
Concurrent Haskell

Simon Peyton Jones

University of Glasgow

Andrew Gordon

University of Cambridge

Sigbjorn Finne

University of Glasgow

Abstract

Some applications are most easily expressed in a program-

ming language that supports concurrency, notably interac-

tive and distributed systems. We propose extensions to the

purely-functional language Haskell that allow it to express

explicitly concurrent applications; we call the resulting lan-

guage Concurrent Haskell.

The resulting system appears to be both expressive and ef-

�cient, and we give a number of examples of useful abstrac-

tions that can be built from our primitives.

We have developed a freely-available implementation of Con-

current Haskell, and are now using it as a substrate for a

graphical user interface toolkit.

This paper appears in the Proceedings of the 23rd ACM Sym-

posium on Principles of Programming Languages (POPL

'96), St Petersburg Beach, Florida, Jan 1996.

1 Introduction

Concurrent Haskell is a concurrent extension to the lazy

functional language Haskell. Our principal motivation is to

provide a more expressive substrate upon which to build

sophisticated I/O-performing programs, notably ones that

support graphical user interfaces for which the usefulness of

concurrency is well established. Our earlier work showed

how to use monads to express I/O (Gordon [1994a]; Pey-

ton Jones & Wadler [1993]), and how the same idea could

be generalised to accommodate securely encapsulated muta-

ble state (Launchbury & Peyton Jones [1996]; Launchbury

& Peyton Jones [1994]). Concurrent Haskell represents the

next step in this research programme, which aims to build a

bridge between the tidy world of purely functional program-

ming and the gory mess of of I/O-intensive programs.

This paper makes the following contributions:

� We show how concurrency can be smoothly integrated

into a lazy purely-functional language, using only four

new primitive operations and no new language con-

structs (Section 2). Perhaps surprisingly, choice is not

one of these primitive operations (Section 5).

� We give numerous examples of useful abstractions that

can readily be built in Concurrent Haskell (Sections 3

and 4).

� We give a semantics for Concurrent Haskell that is

clearly strati�ed into a deterministic layer and a con-

currency layer (Section 6). Existing reasoning tech-

niques can be retained unmodi�ed; for example, pro-

gram transformations that preserve the correctness of

a sequential Haskell program also preserve correctness

of a Concurrent Haskell program. This is an unusual

feature: more commonly, the non-determinism that

arises from concurrency pervades the entire language.

Concurrent Haskell is implemented, freely available, and is

the substrate upon which we are building the Haggis graph-

ical user interface toolkit (Finne & Peyton Jones [1995]).

This paper is not at all about concurrency as a means of in-

creasing performance by exploiting multiprocessors. Our ap-

proach to that goal uses implicit, semantically transparent,

parallelism; but that is another story. Rather, this paper

concerns the use of explicit, semantically visible, concurrent

I/O-performing processes. Our goal is to extend Haskell's

usefulness into a new class of applications.

2 The basic ideas

Concurrent Haskell adds two main new ingredients to Haskell:

� processes, and a mechanism for process initiation (Sec-

tion 2.2); and

� atomically-mutable state, to support inter-process com-

munication and cooperation (Section 2.3).

Before we discuss either of these, though, it is necessary

to review the monadic approach to I/O introduced by Pey-

ton Jones & Wadler [1993], and adopted by the Haskell lan-

guage in Haskell 1.3.

The semantics of Concurrent Haskell is discussed later, in

Section 6.

2.1 A review of monadic I/O

In a non-strict language it is completely impractical to per-

form input/output using side-e�ecting \functions", because

the order in which sub-expressions are evaluated | and in-

deed whether they are evaluated at all | is determined by

the context in which the result of the expression is used, and

hence is hard to predict. This di�culty can be addressed by

treating an I/O-performing computation as a state trans-

former ; that is, a function that transforms the current state

of the world to a new state. In addition, we need the ability

for an I/O-performing computation to return a result. This

reasoning leads to the following type de�nition:

type IO a = World -> (a, World)

That is, a value of type IO t takes a world state as input,

and delivers a modi�ed world state together with a value

of type t. Of course, the implementation performs the I/O

right away | thereby modifying the state of the world \in

place".

We call a value of type IO t an action. Here are two useful

actions:

hGetChar :: Handle -> IO Char

hPutChar :: Handle -> Char -> IO ()

The action hGetChar reads a character from the speci�ed

handle (which identi�es some �le or other byte stream), and

returns it as the result of the action. hPutChar takes a han-

dle and a character and returns an action that writes the

character to the speci�ed �le or stream.

Actions can be combined in sequence using the in�x combi-

nators >> and >>=:

>> :: IO a -> IO b -> IO b

>>= :: IO a -> (a -> IO b) -> IO b

For example, here is an action that reads a character from

the standard input, and then prints it twice to the standard

output:

hGetChar stdin >>= \c ->

hPutChar stdout c >>

hPutChar stdout c

(The notation \c->E, for some expression E, denotes a lambda

abstraction. In Haskell, the scope of a lambda abstraction

extends as far to the right as possible; in this example the

body of the \c-abstraction includes everything after the \c.)

The sequencing combinators, >> and >>=, feed the result

state of their left hand argument to the input of their right

hand argument, thereby forcing the two actions (via the

data dependency) to be performed in the correct order. The

combinator >> throws away the result of its �rst argument,

while >>= takes the result of its �rst argument and passes it

on to its second argument. The similarity of monadic I/O-

performing programs to imperative programs is no surprise:

when performing I/O we speci�cally want to impose a total

order on I/O operations.

It is often also useful to have an action that performs no

I/O, and immediately returns a speci�ed value:

return :: a -> IO a

For example, an echo action that reads a character, prints

it, and returns the character read, might look like this:

echo :: IO Char

echo = hGetChar stdin >>= \c ->

hPutChar stdout >>

return c

As well as performing input/output, we also provide actions

to create new mutable variables, and then to read and write

them. The relevant primitives are

1

:

newMutVar :: MutVar a

readMutVar :: MutVar a -> IO a

writeMutVar :: MutVar a

A value of type MutVar t can be thought of as the name

of, or reference to, a mutable location in the state that

holds a value of type t. This location can be modi�ed with

writeMutVar and read with readMutVar.

So far we have shown how to build larger actions out of

smaller ones, but how do actions ever get performed | that

is, applied to the real world? Every program de�nes a value

main that has type IO (). The program can then be run

by applying main to the state of the world. For example, a

complete program that reads and echos a single line of input

is:

main :: IO ()

main = echo >>= \c ->

if c == '\n'

then return ()

else main

In principle, then, a program is just a state transformer that

is applied to the real world to give a new world. In prac-

tice, however, it is crucial that the side-e�ects the program

speci�es are performed incrementally, and not all at once

when the program �nishes. A state-transformer semantics

for I/O is therefore, alas, unsatisfactory, and becomes un-

tenable when concurrency is introduced, a matter to which

we return in Section 6.

More details of monadic I/O and state transformers can

be found in Gordon [1994a], Launchbury & Peyton Jones

[1994], Peyton Jones & Wadler [1993]. Other I/O mecha-

nisms for purely-functional languages are surveyed by Gor-

don [1993].

