Open In App

Range Query on array whose each element is XOR of index value and previous element

Last Updated : 20 Apr, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Consider an arr[] which can be defined as: 


You are given Q queries of the form [l, r]. The task is to output the value of arr[l] ? arr[l+1] ? ..... ? arr[r-1] ? arr[r] for each query.

Examples : 

Input : q = 3
        q1 = { 2, 4 }
        q2 = { 2, 8 }
        q3 = { 5, 9 }
Output : 7
         9
         15

The beginning of the array with constraint look like: 
arr[] = { 0, 1, 3, 0, 4, 1, 7, 0, 8, 1, 11, .... }
For q1, 3 ? 0 ? 4 = 7
For q2, 3 ? 0 ? 4 ? 1 ? 7 ? 0 ? 8 = 9
For q3, 1 ? 7 ? 0 ? 8 ? 1 = 15

Let's observe arr[] 

arr[0] = 0
arr[1] = 1
arr[2] = 1 ? 2
arr[3] = 1 ? 2 ? 3
arr[4] = 1 ? 2 ? 3 ? 4
arr[5] = 1 ? 2 ? 3 ? 4 ? 5
....

Let's make another array, say brr[], where brr[i] = arr[0] ? arr[1] ? arr[2] ? ..... ? arr[i]. 
brr[i] = arr[0] ? arr[1] ? arr[2] ? ... ? arr[i-1] ? arr[i] = brr[j] ? arr[j+1] ? arr[j+2] ? ..... ? arr[i], for any 0 <= j <= i. 
So, arr[l] ? arr[l+1] ? ..... ? arr[r] = brr[l-1] ? brr[r].

Now, let's observe brr[]: 

brr[1] = 1
brr[2] = 2
brr[3] = 1 ? 3
brr[4] = 2 ? 4
brr[5] = 1 ? 3 ? 5
brr[6] = 2 ? 4 ? 6
brr[7] = 1 ? 3 ? 5 ? 7
brr[8] = 2 ? 4 ? 6 ? 8

It's easy to observe that in odd indexes brr[i] = 1 ? 3 ? 5 ? .... ? i and for even indexes brr[i] = 2 ? 4 ? 6 ? .... ? i.
For even indexes there are numbers from 1 to i/2 multipliedby 2, that means bits are moved to left by 1, so, brr[i] = 2 ? 4 ? 6 ? .... ? i = (1 ? 2 ? 3 ? ..... ? i/2) * 2. 
And for odd indexes there are numbers from 0 to (i - 1)/2 multiplied by 2 and plus 1. That means bits are moved to left by 1, and last bit is made 1. So, brr[i] = 1 ? 3 ? 5 ? .... ? i = (0 ? 1 ? 2 ? .... ? (i - 1)/2) * 2 + x. 
x is 1 ? 1 ? 1 ? ..... ? 1 "ones" are repeated (i - 1)/2 + 1 times. So, if (i-1)/2 + 1 is odd then x = 1 else x = 0.
Now, calculation of 1 ? 2 ? 3 ? .... ? x. 

Let's prove that (4K) ? (4K + 1) ? (4K + 2) ? (4K + 3) = 0 for 0 <= k. 

                 bitmask(K)00=4K
      xorsum     bitmask(K)01=4K+1
                 bitmask(K)10=4K+2
                 bitmask(K)11=4k+3
               ---------------------
                  000000000000=0

So as 0 ? Y = Y then 1 ? 2 ? 3 ? ... ? x = (floor(x/4) x 4) ? ... ? x here are maximum 3 numbers so we can calculate in O(1).

Below is the implementation of this approach:

C++
// CPP Program to solve range query on array
// whose each element is XOR of index value
// and previous element.
#include <bits/stdc++.h>
using namespace std;

// function return derived formula value.
int fun(int x)
{
    int y = (x / 4) * 4;

    // finding xor value of range [y...x]
    int ans = 0;
    for (int i = y; i <= x; i++)
        ans ^= i;

    return ans;
}

// function to solve query for l and r.
int query(int x)
{
    // if l or r is 0.
    if (x == 0)
        return 0;

    int k = (x + 1) / 2;

    // finding x is divisible by 2 or not.
    return (x %= 2) ? 2 * fun(k) : ((fun(k - 1) * 2) ^ (k & 1));
}

void allQueries(int q, int l[], int r[])
{
    for (int i = 0; i < q; i++)
        cout << (query(r[i]) ^ query(l[i] - 1)) << endl;
}

// Driven Program
int main()
{
    int q = 3;
    int l[] = { 2, 2, 5 };
    int r[] = { 4, 8, 9 };

    allQueries(q, l, r);
    return 0;
}
Java
// Java Program to solve range query on array
// whose each element is XOR of index value
// and previous element.

import java.io.*;

class GFG {
    
    // function return derived formula value.
    static int fun(int x)
    {
        int y = (x / 4) * 4;
    
        // finding xor value of range [y...x]
        int ans = 0;
        
        for (int i = y; i <= x; i++)
            ans ^= i;
    
        return ans;
    }
    
    // function to solve query for l and r.
    static int query(int x)
    {
        
        // if l or r is 0.
        if (x == 0)
            return 0;
    
        int k = (x + 1) / 2;
    
