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Abstract

Suppose you are given some dataset drawn from an underlying probability
distributionP and you want to estimate a “simple” subsetS of input space such
that the probability that a test point drawn fromP lies outside ofS equals some
a priori specified value between0 and1.

We propose a method to approach this problem by trying to estimate a func-
tion f which is positive onS and negative on the complement. The functional
form of f is given by a kernel expansion in terms of a potentially small subset of
the training data; it is regularized by controlling the length of the weight vector
in an associated feature space. The expansion coefficients are found by solving
a quadratic programming problem, which we do by carrying out sequential op-
timization over pairs of input patterns. We also provide a theoretical analysis of
the statistical performance of our algorithm.

The algorithm is a natural extension of the support vector algorithm to the
case of unlabelled data.

Keywords. Support Vector Machines, Kernel Methods, Density Estimation,
Unsupervised Learning, Novelty Detection, Condition Monitoring, Outlier De-
tection

1 Introduction

During recent years, a new set of kernel techniques for supervised learning has been
developed (Vapnik, 1995; Sch¨olkopf et al., 1999a). Specifically, support vector (SV)
algorithms for pattern recognition, regression estimation and solution of inverse prob-
lems have received considerable attention.

There have been a few attempts to transfer the idea of using kernels to compute
inner products in feature spaces to the domain of unsupervised learning. The problems
in that domain are, however, less precisely specified. Generally, they can be character-
ized as estimatingfunctionsof the data which tell you something interesting about the
underlying distributions. For instance, kernel PCA can be characterized as comput-
ing functions which on the training data produce unit variance outputs while having
minimum norm in feature space (Sch¨olkopf et al., 1999b). Another kernel-based un-
supervised learning technique, regularized principal manifolds (Smola et al., 2000),
computes functions which give a mapping onto a lower-dimensional manifold mini-
mizing a regularized quantization error. Clustering algorithms are further examples of
unsupervised learning techniques which can be kernelized (Sch¨olkopf et al., 1999b).

An extreme point of view is that unsupervised learning is about estimating densi-
ties. Clearly, knowledge of the density ofP would then allow us to solve whatever
problem can be solved on the basis of the data.

The present work addresses an easier problem: it proposes an algorithm which
computes a binary function which is supposed to capture regions in input space where
the probability density lives (its support), i.e. a function such that most of the data will
live in the region where the function is nonzero (Sch¨olkopf et al., 1999). In doing so,
it is in line with Vapnik’s principle never to solve a problem which is more general
than the one we actually need to solve. Moreover, it is applicable also in cases where
the density of the data’s distribution is not even well-defined, e.g. if there are singular
components.
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The article is organized as follows. After a review of some previous work in Sec. 2,
we propose SV algorithms for the considered problem. Sec. 4 gives details on the im-
plementation of the optimization procedure, followed by theoretical results character-
izing the present approach. In Sec. 6, we apply the algorithm to artificial as well as
real-world data. We conclude with a discussion.

2 Previous Work

In order to describe some previous work, it is convenient to introduce the following
definition of a (multi-dimensional) quantile function, introduced by Einmal and Mason
(1992). Letx1; : : : ;x` be i.i.d. random variables in a setX with distributionP . LetC
be a class of measurable subsets ofX and let� be a real-valued function defined onC.
Thequantile functionwith respect to(P; �;C) is

U(�) = inff�(C):P (C) � �;C 2 Cg 0 < � � 1:

In the special case whereP is the empirical distribution (P`(C) := 1
`

P`
i=1 1C(xi)),

we obtain theempirical quantile function. We denote byC(�) andC`(�) the (not
necessarily unique)C 2 C that attains the infimum (when it is achievable). The most
common choice of� is Lebesgue measure, in which caseC(�) is the minimum volume
C 2 C that contains at least a fraction� of the probability mass. Estimators of the form
C`(�) are calledminimum volume estimators.

Observe that forC being all Borel measurable sets,C(1) is the supportof the
densityp corresponding toP , assuming it exists. (Note thatC(1) is well defined even
whenp does not exist.) For smaller classesC, C(1) is the minimum volumeC 2 C
containing the support ofp.