2.2 Processes

Concurrent Haskell provides a new primitive forkIO, which

starts a concurrent process

2

:

forkIO :: IO () -> IO ()

forkIO a is an action which takes an action, a, as its ar-

gument and spawns a concurrent process to perform that

action. The I/O and other side e�ects performed by a are

interleaved in an unspeci�ed fashion with those that follow

the forkIO. Here's an example:

let

-- loop ch prints an infinite sequence of ch's

loop ch = hPutChar stdout ch >> loop ch

in

forkIO (loop 'a') >>

1

In reality the types a little more general than these, allowing

state-manipulating computations to be encapsulated, but we omit

these details here. They can be found in Launchbury & Peyton Jones

[1994].

2

We use the term process to distinguish explicit concurrency from

implicit parallelism, for which we use the term threads. A process

is managed by the Haskell runtime system, and certainly does not

correspond to a Unix process.

loop 'z'

The forkIO spawns a process which performs the action

loop 'a'. Meanwhile, the \parent" process continues on to

perform loop 'z'. The result is that an in�nite sequence of

interleaved 'a's and 'z's appears on the screen; the exact

interleaving is unspeci�ed (but see Section 6.3).

As a more realistic example of forkIO in action, a mail tool

might incorporate the following loop:

mailLoop :: IO ()

mailLoop

= getButtonPress b >>= \ v ->

case v of

Compose -> forkIO doCompose >>

mailLoop

...other things

doCompose :: IO () -- Pop up and manage

doCompose = ... -- composition window

Here, getButtonPress is very like hGetChar; it awaits the

next button press on button b, and then delivers a value

indicating which button was pressed. This value is then

scrutinised by the case expression. If its value is Compose,

then the action doCompose is forked to handle an indepen-

dent composition window, while the main process continues

with the next getButtonPress.

The following features of forkIO are worth noting:

(1) Because our implementation of Haskell uses lazy eval-

uation, forkIO immediately requires that the underly-

ing implementation supports inter-process synchroni-

sation. Why? Because a process might try to evaluate

a thunk (or suspension) that is already being evaluated

by another process, in which case the former must be

blocked until the latter completes the evaluation and

overwrites the thunk with its value.

(2) Since the parent and child processes may both mutate

(parts of) the same shared state (namely, the world),

forkIO immediately introduces non-determinism. For

example, if one process decides to read a �le, and the

other deletes it, the e�ect of running the program will

be unpredictable. Whilst this non-determinism is not

desirable, it is not avoidable; indeed, every concurrent

language is non-deterministic. The only way to en-

force determinism would be by somehow constraining

the two processes to work on separate parts of the state

(di�erent �les, in our example). The trouble is that es-

sentially all the interesting applications of concurrency

involve the deliberate and controlled mutation of shared

state, such as screen real estate, the �le system, or the

internal data structures of the program. The right so-

lution, therefore, is to provide mechanisms which allow

(though alas they cannot enforce) the safe mutation of

shared state, a matter to which we return in the next

subsection.

(3) forkIO is asymmetrical: when a process executes a

forkIO, it spawns a child process that executes con-

currently with the continued execution of the parent.

It would have been possible to design a symmetrical

fork, an approach taken by Jones & Hudak [1993]:

symFork :: IO a -> IO b -> IO (a,b)

The idea here is symFork p1 p2 is an action that forks

two processes, p1 and p2. When both complete, the

symFork pairs their results together and returns this

pair as its result. We rejected this approach because

it forces us to synchronise on the termination of the

forked process. If the desired behaviour is that the

forked process lives as long as it desires, then we have

to provide the whole of the rest of the parent as the

other argument to symFork, which is extremely incon-

venient.

(4) In common with most process calculi, but unlike Unix,

the forked process has no name. We cannot, therefore,

provide operators to wait for its termination or to kill

it. The former is easily simulated (using an MVar, in-

troduced next), while the latter introduces a host of

new di�culties (what if the process is in the middle of

an atomic action?).

2.3 Synchronisation and communication

At �rst we believed that forkIO alone would be su�cient to

support concurrent programming in Haskell, provided that

the underlying implementation correctly handled the syn-

chronisation between two processes that try to evaluate the

same thunk. Our belief was based on the idea that two

processes could communicate via lazily-evaluated streams,

produced by one and consumed by the other (Kahn & Mac-

Queen [1977]). Whilst processes can indeed communicate in

this way, we found at least three distinct reasons to intro-

duce additional mechanisms for synchronisation and com-

munication between processes:

(1) Processes may need exclusive access to real-world ob-

jects such as �les. The straightforward way to imple-

ment such exclusive access requires a shared, mutable

lock variable or semaphore.

(2) How can a server process read a stream of values pro-

duced by more than one client process? One way to

solve this is to provide a non-deterministic merge op-

eration, but that is quite a sophisticated operation to

provide as a primitive. Worse, it is far from clear that

the quest ends there; for example, one might also want

several server processes to service a single stream of

requests, which seems to require a non-deterministic

split primitive. We wanted to �nd some very simple

truly-primitive operations that can be used to imple-

ment non-deterministic merge, and split, and anything

else we might desire.

(3) Writing stream-processing programs is throughly awk-

ward, especially if a function consumes several streams

and produces several others, as well as performing in-

put/output. One of the reasons that monadic I/O has

become so popular is precisely because stream-style

I/O is so tiresome to program with. It would be ironic

if Concurrent Haskell re-introduced stream processing

for inter-process communication just as monadic I/O

abolished it for input/output! We wanted to �nd a way

to make communication between processes look just as

convenient as I/O; indeed, from the point of view of

any particular process the other processes might just

as well be considered part of the external world.

Our solution is to combine our work on mutable state (Launch-

bury & Peyton Jones [1994]) with the I-structures and M-

structures of the dataow language Id (Arvind, Nikhil &

Pingali [1989]; Barth, Nikhil & Arvind [1991]). First of all

we have a new primitive type:

type MVar a

A value of type MVar t, for some type t, is the name of a

mutable location that is either empty or contains a value of

type t. We provide the following primitive operations on

MVars:

newMVar :: IO (MVar a) creates a new MVar.

takeMVar :: MVar a -> IO a blocks until the location is

non-empty, then reads and returns the value, leaving

the location empty.

putMVar :: MVar a -> a -> IO () writes a value into the

speci�ed location. If there are one or more processes

blocked in takeMVar on that location, one is thereby

allowed to proceed. It is an error to perform putMVar

on a location which already contains a value. (See Sec-

tion 9 for a discussion of other possible design choices

for putMVar.)

The type MVar can be seen in three di�erent ways:

� It can be seen as a synchronised version of the type

MutVar introduced in Section 2.1.

� It can be seen as the type of channels, with takeMVar

and putMVar playing the role of receive and send.

� A value of type MVar () can be seen as a binary semaphore,

with the signal and wait operations implemented by

putMVar and takeMVar respectively.

MVars are also somewhat reminiscent of ML's ref types,

which require quite a bit of work in the type system to

preserve soundness. It turns out that this type-soundness

problem does not arise for us, because values of type MVar t

can only be lambda-bound, and hence must be monomor-

phic.

3 A standard abstraction: bu�ering

A good way to understand a concurrency construct is by

means of examples. The following sections describe how to

implement a number of standard abstractions using MVars:

using standard examples (such as bu�ering) allows easy com-

parison with the literature.

