lemmatization. Many times, people find these two terms confusing. Some treat these two as the same. Lemmatization is preferred over Stemming because lemmatization does morphological analysis of the words.
Examples of lemmatization:
-> rocks : rock
-> corpora : corpus
-> better : good
One major difference with stemming is that lemmatize takes a part of speech parameter, "pos" If not supplied, the default is "noun."
Lemmatization Techniques
Lemmatization techniques in natural language processing (NLP) involve methods to identify and transform words into their base or root forms, known as lemmas. These approaches contribute to text normalization, facilitating more accurate language analysis and processing in various NLP applications. Three types of lemmatization techniques are:
1. Rule Based Lemmatization
Rule-based lemmatization involves the application of predefined rules to derive the base or root form of a word. Unlike machine learning-based approaches, which learn from data, rule-based lemmatization relies on linguistic rules and patterns.
Here's a simplified example of rule-based lemmatization for English verbs:
Rule: For regular verbs ending in "-ed," remove the "-ed" suffix.
Example:
- Word: "walked"
- Rule Application: Remove "-ed"
- Result: "walk
This approach extends to other verb conjugations, providing a systematic way to obtain lemmas for regular verbs. While rule-based lemmatization may not cover all linguistic nuances, it serves as a transparent and interpretable method for deriving base forms in many cases.
2. Dictionary-Based Lemmatization
Dictionary-based lemmatization relies on predefined dictionaries or lookup tables to map words to their corresponding base forms or lemmas. Each word is matched against the dictionary entries to find its lemma. This method is effective for languages with well-defined rules.
Suppose we have a dictionary with lemmatized forms for some words:
- 'running' -> 'run'
- 'better' -> 'good'
- 'went' -> 'go'
When we apply dictionary-based lemmatization to a text like "I was running to become a better athlete, and then I went home," the resulting lemmatized form would be: "I was run to become a good athlete, and then I go home."
3. Machine Learning-Based Lemmatization
Machine learning-based lemmatization leverages computational models to automatically learn the relationships between words and their base forms. Unlike rule-based or dictionary-based approaches, machine learning models, such as neural networks or statistical models, are trained on large text datasets to generalize patterns in language.
Example:
Consider a machine learning-based lemmatizer trained on diverse texts. When encountering the word 'went,' the model, having learned patterns, predicts the base form as 'go.' Similarly, for 'happier,' the model deduces 'happy' as the lemma. The advantage lies in the model's ability to adapt to varied linguistic nuances and handle irregularities, making it robust for lemmatizing diverse vocabularies.
Implementation of Lemmatization
NLTK
Below is the implementation of lemmatization words using NLTK
Python3
# import these modules
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print("rocks :", lemmatizer.lemmatize("rocks"))
print("corpora :", lemmatizer.lemmatize("corpora"))
# a denotes adjective in "pos"
print("better :", lemmatizer.lemmatize("better", pos="a"))
Output:
rocks : rock
corpora : corpus
better : good
NLTK (Natural Language Toolkit) is a Python library used for natural language processing. One of its modules is the WordNet Lemmatizer, which can be used to perform lemmatization on words.
Lemmatization is the process of reducing a word to its base or dictionary form, known as the lemma. For example, the lemma of the word "cats" is "cat", and the lemma of "running" is "run".
Spacy
Python3
import spacy
# Load the spaCy English model
nlp = spacy.load('en_core_web_sm')
# Define a sample text
text = "The quick brown foxes are jumping over the lazy dogs."
# Process the text using spaCy
doc = nlp(text)
# Extract lemmatized tokens
lemmatized_tokens = [token.lemma_ for token in doc]
# Join the lemmatized tokens into a sentence
lemmatized_text = ' '.join(lemmatized_tokens)
# Print the original and lemmatized text
print("Original Text:", text)
print("Lemmatized Text:", lemmatized_text)
Output:
Original Text: The quick brown foxes are jumping over the lazy dogs.
Lemmatized Text: the quick brown fox be jump over the lazy dog .
Advantages of Lemmatization with NLTK
- Improves text analysis accuracy: Lemmatization helps in improving the accuracy of text analysis by reducing words to their base or dictionary form. This makes it easier to identify and analyze words that have similar meanings.
- Reduces data size: Since lemmatization reduces words to their base form, it helps in reducing the data size of the text, which makes it easier to handle large datasets.
- Better search results: Lemmatization helps in retrieving better search results since it reduces different forms of a word to a common base form, making it easier to match different forms of a word in the text.
Disadvantages of Lemmatization with NLTK
- Time-consuming: Lemmatization can be time-consuming since it involves parsing the text and performing a lookup in a dictionary or a database of word forms.
- Not suitable for real-time applications: Since lemmatization is time-consuming, it may not be suitable for real-time applications that require quick response times.
- May lead to ambiguity: Lemmatization may lead to ambiguity, as a single word may have multiple meanings depending on the context in which it is used. In such cases, the lemmatizer may not be able to determine the correct meaning of the word.