Turning to the case where� < 1, it seems the first work was reported by Sager
(1979) and then Hartigan (1987) who consideredX = R

2 with C being the class of
closed convex sets inX. (They actually considered density contour clusters; cf. Ap-
pendix A for a definition.) Nolan (1991) considered higher dimensions withC being
the class of ellipsoids. Tsybakov (1997) has studied an estimator based on piecewise
polynomial approximation ofC(�) and has shown it attains the asymptotically mini-
max rate for certain classes of densitiesp. Polonik (1997) has studied the estimation
of C(�) by C`(�). He derived asymptotic rates of convergence in terms of various
measures of richness ofC. He considered both VC classes and classes with a log�-
covering number with bracketing of orderO(��r) for r > 0. More information on
minimum volume estimators can be found in that work, and in Appendix A.

A number of applications have been suggested for these techniques. They include
problems in medical diagnosis (Tarassenko et al., 1995), marketing (Ben-David and
Lindenbaum, 1997), condition monitoring of machines (Devroye and Wise, 1980), es-
timating manufacturing yields (Stoneking, 1999), econometrics and generalized non-
linear principal curves (Tsybakov, 1997; Korostelev and Tsybakov, 1993), regression
and spectral analysis (Polonik, 1997), tests for multimodality and clustering (Polonik,
1995b) and others (M¨uller, 1992).

Most of these papers, in particular those with a theoretical slant, do not go all
the way in devising practical algorithms that work on high-dimensional real-world-
problems. A notable exception to this is the work of Tarassenko et al. (1995).
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Polonik (1995a) has shown how one can use estimators ofC(�) to construct den-
sity estimators. The point of doing this is that it allows one to encode a range of prior
assumptions about the true densityp that would be impossible to do within the tradi-
tional density estimation framework. He has shown asymptotic consistency and rates
of convergence for densities belonging to VC-classes or with a known rate of growth
of metric entropy with bracketing.

Let us conclude this section with a short discussion of how the present work relates
to the above. The present paper describes an algorithm which finds regions close to
C(�). Our classC is defined implicitly via a kernelk as the set of half-spaces in a
SV feature space. We do not try to minimize the volume ofC in input space. Instead,
we minimize a SV style regularizer which, using a kernel, controls the smoothness
of the estimated function describingC. In terms of multi-dimensional quantiles, our
approach can be thought of as employing�(Cw) = kwk2, whereCw = fx: fw(x) �
�g. Here,(w; �) are a weight vector and an offset parametrizing a hyperplane in the
feature space associated with the kernel.

The main contribution of the present work is that we propose an algorithm that
has tractable computational complexity, even in high-dimensional cases. Our theory,
which uses very similar tools to those used by Polonik, gives results that we expect
will be of more use in a finite sample size setting.

3 Algorithms

We first introduce terminology and notation conventions. We consider training data

x1; : : : ;x` 2 X; (1)

where` 2 N is the number of observations, andX is some set. For simplicity, we think
of it as a compact subset ofRN . Let � be a feature mapX ! F , i.e. a map into an
inner product spaceF such that the inner product in the image of� can be computed
by evaluating some simple kernel (Boser et al., 1992; Vapnik, 1995; Sch¨olkopf et al.,
1999a)

k(x;y) = (�(x) � �(y)); (2)

such as the Gaussian kernel

k(x;y) = e�kx�yk
2=c: (3)

Indicesi andj are understood to range over1; : : : ; ` (in compact notation:i; j 2 [`]).
Bold face greek letters denote`-dimensional vectors whose components are labelled
using normal face type.

In the remainder of this section, we shall develop an algorithm which returns a
functionf that takes the value+1 in a “small” region capturing most of the data points,
and�1 elsewhere. Our strategy is to map the data into the feature space corresponding
to the kernel, and to separate them from the origin with maximum margin. For a new
point x, the valuef(x) is determined by evaluating which side of the hyperplane it
falls on, in feature space. Via the freedom to utilize different types of kernel functions,
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this simple geometric picture corresponds to a variety of nonlinear estimators in input
space.