The �rst example is usually a memory cell, but of course an

MVar implements that directly. Another common example

is a semaphore, but an MVar implements that directly too.

3.1 A bu�er variable

An MVar can very nearly be used to mediate a producer/consumer

connection: the producer puts items into the MVar and the

consumer takes them out. The y in the ointment is, of

course, that there is nothing to stop the producer over-

running, and writing a second value before the consumer

has removed the �rst.

This problem is easily solved, by using a second MVar to han-

dle acknowledgements from the consumer to the producer.

We call the resulting abstraction a CVar (short for channel

variable).

type CVar a = (MVar a, -- Producer -> consumer

MVar ()) -- Consumer -> producer

newCVar :: IO (CVar a)

newCVar

= newMVar >>= \ data_var ->

newMVar >>= \ ack_var ->

putMVar ack_var () >>

return (data_var, ack_var)

putCVar :: CVar a -> a -> IO ()

putCVar (data_var,ack_var) val

= takeMVar ack_var >>

putMVar data_var val

getCVar :: CVar a -> IO a

getCVar (data_var,ack_var)

= takeMVar data_var >>= \ val ->

putMVar ack_var () >>

return val

3.2 A bu�ered channel

A CVar can contain but a single value. Next, we show how to

implement a channel with unbounded bu�ering, along with

some variants. Its interface is as follows:

type Channel a

newChan :: IO (Channel a)

putChan :: Channel a -> a -> IO ()

getChan :: Channel a -> IO a

The channel should permit multiple processes to write to it,

and read from it, safely.

The implementation is illustrated in Figure 1. The channel

is represented by a pair of MVars (drawn as small boxes with

thick borders), that hold the read end and write end of the

bu�er:

type Channel a = (MVar (Stream a), -- Read

MVar (Stream a)) -- Write

The MVars in a Channel are required so that channel put and

get operations can atomically modify the write and read end

of the channels respectively. The data in the bu�er is held

in a Stream; that is, an MVar which is either empty (in which

case there is no data in the Stream), or holds an Item:

type Stream a = MVar (Item a)

An Item is just a pair of the �rst element of the Stream

together with a Stream holding the rest of the data:

data Item a = Item a (Stream a)

A Stream can therefore be thought of as a list, consisting of

alternating Items and full MVars, terminated with a \hole"

consisting of an empty MVar. The write end of the channel

Second value Third valueFirst value

Item Item Item

Channel

Read end Write end

Figure 1: A channel with unbounded bu�ering

points to this hole.

Creating a new channel is now just a matter of creating the

read and write MVars, plus one (empty) MVar for the stream

itself:

newChan = newMVar >>= \read ->

newMVar >>= \write ->

newMVar >>= \hole ->

putMVar read hole >>

putMVar write hole >>

return (read,write)

Putting into the channel entails creating a new empty Stream

to become the hole, extracting the old hole and replacing it

with the new hole, and then putting an Item in the old hole.

putChan (read,write) val

= newMVar >>= \new_hole ->

takeMVar write >>= \old_hole ->

putMVar write new_hole >>

putMVar old_hole (Item val new_hole)

Getting an item from the channel is similar. Notice that

getChanmay block at the second takeMVar if the channel is

empty, until some other process does a putChan.

getChan (read,write)

= takeMVar read >>= \cts ->

takeMVar cts >>= \(Item val new) ->

putMVar read new >>

return val

It is worth noting that any number of processes can safely

write into the channel and read from it. The values written

will be merged in (non-deterministic, scheduling-dependent)

arrival order, and each value read will go to exactly one

process.

Other variants are readily programmed. For example, con-

sider a multi-cast channel, in which there are multiple read-

ers, each of which should see all the values written to the

channel. All that is required is to add a new operation:

dupChan :: Channel a -> IO (Channel a)

The idea is that the channel returned by dupChan can be read

independently of the original, and sees all (and only) the

data written to the channel after the dupChan call. The im-

plementation is simple, since it amounts to setting up a sep-

arate read pointer, initialised to the current write pointer:

dupChan (read,write)

= newMVar >>= \ new_read ->

takeMVar write >>= \ hole ->

putMVar write hole >>

putMVar new_read hole >>

return (new_read, write)

Another easy modi�cation, left as an exercise for the reader,

is to add an inverse to getChan:

unGetChan :: Channel a -> a -> IO ()

3.3 Skip channels

As a �nal example, Figure 2 implements a skip channel, a

useful abstraction that we have not seen elsewhere in the lit-

erature. A skip channel is useful when an intermittent source

of high-bandwidth information (mouse-movement events, for

example) is to be coupled to a process that may only be able

to deal with events at a lower rate (scrolling a window, for

example). A read operation on a skip channel either re-

turns the most-recently-written value (skipping any values

written previously), or else blocks if no write has been per-

formed since the last read. To make it more interesting, a

dupSkipChan operation is also provided that allows multiple

independent readers, each with the above semantics.

A skip channel is implemented as a pair of MVars. The sec-

ond is a semaphore; it is full if the skip channel contains

a value as yet unread by this reader, and empty otherwise.

The �rst contains a pair consisting of the current contents of

the channel and a list of the empty semaphores of the read-

ers that have already read the channel's current contents.

With this in mind the implementation of the skip channel's

operations should be easy to follow.

type SkipChan a = (MVar (a, [MVar ()]), MVar ())

newSkipChan :: IO (SkipChan a)

newSkipChan

= newMVar >>= \ main ->

newMVar >>= \ sem ->

putMVar main (bottom,[sem]) >>

return (main, sem)

putSkipChan :: SkipChan a -> a -> IO ()

putSkipChan (main,sem) v

= takeMVar main >>= \ (_,sems) ->

putMVar main (v,[]) >>

mapIO free sems >>

return ()

where

free sem = putMVar sem ()

getSkipChan :: SkipChan a -> IO a

getSkipChan (main,sem)

= takeMVar main >>= \ (v,sems) ->

putMVar main (v, sem:sems) >>

return v

dupSkipChan :: SkipChan a -> IO (SkipChan a)

dupSkipChan (main,_)

= newMVar >>= \ sem ->

takeMVar main >>= \ (v,sems) ->

putMVar main (v, sem:sems) >>

return (main,sem)

Figure 2: The skip-channel abstraction

4 Control over scheduling

Next we study some examples that demonstrate how it is

possible to \reify" scheduling decisions, allowing the pro-

grammer to take control of them. Suppose we wanted to

implement a channel with bounded bu�ering; that is, one

in which the writer would block if there were more than a

certain number of unread elements in the bu�er. A straight-

forward way to implement a bounded channel would be as

a pair of an unbounded channel and a quantity semaphore:

type BChannel a = (Channel a, QSem)

A quantity semaphore is an abstraction with the following

interface:

type QSem

newQSem :: IO QSem

waitQSem :: QSem -> IO ()

signalQSem :: QSem -> IO ()

A QSem holds an integer, initially set to zero. waitQSem

decrements this number, blocking if it is already zero. signalQSem

increments the number unless there are blocked processes,

in which case it frees one of them.

The QSem in a BChannel records how many available slots

there are in the bu�er, so it is initialised with N calls to

signalQSem, where N is the desired maximum bu�er size.

Then every attempt to write into the channel calls waitQSem

to gain permission to write, and similarly every successful

read calls signalQSem.