        // finding x is divisible by 2 or not.
        return ((x %= 2) != 0) ? 2 * fun(k) : 
                   ((fun(k - 1) * 2) ^ (k & 1));
    }
    
    static void allQueries(int q, int l[], int r[])
    {
        for (int i = 0; i < q; i++)
            System.out.println((query(r[i]) ^ 
                               query(l[i] - 1))) ;
    }
    
    // Driven Program
    public static void main (String[] args) {
        
        int q = 3;
        int []l = { 2, 2, 5 };
        int []r = { 4, 8, 9 };
    
        allQueries(q, l, r);
        
    }
}

// This code is contributed by vt_m.
Python3
# Python3 Program to solve range query 
# on array whose each element is XOR of 
# index value and previous element. 

# function return derived formula value. 
def fun(x):
    y = (x // 4) * 4
    
    # finding xor value of range [y...x] 
    ans = 0
    for i in range(y, x + 1):
        ans ^= i 
    return ans

# function to solve query for l and r. 
def query(x):
    
    # if l or r is 0. 
    if (x == 0): 
        return 0

    k = (x + 1) // 2

    # finding x is divisible by 2 or not. 
    if x % 2 == 0:
        return((fun(k - 1) * 2) ^ (k & 1))
    else:
        return(2 * fun(k))

def allQueries(q, l, r): 
    for i in range(q):
        print(query(r[i]) ^ query(l[i] - 1))
        
# Driver Code
q = 3
l = [ 2, 2, 5 ] 
r = [ 4, 8, 9 ] 

allQueries(q, l, r) 

# This code is contributed 
# by sahishelangia
C#
// C# Program to solve range query on array
// whose each element is XOR of index value
// and previous element.
using System;

class GFG {
    

    // function return derived formula value.
    static int fun(int x)
    {
        int y = (x / 4) * 4;
    
        // finding xor value of range [y...x]
        int ans = 0;
        for (int i = y; i <= x; i++)
            ans ^= i;
    
        return ans;
    }
    
    // function to solve query for l and r.
    static int query(int x)
    {
        // if l or r is 0.
        if (x == 0)
            return 0;
    
        int k = (x + 1) / 2;
    
        // finding x is divisible by 2 or not.
        return ((x %= 2)!=0) ? 2 * fun(k) : 
                   ((fun(k - 1) * 2) ^ (k & 1));
    }
    
    static void allQueries(int q, int []l, int []r)
    {
        for (int i = 0; i < q; i++)
            Console.WriteLine((query(r[i]) 
                              ^ query(l[i] - 1))) ;
    }
    
    // Driven Program
    public static void Main ()
    {
        int q = 3;
        int []l = { 2, 2, 5 };
        int []r = { 4, 8, 9 };
    
        allQueries(q, l, r);
        
    }
}

// This code is contributed by vt_m.
PHP
<?php
// PHP Program to solve range 
// query on array whose each 
// element is XOR of index 
// value and previous element.

// function return derived
// formula value.
function fun($x)
{
    $y = ((int)($x / 4) * 4);

    // finding xor value 
    // of range [y...x]
    $ans = 0;
    for ($i = $y; $i <= $x; $i++)
        $ans ^= $i;

    return $ans;
}

// function to solve 
// query for l and r.
function query($x)
{
    // if l or r is 0.
    if ($x == 0)
        return 0;

    $k = (int)(($x + 1) / 2);

    // finding x is divisible
    // by 2 or not.
    return ($x %= 2) ? 2 * fun($k) : 
     ((fun($k - 1) * 2) ^ ($k & 1));
}

function allQueries($q, $l, $r)
{
    for ($i = 0; $i < $q; $i++)
        echo (query($r[$i]) ^ 
              query($l[$i] - 1)) , "\n";
}

// Driver Code
$q = 3;
$l = array( 2, 2, 5 );
$r = array ( 4, 8, 9 );

allQueries($q, $l, $r);

// This code is contributed by ajit
?>
JavaScript
<script>
// Javascript Program to solve range query on array
// whose each element is XOR of index value

// function return derived formula value.
function fun(x)
{
    let y = parseInt(x / 4) * 4;

    // finding xor value of range [y...x]
    let ans = 0;
    for (let i = y; i <= x; i++)
        ans ^= i;

    return ans;
}

// function to solve query for l and r.
function query(x)
{
    // if l or r is 0.
    if (x == 0)
        return 0;

    let k = parseInt((x + 1) / 2);

    // finding x is divisible by 2 or not.
    return (x %= 2) ? 2 * fun(k) : ((fun(k - 1) * 2) ^ (k & 1));
}

function allQueries(q, l, r)
{
    for (let i = 0; i < q; i++)
        document.write((query(r[i]) ^ query(l[i] - 1)) + "<br>");
}

// Driven Program
    let q = 3;
    let l = [ 2, 2, 5 ];
    let r = [ 4, 8, 9 ];

    allQueries(q, l, r);

</script>

Output
0
2
0

Time Complexity: O(q* log(n)) where q is the number of queries and n is the largest value of r in the queries. 

Auxiliary Space: O(1)


Next Article
Article Tags :
Practice Tags :

Similar Reads