To separate the data set from the origin, we solve the following quadratic program:

min
w2F;�2R`;�2R

1
2kwk2 + 1

�`

P
i �i � � (4)

subject to (w � �(xi)) � �� �i; �i � 0: (5)

Here,� 2 (0; 1] is a parameter whose meaning will become clear later.
Since nonzero slack variables�i are penalized in the objective function, we can

expect that ifw and� solve this problem, then the decision function

f(x) = sgn((w � �(x))� �) (6)

will be positive for most examplesxi contained in the training set,1 while the SV type
regularization termkwk will still be small. The actual trade-off between these two
goals is controlled by�.

Using multipliers�i; �i � 0, we introduce a Lagrangian

L(w; �; �;�;�) =
1

2
kwk2+ 1

�`

X
i

�i���
X
i

�i((w ��(xi))��+ �i)�
X
i

�i�i;

(7)

and set the derivatives with respect to the primal variablesw; �; � equal to zero, yield-
ing

w =
X
i

�i�(xi); (8)

�i =
1

�`
� �i � 1

�`
;
X
i

�i = 1: (9)

In (8), all patternsfxi: i 2 [`]; �i > 0g are called Support Vectors. Together with (2),
the SV expansion transforms the decision function (6) into a kernel expansion

f(x) = sgn

 X
i

�ik(xi;x)� �

!
: (10)

Substituting (8) – (9) intoL (7), and using (2), we obtain the dual problem:

min
�

1

2

X
ij

�i�jk(xi;xj) subject to0 � �i � 1

�`
;
X
i

�i = 1: (11)

One can show that at the optimum, the two inequality constraints (5) become equalities
if �i and�i are nonzero, i.e. if0 < �i < 1=(�`). Therefore, we can recover� by
exploiting that for any such�i, the corresponding patternxi satisfies

� = (w � �(xi)) =
X
j

�jk(xj ;xi): (12)

1We use the convention that sgn(z) equals1 for z � 0 and�1 otherwise.

4



Note that if� approaches0, the upper boundaries on the Lagrange multipliers tend
to infinity, i.e. the second inequality constraint in (11) becomes void. The problem then
resembles the correspondinghard marginalgorithm, since the penalization of errors
becomes infinite, as can be seen from the primal objective function (4). It is still a
feasible problem, since we have placed no restriction on the offset�, so it can become
a large negative number in order to satisfy (5). If we had required� � 0 from the start,
we would have ended up with the constraint

P
i �i � 1 instead of the corresponding

equality constraint in (11), and the multipliers�i could have diverged.
It is instructive to compare (11) to a Parzen windows estimator. To this end, sup-

pose we use a kernel which can be normalized as a density in input space, such as
the Gaussian (3). If we use� = 1, then the two constraints only allow the solution
�1 = : : : = �` = 1=`. Thus the kernel expansion in (10) reduces to a Parzen win-
dows estimate of the underlying density. For� < 1, the equality constraint in (11) still
ensures that the decision function is a thresholded density, however, in that case, the
density will only be represented by a subset of training examples (the SVs) — those
which are important for the decision (10) to be taken. Sec. 5 will explain the precise
meaning of�.

To conclude this section, we note that one can also useballs to describe the data
in feature space, close in spirit to the algorithms of Sch¨olkopf et al. (1995), with hard
boundaries, and Tax and Duin (1999), with “soft margins.” Again, we try to putmost
of the data into a small ball by solving, for� 2 (0; 1),

min
R2R;�2R`;c2F

R2 + 1
�`

P
i �i

subject to k�(xi)� ck2 � R2 + �i; �i � 0 for i 2 [`]: (13)

This leads to the dual

min
�

P
ij �i�jk(xi;xj)�

P
i �ik(xi;xi) (14)

subject to 0 � �i � 1
�` ;

P
i �i = 1 (15)

and the solution
c =

X
i

�i�(xi); (16)

corresponding to a decision function of the form

f(x) = sgn

0
@R2 �

X
ij

�i�jk(xi;xj) + 2
X
i

�ik(xi;x) � k(x;x)

1
A : (17)

Similar to the above,R2 is computed such that for anyxi with 0 < �i < 1=(�`) the
argument of the sgn is zero.