4.1 Implementing quantity semaphores

It is possible to implement a quantity semaphore using only

binary semaphores, but it is surprisingly di�cult, and cor-

rect solutions are not well known (Barz [1983]). However,

because we can freely allocate new MVars, we can give a

perfectly straightforward implementation:

type QSem = MVar (Int, [MVar ()])

A QSem is an MVar holding a pair (so that access to the whole

pair is indivisible). The Int plays the same role as before.

The second component of the pair is a list of MVars, on each

of which precisely one process is blocked. It is an invariant of

QSems that if the quantity is non-zero then the list is empty.

If a waitQSem �nds a zero count in the QSem, it creates a

new, private, MVar, adds it to the list, puts the resulting

pair back in the QSem's MVar, and then blocks on its private

MVar:

waitQSem sem

= takeMVar sem >>= \(avail, blkd) ->

if avail > 0 then

putMVar (avail-1,[]) >>

else

newMVar >>= \blk ->

putMVar (0, blk:blkd) >>

takeMVar blk

The implementation of signalQSem is equally easy. It simply

frees one blocked process if there are any, and increments the

count otherwise:

signalQSem sem

= takeMVar sem >>= \(avail, blkd) ->

case blkd of

[] -> putMVar (avail+1, [])

(blk:blkd') -> putMVar (0, blkd') >>

putMVar blk ()

4.2 Variable-munch quantity semaphores

An obvious generalisation of quantity semaphores is for waitQSem

and signalQSem to specify how much of the resource they

claim or return respectively:

waitQSemN :: QSem -> Int -> IO ()

signalQSemN :: QSem -> Int -> IO ()

Now, (signalQSemN s n) is equivalent to n successive calls

to signalQSem, but if waitQSemN were to be implemented

in this way, deadlock might easily result. Why? Because

two processes executing a waitQSemNmight each claim part,

but not all, of the resource they require, thereby depleting

it to zero and deadlocking. So waitQSemN must grab all its

requirement at once; if not enough is available, it must block

without grabbing any.

The new problem that this raises it that we may have a set

of blocked processes, each with a di�erent resource require-

ment. It is easy to record this information, and use it to

release only the appropriate ones:

type QSem = MVar (Int, [(Int, MVar ())])

The implementation of waitQSemN is essentially identical to

waitQSem. signalQSemN is a bit more interesting, because it

may free zero or more blocked processes:

signalQSemN sem n

= takeMVar sem >>= \(avail, blkd) ->

free (avail+n) blkd >>= \(avail', blkd') ->

putMVar sem (avail', blkd')

free :: Int -> [MVar ()] -> IO (Int, [MVar ()])

free avail [] = return (avail,[])

free avail ((req,blk):blkd)

= if avail >= req then

putMVar blk () >>

free (avail-req) blkd

else

free avail blkd >>= \(avail',blkd') ->

return (avail', (req,blk):blkd')

The function free walks down the list of blocked processes,

freeing any it can, and returning the depleted resource sup-

ply and remaining blocked processes.

4.3 Priority

Suppose that many processes, some important and some less

important, are blocked on a single, empty MVar. Concurrent

Haskell does not specify which of these processes will be

awakened when the MVar is written. How can we arrange

that it is the more important ones that are awakened? It

would be possible to add some sort of priority mechanism to

the language, but it turns out that there is no need: exactly

the same trick as we used for the quantity semaphore will

work here. All that is necessary is to build an abstraction

that maintains a list of blocked processes (in the form of

private MVars on which they are blocked), each paired with

its priority.

4.4 Summary

This section has demonstrated that we can readily \reify"

scheduling decisions, allowing them to be performed (when

desired) in the language itself. The key idea is to represent

a blocked process as an empty MVar, so that scheduling the

process can be achieved by writing to the MVar. Much the

same trick is used in the Pict language (Pierce & Turner

[1995]).

5 Choice

Most process languages provide a choice construct | ALT

in Occam, select in Concurrent ML, + in the �-calculus |

that allows a process to determine what to do next based on

which of a number of communications are ready to proceed.

For example, in the �-calculus the process

x(v).P + y(w).Q

will either read a value v from channel x and then behave

like P, or read a value w from channel y and then behave like

Q, but not both. We say that x(v) is the guard for the �rst

alternative, and similarly y(w) guards the second.

We do not provide a choice construct in Concurrent Haskell,

for several reasons:

(1) Most languages that provide choice restrict it in the

following way: alternatives can only be guarded with

single primitive actions. As Reppy persuasively ar-

gues, such a restriction interacts very badly with ab-

straction (Reppy [1995]). For example, we might want

to guard an alternative with a call to getChan, without

knowing anything about how getChan is implemented.

Of course, lifting this restriction is not straightforward.

For example, it is no good synchronising on the �rst

primitive action performed by the guard: just because

the �rst primitive operation (doing a take on the read-

end MVar) succeeds does not mean that the getChan

succeeds! Furthermore, if the guard can be a com-

pound action, as getChan certainly is, what should be

done with partially completed actions from the non-

chosen alternatives?

(2) In our experience, the generality of choice is rarely if

ever used.

(3) Implementing a general choice construct can be costly,

especially in a distributed setting, and especially if

guards can contain both read and write operations.

(4) MVars already provide non-determinism, as we have

seen in the case of channels with multiple writers, and

can be used to build application-speci�c choice con-

structs.

In short, contrary to initial impressions, choice is expensive

to implement, rarely used in its full generality, and limits

abstraction.

In the rest of this section we describe how we live without

choice. In common with the programming language Pict, we

distinguish singular choice from iterated choice, the latter

being by far the most common in practice.

5.1 Iterated choice

A very common paradigm is for a process to service sev-

eral distinct sources of work. On each iteration the server

chooses one of its clients, services the request, and then re-

turns to select a new client. Such a server would be under-

stood by the concurrent object-oriented programming com-

munity as a concurrent object.

The important thing about iterated choice is that partially-

executed guards of the alternatives that \lose" | that is,

are not selected | do not need to be undone, because they

can simply await the next iteration of the server.

As an example, suppose that the server is dealing with net-

work tra�c arriving from two distinct sources. The func-

tions get1 and get2 get a packet from the two sources re-

spectively; processPacket does whatever the server does to

the packet:

get1,get2 :: IO Packet

processPacket :: Packet -> IO ()

Of course, get1 and get2 can be as complicated as necessary.

They might consist of a large series of I/O interactions, not

just one primitive operation.

We can program the server by using a CVar as a rendezvous

bu�er. The server simply reads packets from this bu�er.

Before it does so, it forks a process for each packet source

that simply reads a packet from its source and tries to write

it into the bu�er.

server :: IO ()

server

= -- Create empty buffer and full token

newCVar >>= \buf ->

-- Create "sucking" processes

forkIO (suck get1 buf) >>

forkIO (suck get2 buf) >>

server_loop buf

server_loop :: CVar Packet -> IO ()

server_loop buf

= getCVar buf >>= \pkt ->

processPacket pkt >>

server_loop buf

suck :: IO a -> CVar a -> IO ()

suck get_op buf

= get_op >>= \pkt ->

putCVar buf pkt >>

suck get buf

Of course, if the clients can be \told" how to write to the

server the \suck" processes are not necessary. In practice

we �nd that this approach, which is strongly reminiscent of

call-backs, loses a degree of modularity | for example, the

client would have to be informed if the server changes | so

we normally use the formulation given above.