Also Check:
Similar Reads
Natural Language Processing (NLP) Tutorial Natural Language Processing (NLP) is a branch of Artificial Intelligence (AI) that helps machines to understand and process human languages either in text or audio form. It is used across a variety of applications from speech recognition to language translation and text summarization.Natural Languag
5 min read
Introduction to NLP
Natural Language Processing (NLP) - OverviewNatural Language Processing (NLP) is a field that combines computer science, artificial intelligence and language studies. It helps computers understand, process and create human language in a way that makes sense and is useful. With the growing amount of text data from social media, websites and ot
9 min read
NLP vs NLU vs NLGNatural Language Processing(NLP) is a subset of Artificial intelligence which involves communication between a human and a machine using a natural language than a coded or byte language. It provides the ability to give instructions to machines in a more easy and efficient manner. Natural Language Un
3 min read
Applications of NLPAmong the thousands and thousands of species in this world, solely homo sapiens are successful in spoken language. From cave drawings to internet communication, we have come a lengthy way! As we are progressing in the direction of Artificial Intelligence, it only appears logical to impart the bots t
6 min read
Why is NLP important?Natural language processing (NLP) is vital in efficiently and comprehensively analyzing text and speech data. It can navigate the variations in dialects, slang, and grammatical inconsistencies typical of everyday conversations. Table of Content Understanding Natural Language ProcessingReasons Why NL
6 min read
Phases of Natural Language Processing (NLP)Natural Language Processing (NLP) helps computers to understand, analyze and interact with human language. It involves a series of phases that work together to process language and each phase helps in understanding structure and meaning of human language. In this article, we will understand these ph
7 min read
The Future of Natural Language Processing: Trends and InnovationsThere are no reasons why today's world is thrilled to see innovations like ChatGPT and GPT/ NLP(Natural Language Processing) deployments, which is known as the defining moment of the history of technology where we can finally create a machine that can mimic human reaction. If someone would have told
7 min read
Libraries for NLP
NLTK - NLPNatural Language Toolkit (NLTK) is one of the largest Python libraries for performing various Natural Language Processing tasks. From rudimentary tasks such as text pre-processing to tasks like vectorized representation of text - NLTK's API has covered everything. In this article, we will accustom o
5 min read
Tokenization Using SpacyBefore we get into tokenization, let's first take a look at what spaCy is. spaCy is a popular library used in Natural Language Processing (NLP). It's an object-oriented library that helps with processing and analyzing text. We can use spaCy to clean and prepare text, break it into sentences and word
3 min read
Python | Tokenize text using TextBlobTokenization is a fundamental task in Natural Language Processing that breaks down a text into smaller units such as words or sentences which is used in tasks like text classification, sentiment analysis and named entity recognition. TextBlob is a python library for processing textual data and simpl
3 min read
Hugging Face Transformers IntroductionHugging Face is an online community where people can team up, explore, and work together on machine-learning projects. Hugging Face Hub is a cool place with over 350,000 models, 75,000 datasets, and 150,000 demo apps, all free and open to everyone. In this article we are going to understand a brief
10 min read
NLP Gensim Tutorial - Complete Guide For BeginnersThis tutorial is going to provide you with a walk-through of the Gensim library.Gensim : It is an open source library in python written by Radim Rehurek which is used in unsupervised topic modelling and natural language processing. It is designed to extract semantic topics from documents. It can han
14 min read
NLP Libraries in PythonIn today's AI-driven world, text analysis is fundamental for extracting valuable insights from massive volumes of textual data. Whether analyzing customer feedback, understanding social media sentiments, or extracting knowledge from articles, text analysis Python libraries are indispensable for data
15+ min read
Text Normalization in NLP
Normalizing Textual Data with PythonIn this article, we will learn How to Normalizing Textual Data with Python. Let's discuss some concepts : Textual data ask systematically collected material consisting of written, printed, or electronically published words, typically either purposefully written or transcribed from speech.Text normal
7 min read
Regex Tutorial - How to write Regular Expressions?A regular expression (regex) is a sequence of characters that define a search pattern. Here's how to write regular expressions: Start by understanding the special characters used in regex, such as ".", "*", "+", "?", and more.Choose a programming language or tool that supports regex, such as Python,
6 min read
Tokenization in NLPTokenization is a fundamental step in Natural Language Processing (NLP). It involves dividing a Textual input into smaller units known as tokens. These tokens can be in the form of words, characters, sub-words, or sentences. It helps in improving interpretability of text by different models. Let's u
8 min read
Python | Lemmatization with NLTKLemmatization is a fundamental text pre-processing technique widely applied in natural language processing (NLP) and machine learning. Serving a purpose akin to stemming, lemmatization seeks to distill words to their foundational forms. In this linguistic refinement, the resultant base word is refer
6 min read