For kernelsk(x;y) which only depend onx� y, k(x;x) is constant. In this case,
the equality constraint implies that the linear term in the dual target function is con-
stant, and the problem (14–15) turns out to be equivalent to (11). It can be shown that
the same holds true for the decision function, hence the two algorithms coincide in that
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case. This is geometrically plausible: for constantk(x;x), all mapped patterns lie on a
sphere in feature space. Therefore, finding the smallest sphere (containing the points)
really amounts to finding the smallest segment of the sphere that the data live on. The
segment, however, can be found in a straightforward way by simply intersecting the
data sphere with a hyperplane — the hyperplane with maximum margin of separation
to the origin will cut off the smallest segment.

4 Optimization

The last section has formulated quadratic programs (QPs) for computing regions that
capture a certain fraction of the data. These constrained optimization problems can be
solved via an off-the-shelf QP package to compute the solution. They do, however,
possess features that set them apart from generic QPs, most notably the simplicity of
the constraints. In the present section, we describe an algorithm which takes advan-
tage of these features and empirically scales better to large data set sizes than a standard
QP solver with time complexity of orderO(`3) (cf. Platt, 1999). The algorithm is a
modified version of SMO (Sequential Minimal Optimization), an SV training algo-
rithm originally proposed for classification (Platt, 1999), and subsequently adapted to
regression estimation (Smola and Sch¨olkopf, 2000).

The strategy of SMO is to break up the constrained minimization of (11) into the
smallest optimization steps possible. Due to the constraint on the sum of the dual
variables, it is impossible to modify individual variables separately without possibly
violating the constraint. We therefore resort to optimizing over pairs of variables.

Elementary optimization step. For instance, consider optimizing over�1 and�2

with all other variables fixed. Using the shorthandKij := k(xi;xj), (11) then reduces
to

min
�1;�2

1

2

2X
i;j=1

�i�jKij +

2X
i=1

�iCi + C; (18)

with Ci :=
P`

j=3 �jKij andC :=
P`

i;j=3 �i�jKij , subject to

0 � �1; �2 � 1

�`
;

2X
i=1

�i = �; (19)

where� := 1�P`
i=3 �i.

We discardC, which is independent of�1 and�2, and eliminate�1 to obtain

min
�2

1

2
(�� �2)

2K11 + (�� �2)�2K12 +
1

2
�2
2K22 + (�� �2)C1 + �2C2; (20)

with the derivative

�(�� �2)K11 + (�� 2�2)K12 + �2K22 � C1 + C2: (21)

Setting this to zero and solving for�2, we get

�2 =
�(K11 �K12) + C1 � C2

K11 +K22 � 2K12
: (22)
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Once�2 is found,�1 can be recovered from�1 = �� �2. If the new point(�1; �2)
is outside of[0; 1=(�`)], the constrained optimum is found by projecting�2 from (22)
into he region allowed by the constraints, and the re-computing�1.

The offset� is recomputed after every such step.
Additional insight can be obtained by rewriting the last equation in terms of the

outputs of the kernel expansion on the examplesx1 andx2 before the optimization
step. Let��1; �

�
2 denote the values of their Lagrange parameter before the step. Then

the corresponding outputs (cf. (10)) read

Oi := K1i�
�
1 +K2i�

�
2 +Ci: (23)

Using the latter to eliminate theCi, we end up with an update equation for�2 which
does not explicitly depend on��1,

�2 = ��2 +
O1 �O2

K11 +K22 � 2K12
; (24)

which shows that the update is essentially the fraction of first and second derivative of
the objective function along the direction of�-constraint satisfaction.

Clearly, the same elementary optimization step can be applied to any pair of two
variables, not just�1 and�2. We next briefly describe how to do the overall optimiza-
tion.