5.2 Singular choice

On those occasions when we want to make a \one-o�" choice

among competing alternatives, we put the obligation on the

programmer to make the alternatives abortable. The way

we choose to express this obligation is by making the alter-

natives have type

3

type Alternative a = Commitment a -> IO ()

type Commitment a = IO (Maybe (a -> IO ()))

data Maybe a = Nothing

| Just a

An alternative takes an I/O action, of type Commitment,

as an argument, which it performs exactly when it wants

to commit. This Commitment returns either Nothing, indi-

cating that some other alternative got there �rst and the

alternative should abort, or Just reply where reply is an

action that should be applied to the result of the alterna-

tive. Exactly one alternative will receive Just reply when

it reaches its commitment point; the others will all receive

3

The Maybe type is standard in Haskell, and corresponds to option

in Standard ML. A value of type Maybe t is either Nothing or is of the

form Just v, where v has type t. Maybe types are useful for encoding

values which may or may not be there.

Nothing, whereupon they carry out any necessary abort ac-

tions and then die quietly.

It is now simple to de�ne select:

select :: [Alternative a] -> IO a

select arms

= newMVar >>= \ result_var ->

newMVar >>= \ commit_var ->

putMVar commit_var

(Just (putMVar result_var)) >>

let

commit = takeMVar commit_var >>= \ res ->

putMVar commit_var

Nothing >>

return res

do_arm arm = forkIO (arm commit)

in

mapIO do_arm arms >>

takeMVar result_var

Here, mapIO is an analogue in the IO monad of the familiar

map function:

mapIO :: (a -> IO b) -> [a] -> IO [b]

(mapIO f xs) applies f to each element of xs, producing an

IO action in each case. It performs these actions in sequence,

and returns the list of their results.

6 Semantics

We have already hinted that regarding a program as a purely-

functional state transformer gives an inadequate semantics

for input/output behaviour. For example, a program that

goes into an in�nite loop printing 'a' repeatedly, would just

have the value ?, even though its behaviour is quite di�er-

ent to one that goes into an in�nite loop performing no

input/output.

The situation worsens when concurrency is introduced, since

now multiple concurrent processes are simultaneously mu-

tating a single state. The purely-functional state-transformer

semantics becomes untenable.

Instead we adopt an operational semantics, the standard

approach to giving the semantics of a concurrent language.

6.1 Deterministic Reduction

Suppose we already have an operational semantics for a

purely functional fragment of Haskell. Gordon [1994b] presents

a suitable operational semantics for a small fragment of

Haskell, and the approach could be extended to the full lan-

guage.

We shall show how to incorporate our concurrency primi-

tives into such a semantics. Suppose A and B stand for

types and a and b stand for programs, that is, closed, well-

typed expressions, and that the operational semantics con-

sists of a deterministic, small-step reduction relation, a 7! b.

We extend the grammar of types by

A ::= : : : j MVarA j IOA

and allow the following new constants as expressions.

return >>=

forkIO newMVar

putMVar takeMVar

A name, n, is drawn from an in�nite set of tags, and uniquely

identi�es a particular MVar. We extend the reduction rela-

tion to reduce the �rst argument of (>>=) and of putMVar

and takeMVar, and with the following axiom scheme

return a >>= b 7! b(a)

but we do not provide any reductions for forkIO, newMVar,

putMVar and takeMVar. It follows that a value | that is,

a fully reduced program of type IOA | is either return a

where a::A or of the form M[v

IO

] where

v

IO

::= forkIOa j newMVar j putMVarna j takeMVarn

M[] ::= [] j M[] >>= a

In a value M[v

IO

], the expression v

IO

represents the next

concurrent action, and the context M[] represents the con-

tinuation that consumes the result of that action. This mild

extension preserves determinacy of 7!.

6.2 Concurrent Reaction

To model the concurrent aspects of Concurrent Haskell we

need to consider systems of interacting monadic processes.

We use P and Q to stand for processes.

P ::= a if a::IO ()

j P jQ parallel composition

j (�n)P restriction of name n to P

j hai

n

full MVar named n holding program a

j hi

n

empty MVar named n

j ABORT erroneous process

The only binding construct for names is (�n)P . We write

fn(P) for the set of names free in process P , and P [

m

=n] for

the outcome of substituting m for each occurrence of name

n free in process P .

We adapt the `chemical abstract machine' presentation of

polyadic �-calculus (Milner [1991]). First, we formalise the

idea of a `solution' of programs and MVars waiting to react by

de�ning a structural congruence relation. Second, we specify

the reaction of programs and MVars by simple reaction rules.

Let structural congruence,�, be the least congruence (that

is, an equivalence relation preserved by all process contexts)

to include alpha-conversion of bound variables and names,

plus the following two collections of rules. The �rst group

says that a process solution is roughly a multiset:

(1) P

1

j (P

2

j P

3

) � (P

1

j P

2

) j P

3

P jQ � Q j P

The second group are the standard rules for restriction from

�-calculus. Restriction represents the locality of access of

MVars.

(2) (�n)(�m)P � (�m)(�n)P

(�n)(P jQ) � P j (�n)Q; if n =2 fn(P)

Secondly, we extend the deterministic reduction relation, 7!,

on programs to a nondeterministic reaction relation, !, on

processes, identi�ed up to structural congruence. The �rst

two rules specify the interaction of programs and MVars:

(Put) hi

n

jM[putMVarna] ! hai

n

jM[return()]

(Take) hai

n

j M[takeMVarn] ! hi

n

j M[returna]

(Abort) hai

n

j M[putMVarn b] ! ABORT

The (Abort) rule deals with the erroneous situation of a

putMVar on a full MVar. We also need two rules to deal with

the propagation of ABORT.

(AbortPar) ABORT j P ! ABORT

(AbortNu) (�n)ABORT ! ABORT

The operations forkIO and newMVar turn into process re-

striction and composition:

(Fork) M[forkIOa] ! a jM[return()]

(New) M[newMVar] ! (�n)(hi

n

j M[returnn])

if n =2 fn(M)

These two structural rules allow reactions within composi-

tions and beneath restrictions:

(Par) P jQ ! P

0

jQ if P ! P

0

(Res) (�n)P ! (�n)P

0

if P ! P

0

The �nal reaction rule turns a reduction of a program into

a reaction of that program considered as a process:

(Reduce) a ! b if a 7! b

Since processes are identi�ed up to �, we may freely use the

rules of � to bring together partner programs and MVars for

(Put) or (Take) interactions, and to enlarge the scope of an

MVar allocated by (New).

Our semantics is intentionally minimal but nonetheless it

does support at least the following result. Say that a process

P passes a test R i� 9Q(P jR!

�

done jQ), where done is a

new process constant allowed only in test processes such as

R. Then two processes are testing equivalent i� they pass the

same tests. This is a standard de�nition from concurrency

theory (de Nicola & Hennessy [1983]).

Theorem. If two programs a and b are denota-

tionally equivalent as functional programs, they

are testing equivalent when considered as pro-

cesses.