Introduction to StemmingStemming is a method in text processing that eliminates prefixes and suffixes from words, transforming them into their fundamental or root form, The main objective of stemming is to streamline and standardize words, enhancing the effectiveness of the natural language processing tasks. The article ex
8 min read
Removing stop words with NLTK in PythonIn natural language processing (NLP), stopwords are frequently filtered out to enhance text analysis and computational efficiency. Eliminating stopwords can improve the accuracy and relevance of NLP tasks by drawing attention to the more important words, or content words. The article aims to explore
9 min read
POS(Parts-Of-Speech) Tagging in NLPOne of the core tasks in Natural Language Processing (NLP) is Parts of Speech (PoS) tagging, which is giving each word in a text a grammatical category, such as nouns, verbs, adjectives, and adverbs. Through improved comprehension of phrase structure and semantics, this technique makes it possible f
11 min read
Text Representation and Embedding Techniques
One-Hot Encoding in NLPNatural Language Processing (NLP) is a quickly expanding discipline that works with computer-human language exchanges. One of the most basic jobs in NLP is to represent text data numerically so that machine learning algorithms can comprehend it. One common method for accomplishing this is one-hot en
9 min read
Bag of words (BoW) model in NLPIn this article, we are going to discuss a Natural Language Processing technique of text modeling known as Bag of Words model. Whenever we apply any algorithm in NLP, it works on numbers. We cannot directly feed our text into that algorithm. Hence, Bag of Words model is used to preprocess the text b
4 min read
Understanding TF-IDF (Term Frequency-Inverse Document Frequency)TF-IDF (Term Frequency-Inverse Document Frequency) is a statistical measure used in natural language processing and information retrieval to evaluate the importance of a word in a document relative to a collection of documents (corpus). Unlike simple word frequency, TF-IDF balances common and rare w
6 min read
N-Gram Language Modelling with NLTKLanguage modeling is the way of determining the probability of any sequence of words. Language modeling is used in various applications such as Speech Recognition, Spam filtering, etc. Language modeling is the key aim behind implementing many state-of-the-art Natural Language Processing models.Metho
5 min read
Word Embedding using Word2VecWord Embedding is a language modelling technique that maps words to vectors (numbers). It represents words or phrases in vector space with several dimensions. Various methods such as neural networks, co-occurrence matrices and probabilistic models can generate word embeddings.. Word2Vec is also a me
6 min read
Pre-trained Word embedding using Glove in NLP modelsIn modern Natural Language Processing (NLP), understanding and processing human language in a machine-readable format is essential. Since machines interpret numbers, it's important to convert textual data into numerical form. One of the most effective and widely used approaches to achieve this is th
7 min read
Overview of Word Embedding using Embeddings from Language Models (ELMo)What is word embeddings? It is the representation of words into vectors. These vectors capture important information about the words such that the words sharing the same neighborhood in the vector space represent similar meaning. There are various methods for creating word embeddings, for example, W
2 min read
NLP Deep Learning Techniques
NLP Projects and Practice
Sentiment Analysis with an Recurrent Neural Networks (RNN)Recurrent Neural Networks (RNNs) are used in sequence tasks such as sentiment analysis due to their ability to capture context from sequential data. In this article we will be apply RNNs to analyze the sentiment of customer reviews from Swiggy food delivery platform. The goal is to classify reviews
5 min read
Text Generation using Recurrent Long Short Term Memory NetworkLSTMs are a type of neural network that are well-suited for tasks involving sequential data such as text generation. They are particularly useful because they can remember long-term dependencies in the data which is crucial when dealing with text that often has context that spans over multiple words
4 min read
Machine Translation with Transformer in PythonMachine translation means converting text from one language into another. Tools like Google Translate use this technology. Many translation systems use transformer models which are good at understanding the meaning of sentences. In this article, we will see how to fine-tune a Transformer model from
6 min read
Building a Rule-Based Chatbot with Natural Language ProcessingA rule-based chatbot follows a set of predefined rules or patterns to match user input and generate an appropriate response. The chatbot canât understand or process input beyond these rules and relies on exact matches making it ideal for handling repetitive tasks or specific queries.Pattern Matching
4 min read
Text Classification using scikit-learn in NLPThe purpose of text classification, a key task in natural language processing (NLP), is to categorise text content into preset groups. Topic categorization, sentiment analysis, and spam detection can all benefit from this. In this article, we will use scikit-learn, a Python machine learning toolkit,
5 min read
Text Summarizations using HuggingFace ModelText summarization is a crucial task in natural language processing (NLP) that involves generating concise and coherent summaries from longer text documents. This task has numerous applications, such as creating summaries for news articles, research papers, and long-form content, making it easier fo
5 min read
Advanced Natural Language Processing Interview QuestionNatural Language Processing (NLP) is a rapidly evolving field at the intersection of computer science and linguistics. As companies increasingly leverage NLP technologies, the demand for skilled professionals in this area has surged. Whether preparing for a job interview or looking to brush up on yo
9 min read