Sort even-placed in increasing and odd-placed in decreasing order
Last Updated :
28 Feb, 2025
We are given an array of n distinct numbers. The task is to sort all even-placed numbers in increasing and odd-placed numbers in decreasing order. The modified array should contain all sorted even-placed numbers followed by reverse sorted odd-placed numbers.
Note that the first element is considered as even placed because of its index 0.
Examples:
Input: arr[] = {0, 1, 2, 3, 4, 5, 6, 7}
Output: arr[] = {0, 2, 4, 6, 7, 5, 3, 1}
Explanation:
Even-place elements : 0, 2, 4, 6
Odd-place elements : 1, 3, 5, 7
Even-place elements in increasing order :
0, 2, 4, 6
Odd-Place elements in decreasing order :
7, 5, 3, 1
Input: arr[] = {3, 1, 2, 4, 5, 9, 13, 14, 12}
Output: {2, 3, 5, 12, 13, 14, 9, 4, 1}
Explanation:
Even-place elements : 3, 2, 5, 13, 12
Odd-place elements : 1, 4, 9, 14
Even-place elements in increasing order :
2, 3, 5, 12, 13
Odd-Place elements in decreasing order :
14, 9, 4, 1
[Naive Approach] - O(n Log n) Time and O(n) Space
The idea is simple. We create two auxiliary arrays evenArr[] and oddArr[] respectively. We traverse input array and put all even-placed elements in evenArr[] and odd placed elements in oddArr[]. Then we sort evenArr[] in ascending and oddArr[] in descending order. Finally, copy evenArr[] and oddArr[] to get the required result.
C++
// Program to separately sort even-placed and odd
// placed numbers and place them together in sorted
// array.
#include <bits/stdc++.h>
using namespace std;
void bitonicGenerator(vector<int>& arr)
{
// create evenArr[] and oddArr[]
vector<int> evenArr;
vector<int> oddArr;
// Put elements in oddArr[] and evenArr[] as
// per their position
for (int i = 0; i < arr.size(); i++) {
if (!(i % 2))
evenArr.push_back(arr[i]);
else
oddArr.push_back(arr[i]);
}
// sort evenArr[] in ascending order
// sort oddArr[] in descending order
sort(evenArr.begin(), evenArr.end());
sort(oddArr.begin(), oddArr.end(), greater<int>());
int i = 0;
for (int j = 0; j < evenArr.size(); j++)
arr[i++] = evenArr[j];
for (int j = 0; j < oddArr.size(); j++)
arr[i++] = oddArr[j];
}
// Driver Program
int main()
{
vector<int> arr = { 1, 5, 8, 9, 6, 7, 3, 4, 2, 0 };
bitonicGenerator(arr);
for (int i = 0; i < arr.size(); i++)
cout << arr[i] << " ";
return 0;
}
Java
// Program to separately sort even-placed and odd
// placed numbers and place them together in sorted
// array.
import java.util.*;
public class Main {
public static void bitonicGenerator(int[] arr) {
// create evenArr[] and oddArr[]
List<Integer> evenArr = new ArrayList<>();
List<Integer> oddArr = new ArrayList<>();
// Put elements in oddArr[] and evenArr[] as
// per their position
for (int i = 0; i < arr.length; i++) {
if (i % 2 == 0)
evenArr.add(arr[i]);
else
oddArr.add(arr[i]);
}
// sort evenArr[] in ascending order
// sort oddArr[] in descending order
Collections.sort(evenArr);
Collections.sort(oddArr, Collections.reverseOrder());
int i = 0;
for (int num : evenArr)
arr[i++] = num;
for (int num : oddArr)
arr[i++] = num;
}
public static void main(String[] args) {
int[] arr = { 1, 5, 8, 9, 6, 7, 3, 4, 2, 0 };
bitonicGenerator(arr);
for (int num : arr)
System.out.print(num + " ");
}
}
Python
# Program to separately sort even-placed and odd
# placed numbers and place them together in sorted
# array.
def bitonic_generator(arr):
# create evenArr[] and oddArr[]
evenArr = []
oddArr = []
# Put elements in oddArr[] and evenArr[] as
# per their position
for i in range(len(arr)):
if i % 2 == 0:
evenArr.append(arr[i])
else:
oddArr.append(arr[i])
# sort evenArr[] in ascending order
# sort oddArr[] in descending order
evenArr.sort()
oddArr.sort(reverse=True)
i = 0
for num in evenArr:
arr[i] = num
i += 1
for num in oddArr:
arr[i] = num
i += 1
# Driver Program
arr = [1, 5, 8, 9, 6, 7, 3, 4, 2, 0]
bitonic_generator(arr)
print(' '.join(map(str, arr)))
C#
// Program to separately sort even-placed and odd
// placed numbers and place them together in sorted
// array.