Our denotational semantics is a standard denotational se-

mantics for a lazy functional language, with the IO type

modelled as if it were an algebraic type with a constructor

corresponding to each of the constants putMVar, takeMVar,

forkIO, newMVar and return. These constants and >>= are

modelled by functions acting on this algebraic type. To

model the values held by MVar's we use dynamic types. We

omit the details but this is a generalisation of constructions

from Crole & Gordon [1994] and Gordon [1994a]. In e�ect

we model a program of IO type as a potentially in�nite tree,

where each node represents an instruction to be interpreted

at runtime. The nodes representing forkIO's have two suc-

cessors, to be interpreted in parallel; all the others have one

or none. We omit the proof of the theorem, but intuitively

it holds because as far as passing a test is concerned, all

that matters about a program of IO type is the sequence

of instructions it issues. If two programs are denotationally

equivalent, they issue the same sequence of instructions, so

they are testing equivalent.

This is not a particularly abstract denotational semantics,

since it explicitly represents the instructions issued by a

program, rather than their observable e�ect. However, it

shares with standard denotational semantics of lazy func-

tional languages the property that a program of any type

either equals a value of that type, or denotes ?. This fact

makes it straightforward to validate conventional reasoning

about functional programs, such as ��-equivalence. In par-

ticular, the theorem asserts that any compiler optimisation

that depends on such conventional reasoning will not inval-

idate testing equivalence.

The Concurrent Haskell type system restricts the possibility

of side-e�ects, so we have been able to put all the work of

explaining side-e�ects into explaining IO types. A denota-

tional semantics for a language with unrestricted side-e�ects

| see Crole & Gordon [1994], for instance | would need to

account for side-e�ects at every type, and hence in general

��-equivalence (for example) is unsound.

6.3 Fairness

In any real system the programmer is likely to want some

fairness guarantees. What, precisely, does \fairness" mean?

At least, it must imply that no runnable process will be in-

de�nitely delayed.

Is that enough? No, it is not. Consider a situation in which

several processes are competing for access to a single MVar.

Assuming that no process holds the MVar inde�nitely, it

should not be possible for any of the competing processes to

be denied access inde�nitely. One way to avoid such indef-

inite denial would be to specify a FIFO order for processes

blocked on an MVar, but that is perhaps too strong. It would

be su�cient to specify that no process can be blocked indef-

initely on an MVar unless another process holds that MVar

inde�nitely.

6.4 Summary

There have been several previous semantics for concurrent

functional languages (Holmstr�om [1983]; Je�rey [1995]; Reppy

[1992]; Scholz [1995]). Scholz' set-based semantics is closest,

but nothing in his semantics corresponds to our restriction,

(�n)�, which captures locality of MVars.

A notable feature of our semantics is its strati�cation into a

deterministic reduction relation 7!, and a non-deterministic

reaction relation !. We might consider ! as specifying

an imperative coordination language, and 7! as specifying a

functional computation language.

Our semantics is su�cient to show that the nondetermin-

istic, concurrent computation (!) at IO types does not af-

fect the deterministic, functional computation (7!) at non-

IO types. We sought the simplest semantics that would do

so. We have not gone further | for instance, by seeking

to approximate testing equivalence using a labelled transi-

tion system and bisimilarity | because the presence of both

higher-order functions and local names is known to make

bisimilarity problematic. Je�rey [1995] studies weak bisim-

ilarity for a monadic concurrent language similar in spirit

to Concurrent Haskell but does not consider the problems

of local names. Although an adaptation of Je�rey's work to

Concurrent Haskell would be a worthwhile research project,

our minimal semantics su�ces for many practical purposes.

It provides a simple, precise and abstract speci�cation of the

operational behaviour of Concurrent Haskell programs.

7 Implementation

We have implemented Concurrent Haskell as a small ex-

tension to the Glasgow Haskell Compiler (GHC), a highly-

optimising compiler for Haskell.

Concurrent Haskell runs as a single Unix process, performing

its own scheduling internally. Each use of forkIO creates a

new process, with its own (heap-allocated) stack. The sched-

uler can be told to run either pre-emptively (time-slicing

among runnable processes) or non-pre-emptively (running

each process until it blocks). The scheduler only switches

processes at well-de�ned points at the beginning of basic

blocks; at these points there are no half-modi�ed heap ob-

jects, and the liveness of all registers (notably pointers) is

known.

A thunk is represented by a heap-allocated object contain-

ing a code pointer and the values of the thunk's free vari-

ables. A thunk is evaluated by loading a pointer to it into

a de�ned register and jumping to its code. When a process

begins the evaluation of a thunk, it replaces the thunk's code

pointer with a special \under-evaluation" code pointer. Ac-

cordingly, any other process that attempts to evaluate that

thunk while it is under evaluation will automatically jump

to the \under-evaluation" code, which queues the process on

the thunk. When the original process completes evaluation

of the thunk it overwrites the thunk with its �nal value, and

frees any blocked processes.

An MVar is represented by a pointer to a mutable, heap-

allocated, location. This location includes a ag to indicate

whether the MVar is full or empty, together with either the

value itself, or a queue of blocked processes.

7.1 Other primitives

One tiresome aspect is that a process performing ordinary

Unix I/O might block the whole Concurrent Haskell pro-

gram, rather than just that process, which is obviously wrong.

There seems to be no easy way around this. We provide a

primitive that enables a solution to be built, however:

waitInputFD :: Int -> IO ()

waitInputFD blocks the process until the speci�ed Unix �le

descriptor has input available.

The �nal useful primitive we have added allows a process to

go to sleep for speci�ed number of milliseconds:

delay :: Int -> IO ()

7.2 Garbage collection

An interesting question is the following: is it ever possible

to garbage-collect a process? At �rst its seems that the an-

swer might be quite complicated: after all, process garbage

collection is a notoriously tricky business (see, for example,

Hudak [1983]).

Fortunately, it turns out to be rather easy in Concurrent

Haskell. The principle is as follows: a process can be garbage-

collected only if it can perform no further side e�ects. Here

are two immediate consequences:

(1) A runnable process cannot be garbage collected, be-

cause it might perform more I/O.

(2) A process blocked on an MVar can be garbage-collected

if that MVar is not accessible from another non-garbage

process. Why? Because the blocked process can only

be released if another process puts a value into the

blocking MVar, and that certainly can't happen if the

MVar is unreachable from any non-garbage process.

This leads us to a very simple modi�cation to the garbage

collector:

� When tracing accessible heap objects, treat all runnable

processes as roots.

� When an MVar is identi�ed as reachable, identify all

the processes blocked on that MVar as reachable too

(and hence anything reachable from them).

Like any system, this one is not perfect; for example, an

MVar might be reachable even though no further writes to

it will take place. It does, however, do as well as can be

reasonably expected, and it succeeds in some common cases.

For example, a server with no possibility of future clients will

be garbage-collected, since it is blocked on its input MVar and

no other process now has that MVar.

7.3 Distributed implementation

We are working on a distributed implementation of Con-

current Haskell. One nice property of MVars is that they

seem relatively easy to implement in a distributed setting,

compared to generalised choice for example.

Each MVar resides in one place, and a putMVar or getMVar

operation on a remote MVar is implemented with a message

send. The message for a getMVar carries with it the identity

of the sending process, and may be blocked inde�nitely at

the far end, on an empty MVar. When the MVar is written

to, the blocked getMVar message is returned to the sender,

now carrying the value written to the MVar. On arrival at

the original sender, the reply awakens the process whose

identity it carries.