Initialization of the algorithm. We start by setting a fraction� of all �i, randomly
chosen, to1=(�`). If �` is not an integer, then one of the examples is set to a value in
(0; 1=(�`)) to ensure that

P
i �i = 1. Moreover, we set the initial� to maxfOi: i 2

[`]; �i > 0g.

Optimization algorithm. We then select a first variable for the elementary optimiza-
tion step in one of the two following ways. Here, we use the shorthandSVnb for the in-
dices of variables which are not at bound, i.e.SVnb := fi: i 2 [`]; 0 < �i < 1=(�`)g.
At the end, these correspond to points that will sit exactly on the hyperplane, and that
will therefore have a strong influence on its precise position.

(i) We scan over the entire data set2 until we find a variable violating a KKT
condition (Bertsekas, 1995, e.g.), i.e. a point such that(Oi � �) � �i > 0 or
(� � Oi) � (1=(�`) � �i) > 0. Once we have found one, say�i, we pick�j
according to

j = argmax n2SVnb
jOi �Onj: (25)

(ii) Same as (i), but the scan is only performed overSVnb.

In practice, one scan of type (i) is followed by multiple scans of type (ii), until there
are no KKT violators inSVnb, whereupon the optimization goes back to a single scan
of type (i). If the type (i) scan finds no KKT violators, the optimization terminates.

In unusual circumstances, the choice heuristic (25) cannot make positive progress.
Therefore, a hierarchy of other choice heuristics is applied to ensure positive progress.

2This scan can be accelerated by not checking patterns which are on the correct side of the hyperplane
by a large margin, using the method of Joachims (1999).
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These other heuristics are the same as in the case of pattern recognition, cf. (Platt,
1999), and have been found to work well in our experiments to be reported below.

In our experiments with SMO applied to distribution support estimation, we have
always found it to converge. However, to ensure convergence even in rare pathological
conditions, the algorithm can be modified slightly, cf. (Keerthi et al., 1999).

We end this section by stating a trick which is of importance in practical imple-
mentations. In practice, one has to use a nonzero accuracy tolerance when checking
whether two quantities are equal. In particular, comparisons of this type are used in de-
termining whether a point lies on the margin. Since we want the final decision function
to evaluate to1 for points which lieon the margin, we need to subtract this constant
from the offset� at the end.

In the next section, it will be argued that subtracting something from� is actually
advisable also from a statistical point of view.

5 Theory

We now analyse the algorithm theoretically, starting with the uniqueness of the hyper-
plane (Proposition 2). We then describe the connection to pattern recognition (Propo-
sition 3), and show that the parameter� characterizes the fractions of SVs and outliers
(Proposition 4). Following that, we give a robustness result for the soft margin (Propo-
sition 5) and finally we present a theoretical result on the generalization error (Theorem
7). The proofs are given in the Appendix.

In this section, we will use italic letters to denote the feature space images of the
corresponding patterns in input space, i.e.

xi := �(xi): (26)

Definition 1 A data set
x1; : : : ; x` (27)

is calledseparableif there exists somew 2 F such that(w � xi) > 0 for i 2 [`].

If we use a Gaussian kernel (3), then any data setx1; : : : ;x` is separable after it is
mapped into feature space: to see this, note thatk(xi;xj) > 0 for all i; j, thus all inner
products between mapped patterns are positive, implying that all patterns lie inside the
same orthant. Moreover, sincek(xi;xi) = 1 for all i, they all have unit length. Hence
they are separable from the origin.

Proposition 2 (Supporting Hyperplane) If the data set (27) is separable, then there
exists a uniquesupporting hyperplanewith the properties that (1) it separates all data
from the origin, and (2) its distance to the origin is maximal among all such hyper-
planes. For any� > 0, it is given by

min
w2F

1

2
kwk2 subject to(w � xi) � �; i 2 [`]: (28)
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The following result elucidates the relationship between single-class classification
and binary classification.