using System;
using System.Collections.Generic;
using System.Linq;
class Program {
static void BitonicGenerator(int[] arr) {
// create evenArr[] and oddArr[]
List<int> evenArr = new List<int>();
List<int> oddArr = new List<int>();
// Put elements in oddArr[] and evenArr[] as
// per their position
for (int i = 0; i < arr.Length; i++) {
if (i % 2 == 0)
evenArr.Add(arr[i]);
else
oddArr.Add(arr[i]);
}
// sort evenArr[] in ascending order
// sort oddArr[] in descending order
evenArr.Sort();
oddArr.Sort((a, b) => b.CompareTo(a));
int index = 0;
foreach (var num in evenArr)
arr[index++] = num;
foreach (var num in oddArr)
arr[index++] = num;
}
static void Main() {
int[] arr = { 1, 5, 8, 9, 6, 7, 3, 4, 2, 0 };
BitonicGenerator(arr);
Console.WriteLine(string.Join(" ", arr));
}
}
JavaScript
// Program to separately sort even-placed and odd
// placed numbers and place them together in sorted
// array.
function bitonicGenerator(arr) {
// create evenArr[] and oddArr[]
const evenArr = [];
const oddArr = [];
// Put elements in oddArr[] and evenArr[] as
// per their position
for (let i = 0; i < arr.length; i++) {
if (i % 2 === 0)
evenArr.push(arr[i]);
else
oddArr.push(arr[i]);
}
// sort evenArr[] in ascending order
// sort oddArr[] in descending order
evenArr.sort((a, b) => a - b);
oddArr.sort((a, b) => b - a);
let i = 0;
for (const num of evenArr)
arr[i++] = num;
for (const num of oddArr)
arr[i++] = num;
}
// Driver Program
const arr = [1, 5, 8, 9, 6, 7, 3, 4, 2, 0];
bitonicGenerator(arr);
console.log(arr.join(' '));
PHP
// Program to separately sort even-placed and odd
// placed numbers and place them together in sorted
// array.
function bitonicGenerator(&$arr) {
// create evenArr[] and oddArr[]
$evenArr = [];
$oddArr = [];
// Put elements in oddArr[] and evenArr[] as
// per their position
foreach ($arr as $i => $value) {
if ($i % 2 === 0)
$evenArr[] = $value;
else
$oddArr[] = $value;
}
// sort evenArr[] in ascending order
// sort oddArr[] in descending order
sort($evenArr);
rsort($oddArr);
$i = 0;
foreach ($evenArr as $num) {
$arr[$i++] = $num;
}
foreach ($oddArr as $num) {
$arr[$i++] = $num;
}
}
// Driver Program
$arr = [1, 5, 8, 9, 6, 7, 3, 4, 2, 0];
bitonicGenerator($arr);
echo implode(' ', $arr);
Output1 2 3 6 8 9 7 5 4 0
[Expected Approach - 1] - O(n Log n) Time and O(1) Space
The problem can also be solved without the use of Auxiliary space. The idea is to swap the first half odd index positions with the second half even index positions and then sort the first half array in increasing order and the second half array in decreasing order.
C++
#include <bits/stdc++.h>
using namespace std;
void bitonicGenerator(vector<int>& arr)
{
// first odd index
int i = 1;
// last index
int n = arr.size();
int j = n - 1;
// if last index is odd
if (j % 2 != 0)
// decrement j to even index
j--;
// swapping till half of array
while (i < j) {
swap(arr[i], arr[j]);
i += 2;
j -= 2;
}
// Sort first half in increasing
sort(arr.begin(), arr.begin() + (n + 1) / 2);
// Sort second half in decreasing
sort(arr.begin() + (n + 1) / 2, arr.end(), greater<int>());
}
// Driver Program
int main()
{
vector<int> arr = { 1, 5, 8, 9, 6, 7, 3, 4, 2, 0 };
bitonicGenerator(arr);
for (int i = 0; i < arr.size(); i++)
cout << arr[i] << " ";
return 0;
}
Java
import java.util.Arrays;
class BitonicGenerator {
public static void bitonicGenerator(int[] arr) {
// first odd index
int i = 1;
// last index
int n = arr.length;
int j = n - 1;
// if last index is odd
if (j % 2 != 0)
// decrement j to even index
j--;
// swapping till half of array
while (i < j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i += 2;
j -= 2;
}
// Sort first half in increasing order
Arrays.sort(arr, 0, (n + 1) / 2);
// Sort second half in decreasing order
Arrays.sort(arr, (n + 1) / 2, n);
reverse(arr, (n + 1) / 2, n);
}
private static void reverse(int[] arr, int start, int end) {
end--;
while (start < end) {
int temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
}
// Driver Program
public static void main(String[] args) {
int[] arr = {1, 5, 8, 9, 6, 7, 3, 4, 2, 0};
bitonicGenerator(arr);
for (int num : arr) {
System.out.print(num + " ");
}
}
}
Python
def bitonic_generator(arr):