A putMVar message is simpler, since it requires no reply.

Either it succeeds in writing to an empty MVar, or it �nds a

full MVar, which is a run-time error (but see Section 9).

8 Related work

We originally borrowed the idea of MVars directly from Id,

where they are called M-structures. Id's motivation is rather

di�erent to ours: M-structures are used to allow certain

highly-parallel algorithms to be expressed that are di�cult

or impossible to express without them (Barth, Nikhil &

Arvind [1991]). However the basic problem they solve is

identical: convenient synchronisation between parallel pro-

cesses. We also share with Id the expectation that program-

mers should rarely, if ever, encounter MVars. Rather, MVars

are the \raw iron" from which more friendly abstractions

can be built.

One big di�erence between Concurrent Haskell and Id is

that in Concurrent Haskell operations on MVars can only be

done in the I/O monad, and cannot be performed in purely-

functional contexts. In Id, since everything is eventually

evaluated, side e�ects are permitted everywhere.

It is interesting to compare MVars with ordinary semaphores,

when each are used to provide mutual exclusion. Using

semaphores (or mutex locks in ML-threads) one must re-

member to claim the lock before side-e�ecting the data it

protects; that is, the mutex implicitly protects the data.

With an MVar, the protected data is explicitly inside the

MVar, which means that one cannot possibly forget to claim

the lock before side-e�ecting it! Not only that, but the con-

nection between the lock and the data it protects is more

explicit: MVar t rather than (t, mutex). Lastly, mutual

exclusion using a semaphore requires at least two mutable

locations: the semaphore and the data. Using an MVar usu-

ally collapses these two locations into one, and thereby also

reduces the number of side-e�ecting operations. In com-

plex situations implicit locking may still be unavoidable, but

MVars simplify the common case.

8.1 Concurrent functional languages

Two of the �rst functional languages providing concurrency

were PFL (Holmstr�om [1983]) and Amber (Cardelli [1986]).

Both supported concurrency with communication along syn-

chronous, typed channels.

Reppy's Concurrent ML is, as the name suggests, the ML

predecessor of Concurrent Haskell (Reppy [1992]; Reppy

[1991]). CML is an inuential synchronous concurrent lan-

guage whose war-cry is \choice without loss of abstraction".

It achieves this goal using a new abstract data type of events,

(a subset of) whose signature is:

type 'a chan

type 'a event

val receive : 'a chan -> 'a event

val transmit : 'a chan -> 'a -> unit event

val guard : (unit -> 'a event) -> 'a event

val wrap : ('a event * ('a -> 'b)) -> 'b event

val choose : 'a event list -> 'a event

val sync : 'a event -> 'a

receive and transmit are the primitive events, guard and

wrap add pre-synchronisation and post-synchronisation ac-

tions respectively to an event, choose combines a list of

events into a single event, and sync actually synchronises

on an event. In many ways, a CML value of type event t is

rather like a Haskell I/O action of type IO t. Both are �rst-

class values that can be synchronised on (resp. performed)

repeatedly.

An important di�erence is that CML events contain an im-

plicit \synchronisation point" that is a single primitive ac-

tion, encapsulated in pre- and post-synchronisation actions.

Haskell I/O actions have no such structure. The correspond-

ing disadvantage is that one writes di�erent CML code to

perform a protocol depending on whether the result is sim-

ply a unit-valued function that is called to perform side ef-

fects, or an event-valued function that is activated by sync.

The latter are not as easy to write as the former, and the

mere fact of the di�erence might be considered as a blow to

abstraction.

FACILE is another extension of ML with concurrency (Gi-

acalone, Mishra & Prasad [1989]), though one which is quite

a bit more complex than either CML or Concurrent Haskell.

Like CML, FACILE employs synchronous communication.

ML-threads is a concurrency package for ML developed by

Cooper & Morrisett [1990]. It provides threads, together

with mutex locks and condition variables to manage thread

interaction. Concurrent Haskell has a similar avour, al-

though it seems somewhat simpler: for example, Concurrent

Haskell provides only MVars rather than both mutexes and

condition variables.

Using Gofer, Jones & Hudak [1993] have recently explored

issues similar to Concurrent Haskell, introducing a (symmet-

ric) fork primitive and synchronous channels into a monadic

setting. This work di�ers from ours in that the emphasis

is on expressing parallel algorithms succinctly rather than

writing concurrent programs that engage in messy interac-

tion with the outside world. Evaluating two monadic sub-

computations in parallel, by `sparking' them using a sym-

metric fork primitive is convenient for many parallel algo-

rithms, but this synchronous view of process is not appropri-

ate in the concurrent case (see Section 2.2). Communication

between these `sparked' processes is done on exclusive, syn-

chronous channels, considering it an error when more than

one send occurs on a channel without a matching receive.

This restriction is quite severe in a concurrent setting, as

resource managers such as a window system that encapsu-

late and provide controlled access to some shared resource,

cannot be readily expressed.

It goes without saying that we share with all of these lan-

guages the bene�ts of higher-order functions, polymorphic

typing, the ability to pass any value along a channel (in-

cluding functions, channels, and as-yet-unevaluated suspen-

sions).

8.2 Functional operating systems

The early 1980s saw a great deal of work done on func-

tional operating systems. Typical was the work of Jones and

Henderson (Henderson [1982]; Jones [1983]; Jones [1984]),

and Stoye's \sorting o�ce" (Stoye [1985]). All of this work

was based on the idea of processes communicating through

streams of messages, with a non-deterministic merge prim-

itive, or in Stoye's case an external sorting o�ce, that pro-

vided a choice construct. Programming using streams is not

particularly easy, however, requiring a great deal of tagging

and untagging to keep the plumbing straight.

Cupitt's made an advance over stream processing by in-

troducing a form of monadic I/O (actually presented us-

ing continuations), with explicit process forking much like

forkIO (Cupitt [1992]). Communication between processes

was solely by sending messages to the process; that is, every

process had but a single input port through which it had to

multiplex all its communication.

8.3 Concurrent object-oriented languages

Much the largest group of asynchronous concurrent lan-

guages is the that of actor languages (Agha [1986]), and

concurrent object-oriented languages (Agha [1990]) such as

ABCL (Yonezawa [1990]). It would be interesting to un-

dertake a systematic comparison of them with Concurrent

Haskell, but we have not yet done so

8.4 Synchronous vs asynchronous

We are convinced that an asynchronous model of commu-

nication gives a simpler, cleaner design than a synchronous

one. Briey, our reasons are as follows:

� The asynchronous model allows one to think either in

terms of messages or in terms of shared memory. The

synchronous model makes the former much easier than

the latter, by requiring a shared memory location to be

modelled by a process and associated communication

protocol.

� The asynchronous model seems to be much less prof-

ligate with process creation, by substituting \passive"

MVars for active processes.

� A synchronous model absolutely requires choice, with

the di�culties discussed earlier, while the asynchronous

model does not.

� In a distributed system, the underlying infrastructure

directly supports asynchronous messages, while syn-

chronous ones have to be programmed on top. In this

sense, asynchronous communication is more primitive.