Proposition 3 (Connection to Pattern Recognition)(i) Suppose(w; �) parametrizes
the supporting hyperplane for the data (27). Then(w; 0) parametrizes the optimal sep-
arating hyperplane for the labelled data set

f(x1; 1); : : : ; (x`; 1); (�x1;�1); : : : ; (�x`;�1)g: (29)

(ii) Suppose(w; 0) parametrizes the optimal separating hyperplane passing through
the origin for a labelled data set

f(x1; y1); : : : ; (x`; y`)g; (yi 2 f�1g for i 2 [`]); (30)

aligned such that(w � xi) is positive foryi = 1. Suppose, moreover, that�=kwk
is the margin of the optimal hyperplane. Then(w; �) parametrizes the supporting
hyperplane for the unlabelled data set

fy1x1; : : : ; y`x`g: (31)

Note that the relationship is similar for nonseparable problems. In that case,margin
errors in binary classification (i.e. points which are either on the wrong side of the
separating hyperplane or which fall inside the margin) translate intooutliers in single-
class classification, i.e. into points which fall on the wrong side of the hyperplane.
Proposition 3 then holds, cum grano salis, for the training sets with margin errors and
outliers, respectively, removed.

The utility of Proposition 3 lies in the fact that it allows us to recycle certain results
proven for binary classification (Sch¨olkopf et al., 2000) for use in the single-class
scenario. The following, explaining the significance of the parameter�, is such a case.

Proposition 4 (�-Property) Assume the solution of (4),(5) satisfies� 6= 0. The fol-
lowing statements hold:
(i) � is an upper bound on the fraction of outliers.
(ii) � is a lower bound on the fraction of SVs.
(iii) Suppose the data (27) were generated independently from a distributionP (x)
which does not contain discrete components. Suppose, moreover, that the kernel is an-
alytic and non-constant. With probability 1, asymptotically,� equals both the fraction
of SVs and the fraction of outliers.

Note that this result also applies to the soft margin ball algorithm of Tax and Duin
(1999), provided that it is stated in the�-parameterization given in Sec. 3.

Proposition 5 (Resistance)Local movements of outliers parallel tow do not change
the hyperplane.
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Note that although the hyperplane does not change, its parametrization inw and �
does.

We now move on to the subject of generalization. Our goal is to bound the prob-
ability that a novel point drawn from the same underlying distribution lies outside of
the estimated region. We present a “marginalised” analysis which in fact provides a
bound on the probability that a novel point lies outside the region slightly larger than
the estimated one.

Definition 6 Let f be a real-valued function on a spaceX. Fix � 2 R. For x 2 X let
d(x; f; �) = maxf0; � � f(x)g: Similarly for a training sequenceX := (x1; : : : ;x`),
we define

D(X; f; �) =
X
x2X

d(x; f; �):

In the following,log denotes logarithms to base 2 andln denotes natural logarithms.

Theorem 7 (Generalization Error Bound) Suppose we are given a set of` exam-
plesX 2 X` generated i.i.d. from an unknown distributionP which does not con-
tain discrete components. Suppose, moreover, that we solve the optimisation problem
(4),(5) (or equivalently (11)) and obtain a solutionfw given explicitly by (10). Let
Rw;� := fx: fw(x) � �g denote the induced decision region. With probability1 � �
over the draw of the random sampleX 2 X`, for any
 > 0,

P
�
x0:x0 62 Rw;��


	 � 2

`

�
k + log

`2

2�

�
; (32)

where

k =
c1 log(c2
̂

2`)


̂2
+

2D


̂
log

�
e

�
(2`� 1)
̂

2D
+ 1

��
+ 2; (33)

c1 = 16c2, c2 = ln(2)=(4c2), c = 103, 
̂ = 
=kwk, D = D(X; fw;0; �) =
D(X; fw;�; 0), and� is given by (12).

The training sampleX defines (via the algorithm) the decision regionRw;�. We
expect that new points generated according toP will lie in Rw;�. The theorem gives a
probabilistic guarantee that new points lie in the larger regionRw;��
.

The parameter� can be adjusted when running the algorithm to trade off incor-
porating outliers versus minimizing the “size” ofRw;�. Adjusting� will change the
value ofD. Note that sinceD is measured with respect to� while the bound applies
to �� 
, any point which is outside of the region that the bound applies to will make a
contribution toD which is bounded away from0. Therefore, (32) doesnot imply that
asymptotically, we will always estimate the complete support.