# first odd index
i = 1
# last index
n = len(arr)
j = n - 1
# if last index is odd
if j % 2 != 0:
# decrement j to even index
j -= 1
# swapping till half of array
while i < j:
arr[i], arr[j] = arr[j], arr[i]
i += 2
j -= 2
# Sort first half in increasing
arr[:(n + 1) // 2] = sorted(arr[:(n + 1) // 2])
# Sort second half in decreasing
arr[(n + 1) // 2:] = sorted(arr[(n + 1) // 2:], reverse=True)
# Driver Program
arr = [1, 5, 8, 9, 6, 7, 3, 4, 2, 0]
bitonic_generator(arr)
print(' '.join(map(str, arr)))
C#
// Function to generate a bitonic sequence
using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
static void BitonicGenerator(List<int> arr)
{
// first odd index
int i = 1;
// last index
int n = arr.Count;
int j = n - 1;
// if last index is odd
if (j % 2 != 0)
// decrement j to even index
j--;
// swapping till half of array
while (i < j)
{
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i += 2;
j -= 2;
}
// Sort first half in increasing
arr.Sort(0, (n + 1) / 2);
// Sort second half in decreasing
arr.Sort((n + 1) / 2, n - (n + 1) / 2, Comparer<int>.Create((x, y) => y.CompareTo(x)));
}
// Driver Program
static void Main()
{
List<int> arr = new List<int> { 1, 5, 8, 9, 6, 7, 3, 4, 2, 0 };
BitonicGenerator(arr);
Console.WriteLine(string.Join(" ", arr));
}
}
JavaScript
// Function to generate a bitonic sequence
function bitonicGenerator(arr) {
// first odd index
let i = 1;
// last index
let n = arr.length;
let j = n - 1;
// if last index is odd
if (j % 2 !== 0)
// decrement j to even index
j--;
// swapping till half of array
while (i < j) {
[arr[i], arr[j]] = [arr[j], arr[i]];
i += 2;
j -= 2;
}
// Sort first half in increasing
arr.sort((a, b) => a - b);
// Sort second half in decreasing
arr.slice((n + 1) / 2).sort((a, b) => b - a);
}
// Driver Program
let arr = [1, 5, 8, 9, 6, 7, 3, 4, 2, 0];
bitonicGenerator(arr);
console.log(arr.join(' '));
Output1 2 3 6 8 9 7 5 4 0
Note : The above Python and JS codes seem to require extra space. Let us know in comments about your thoughts and any alternate implementations.
[Expected Approach - 2] - O(n Log n) Time and O(1) Space
Another efficient approach to solve the problem in O(1) auxiliary space is by Using negative multiplication.
The steps involved are as follows:
- Multiply all the elements at even placed index by -1.
- Sort the whole array. In this way, we can get all even placed index in the starting as they are negative numbers now.
- Now revert the sign of these elements.
- After this reverse the first half of the array which contains an even placed number to make it in increasing order.
- And then reverse the rest half of the array to make odd placed numbers in decreasing order.
Note: This method is only applicable if all the elements in the array are non-negative.
An illustrative example of the above approach:
Let given array: arr[] = {0, 1, 2, 3, 4, 5, 6, 7}
Array after multiplying by -1 to even placed elements: arr[] = {0, 1, -2, 3, -4, 5, -6, 7}
Array after sorting: arr[] = {-6, -4, -2, 0, 1, 3, 5, 7}
Array after reverting negative values: arr[] = {6, 4, 2, 0, 1, 3, 5, 7}
After reversing the first half of array: arr[] = {0, 2, 4, 6, 1, 3, 5, 7}
After reversing the second half of array: arr[] = {0, 2, 4, 6, 7, 5, 3, 1}
Below is the code for the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void bitonicGenerator(vector<int>& arr)
{
// Making all even placed index
// element negative
for (int i = 0; i < arr.size(); i++) {
if (i % 2==0)
arr[i] = -1 * arr[i];
}
// Sorting the whole array
sort(arr.begin(), arr.end());
// Finding the middle value of
// the array
int mid = (arr.size() - 1) / 2;
// Reverting the changed sign
for (int i = 0; i <= mid; i++) {
arr[i] = -1 * arr[i];
}
// Reverse first half of array
reverse(arr.begin(), arr.begin() + mid + 1);
// Reverse second half of array
reverse(arr.begin() + mid + 1, arr.end());
}
// Driver Program
int main()
{
vector<int> arr = { 1, 5, 8, 9, 6, 7, 3, 4, 2, 0 };
bitonicGenerator(arr);
for (int i = 0; i < arr.size(); i++)
cout << arr[i] << " ";
return 0;
}
Java
import java.util.Arrays;
import java.util.List;
public class BitonicGenerator {
public static void bitonicGenerator(List<Integer> arr) {