9 Conclusions and further work

We have described a small and simple extension to Haskell

that allows concurrent programs to be written. Using this

substrate we are now well advanced in the construction of

a graphical user interface toolkit, Haggis (Finne & Pey-

ton Jones [1995]). Indeed this application has been the driv-

ing force for Concurrent Haskell throughout, just as eXene

was used as a test case for CML. Despite the apparently

primitive nature of our single synchronisation mechanism,

MVars, we have found the language surprisingly expressive.

The current semantics of MVars specify that a putMVar that

�nds a full MVar is an error that aborts the whole program.

Several other design choices are also reasonable:

� Make an MVar hold a multiset of values, as in Pict

channels.

� Make an MVar hold a sequence of values.

� Make an MVar hold a single value, but specify that a

putMVar on a full MVar should block, rather than cause

an error.

We are undecided whether any of these choices are \better"

than our current semantics. The semantics of each is fairly

easy to describe, and their implementations are not hard

either.

One obvious topic for further work is further development

of the formal semantics of Concurrent Haskell. On the im-

plementation side we are actively working on a distributed,

multiprocessor implementation.

Concurrent Haskell is freely available by FTP. (Connect

to ftp.dcs.glasgow.ac.uk, look in pub/haskell/glasgow,

and grab any version of Glasgow Haskell from 0.24 or later.)

Acknowledgements

We are grateful to Benjamin Pierce, John Reppy, David

Turner and Luca Cardelli, who all gave us very helpful feed-

back on earlier versions of the paper. Thanks, too, to Jim

Mattson, who implemented concurrency and MVars in Glas-

gow Haskell.

References

G Agha [1986], Actors: a model of concurrent computation

in distributed systems, MIT Press.

G Agha [Sept 1990], \Concurrent object-oriented program-

ming," Comm ACM 33, 125{141.

Arvind, RS Nikhil & KK Pingali [Oct 1989], \I-structures -

data structures for parallel computing," TOPLAS

11, 598{632.

PS Barth, RS Nikhil & Arvind [Sept 1991], \M-structures:

extending a parallel, non-strict functional language

with state," in Functional Programming Languages

and Computer Architecture, Boston, Hughes, ed.,

LNCS 523, Springer Verlag, 538{568.

HW Barz [Feb 1983], \Implementing semaphores by binary

semaphores," SIGPLAN Notices 18, 39{45.

L Cardelli [1986], \Amber," in Combinators and functional

programming languages, G Cousineau, PL Curien

& B Robinet, eds., LNCS 242, Springer Verlag.

EC Cooper & JG Morrisett [Dec 1990], \Adding threads to

Standard ML," CMU-CS-90-186, Dept Comp Sci,

Carnegie Mellon Univ.

RL Crole & AD Gordon [Sept 1994], \A sound metalogical

semantics for input/output e�ects," in Computer

Science Logic '94, Kazimierz, Poland, L Pacholski

& J Tiuryn, eds., Springer Verlag LNCS 933, 339{

353.

J Cupitt [Aug 1992], \The design and implementation of an

operating system in a functional language," PhD

thesis, Computing Lab, University of Kent.

S Finne & SL Peyton Jones [Sept 1995], \Composing Hag-

gis," Proc 5th Eurographics Workshop on Program-

ming Paradigms in Graphics, Maastricht.

A Giacalone, P Mishra & S Prasad [1989], \Facile: A Sym-

metric Integration of Concurrent and Functional

Programming," International Journal of Parallel Pro-

gramming 18.

AD Gordon [1994a], Functional Programming and Input/Output,

Distinguished Dissertations in Computer Science,

Cambridge University Press.

AD Gordon [1994b], \A Tutorial on Co-induction and Func-

tional Programming," in Functional Programming,

Glasgow 1994, K Hammond, DN Turner & PM

Sansom, eds., Workshops in Computing, Springer

Verlag, 78{95.

AD Gordon [June 1993], \An Operational Semantics for I/O

in a Lazy Functional Language," in Proc Func-

tional Programming Languages and Computer Ar-

chitecture, Copenhagen, ACM, 136{145.

P Henderson [1982], \Purely functional operating systems,"

in Functional programming and its applications,

Darlington, Henderson & Turner, eds., CUP.

S Holmstr�om [1983], \Polymorphic type systems and concur-

rent computations in functional languages," PhD

thesis, Department of Computer Science, Chalmers

University.

Paul Hudak [Aug 1983], \Distributed task and memory man-

agement," in Symposium on Principles of Distributed

Computing, NA Lynch et al, ed., ACM, 277{289.

A Je�rey [1995], \A fully abstract semantics for a concurrent

functional language with monadic types," in Pro-

ceedings of the Tenth IEEE Symposium on Logic

in Computer Science, San Diego.

MP Jones & P Hudak [Aug 1993], \Implicit and explicit par-

allel programming in Haskell," YALEU/DCS/RR-

982, Yale University.

Simon B Jones [Aug 1983], \Abstract machine support for

purely functional operating systems," PRG-34, Pro-

gramming Research Group, Oxford.

Simon B Jones [Sept 1984], \A range of operating systems

written in a purely functional style," TR 16, De-

partment of Computer Science, University of Stir-

ling.

G Kahn & DB MacQueen [1977], \Coroutines and networks

of parallel processes," in Information Processing

'77, B Gilchrist, ed., North-Holland, 993{998.

J Launchbury & SL Peyton Jones [1996], \State in Haskell,"

Lisp and Symbolic Computation (to appear).

J Launchbury & SL Peyton Jones [June 1994], \Lazy func-

tional state threads," in SIGPLAN Symposium on

Programming Language Design and Implementa-

tion (PLDI'94), Orlando, ACM.

R Milner [Oct 1991], \The Polyadic �-Calculus: A Tutorial,"

ECS-LFCS-91-180, Lab for Foundations of Com-

puter Science, Edinburgh.

R de Nicola & MC Hennessy [1983], \Testing equivalence for

processes," Theoretical Computer Science 34, 83{

133.

SL Peyton Jones & PL Wadler [Jan 1993], \Imperative func-

tional programming," in 20th ACM Symposium on

Principles of Programming Languages, Charleston,

ACM, 71{84.

BC Pierce & DN Turner [1995], \Concurrent Objects in a

Process Calculus," in Theory and Practice of Paral-

lel Programming (TPPP), Sendai, Japan, Springer

Verlag LNCS.

J Reppy [June 1992], \Higher-order concurrency," PhD the-

sis, TR 92-1285, Cornell University.

JH Reppy [1995], \First-class synchronous operations," in

Theory and Practice of Parallel Programming (TPPP),

Sendai, Japan, Springer Verlag LNCS.

JH Reppy [June 1991], \CML: a higher-order concurrent lan-

guage," in ACM SIGPLANConference on Program-

ming Language Design and Implementation (PLDI),

ACM.

E Scholz [June 1995], \Four concurrency primitives for Haskell,"

in The Haskell Workshop, La Jolla, P Hudak, ed.,

1{12.

W Stoye [Dec 1985], \The implementation of functional lan-

guages using custom hardware," PhD thesis, TR81,

Computer Lab, University of Cambridge.

A Yonezawa, ed. [1990], ABCL: an object-oriented concur-

rent system: theory, language, programming, im-

plementation, and application, MIT Press.