// Making all even placed index
// element negative
for (int i = 0; i < arr.size(); i++) {
if (i % 2 == 0)
arr.set(i, -1 * arr.get(i));
}
// Sorting the whole array
Collections.sort(arr);
// Finding the middle value of
// the array
int mid = (arr.size() - 1) / 2;
// Reverting the changed sign
for (int i = 0; i <= mid; i++) {
arr.set(i, -1 * arr.get(i));
}
// Reverse first half of array
Collections.reverse(arr.subList(0, mid + 1));
// Reverse second half of array
Collections.reverse(arr.subList(mid + 1, arr.size()));
}
// Driver Program
public static void main(String[] args) {
List<Integer> arr = Arrays.asList(1, 5, 8, 9, 6, 7, 3, 4, 2, 0);
bitonicGenerator(arr);
for (int i : arr)
System.out.print(i + " ");
}
}
Python
def bitonic_generator(arr):
# Making all even placed index
# element negative
for i in range(len(arr)):
if i % 2 == 0:
arr[i] = -1 * arr[i]
# Sorting the whole array
arr.sort()
# Finding the middle value of
# the array
mid = (len(arr) - 1) // 2
# Reverting the changed sign
for i in range(mid + 1):
arr[i] = -1 * arr[i]
# Reverse first half of array
arr[:mid + 1] = reversed(arr[:mid + 1])
# Reverse second half of array
arr[mid + 1:] = reversed(arr[mid + 1:])
# Driver Program
arr = [1, 5, 8, 9, 6, 7, 3, 4, 2, 0]
bitonic_generator(arr)
print(' '.join(map(str, arr)))
C#
using System;
using System.Collections.Generic;
using System.Linq;
class BitonicGenerator {
public static void BitonicGeneratorMethod(List<int> arr) {
// Making all even placed index
// element negative
for (int i = 0; i < arr.Count; i++) {
if (i % 2 == 0)
arr[i] = -1 * arr[i];
}
// Sorting the whole array
arr.Sort();
// Finding the middle value of
// the array
int mid = (arr.Count - 1) / 2;
// Reverting the changed sign
for (int i = 0; i <= mid; i++) {
arr[i] = -1 * arr[i];
}
// Reverse first half of array
arr.Take(mid + 1).Reverse().ToList().CopyTo(arr);
// Reverse second half of array
arr.Skip(mid + 1).Reverse().ToList().CopyTo(arr, mid + 1);
}
// Driver Program
public static void Main() {
List<int> arr = new List<int> { 1, 5, 8, 9, 6, 7, 3, 4, 2, 0 };
BitonicGeneratorMethod(arr);
Console.WriteLine(string.Join(" ", arr));
}
}
JavaScript
function bitonicGenerator(arr) {
// Making all even placed index
// element negative
for (let i = 0; i < arr.length; i++) {
if (i % 2 === 0)
arr[i] = -1 * arr[i];
}
// Sorting the whole array
arr.sort((a, b) => a - b);
// Finding the middle value of
// the array
const mid = Math.floor((arr.length - 1) / 2);
// Reverting the changed sign
for (let i = 0; i <= mid; i++) {
arr[i] = -1 * arr[i];
}
// Reverse first half of array
arr.slice(0, mid + 1).reverse().forEach((val, index) => arr[index] = val);
// Reverse second half of array
arr.slice(mid + 1).reverse().forEach((val, index) => arr[mid + 1 + index] = val);
}
// Driver Program
let arr = [1, 5, 8, 9, 6, 7, 3, 4, 2, 0];
bitonicGenerator(arr);
console.log(arr.join(' '));
Output1 2 3 6 8 9 7 5 4 0
Similar Reads
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to Sorting Techniques â Data Structure and Algorithm Tutorials Sorting refers to rearrangement of a given array or list of elements according to a comparison operator on the elements. The comparison operator is used to decide the new order of elements in the respective data structure. Why Sorting Algorithms are ImportantThe sorting algorithm is important in Com
3 min read
Most Common Sorting Algorithms
Selection Sort Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Heap Sort - Data Structures and Algorithms Tutorials Heap sort is a comparison-based sorting technique based on Binary Heap Data Structure. It can be seen as an optimization over selection sort where we first find the max (or min) element and swap it with the last (or first). We repeat the same process for the remaining elements. In Heap Sort, we use
14 min read
Counting Sort - Data Structures and Algorithms Tutorials Counting Sort is a non-comparison-based sorting algorithm. It is particularly efficient when the range of input values is small compared to the number of elements to be sorted. The basic idea behind Counting Sort is to count the frequency of each distinct element in the input array and use that info
9 min read