The parameter
 allows one to trade off the confidence with which one wishes
the assertion of the theorem to hold against the size of the predictive regionRw;��
 :
one can see from (33) thatk and hence the RHS of (32) scales inversely with
. In
fact, it scales inversely witĥ
, i.e. it increases withw. This justifies measuring the
complexity of the estimated region by the size ofw, and minimizingkwk2 in order to
find a region that will generalize well. In addition, the theorem suggests not to use the
offset � returned by the algorithm, which would correspond to
 = 0, but a smaller
value�� 
 (with 
 > 0).
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�, width c 0.5, 0.5 0.5, 0.5 0.1, 0.5 0.5, 0.1
frac. SVs/OLs 0.54, 0.43 0.59, 0.47 0.24, 0.03 0.65, 0.38
margin�=kwk 0.84 0.70 0.62 0.48

Figure 1: First two pictures: A single-class SVM applied to two toy problems;
� = c = 0:5, domain: [�1; 1]2. Note how in both cases, at least a fraction of� of
all examples is in the estimated region (cf. table). The large value of� causes the
additional data points in the upper left corner to have almost no influence on the de-
cision function. For smaller values of�, such as0:1 (third picture), the points cannot
be ignored anymore. Alternatively, one can force the algorithm to take these ‘out-
liers’ (OLs) into account by changing the kernel width (3): in thefourth picture, using
c = 0:1; � = 0:5, the data is effectively analyzed on a different length scale which
leads the algorithm to consider the outliers as meaningful points.

We do not claim that using Theorem 7 directly is a practical means to determine
the parameters� and
 explicitly. It is loose in several ways. We suspectc is too large
by a factor of more than 50. Furthermore, no account is taken of the smoothness of the
kernel used. If that were done (by using refined bounds on the covering numbers of the
induced class of functions as in Williamson et al. (1998)), then the first term in (33)
would increase much more slowly when decreasing
. The fact that the second term
would not change indicates a different tradeoff point. Nevertheless, the theorem gives
one some confidence that� and
 are suitable parameters to adjust.

6 Experiments

We apply the method to artificial and real-world data. Figure 1 displays 2-D toy ex-
amples, and shows how the parameter settings influence the solution. Figure 2 shows
a comparison to a Parzen windows estimator on a 2-D problem, along with a family of
estimators which lie “in between” the present one and the Parzen one.

Figure 3 shows a plot of the outputs(w � �(x)) on training and test sets of the US
postal service database of handwritten digits. The database contains9298 digit images
of size16� 16 = 256; the last2007 constitute the test set. We used a Gaussian kernel
(3), which has the advantage that the data are always separable from the origin in
feature space (cf. the comment following Definition 1). For the kernel parameterc, we
used0:5�256. This value was chosen a priori, it is a common value for SVM classifiers
on that data set, cf. Sch¨olkopf et al. (1995)).3 We fed our algorithm with the training

3In (Hayton et al., 2001), the following procedure is used to determine a value ofc. For smallc, all
training points will become SVs — the algorithm just memorizes the data, and will not generalize well.
As c increases, the number of SVs drops. As a simple heuristic, one can thus start with a small value of
c and increase it until the number of SVs does not decrease any further.
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Figure 2: A single-class SVM applied to a toy problem;c = 0:5, domain:[�1; 1]2, for
various settings of the offset�. As discussed in Sec. 3,� = 1 yields a Parzen windows
expansion. However, to get a Parzen windows estimator of the distribution’s support,
we must in that case not use the offset returned by the algorithm (which would allow
all points to lie outside of the estimated region). Therefore, in this experiment, we
adjusted the offset such that a fraction� 0 = 0:1 of patterns would lie outside. From
left to right, we show the results for� 2 f0:1; 0:2; 0:4; 1g. The rightmost picture
corresponds to the Parzen estimator which utilizes all kernels; the other estimators use
roughly a fraction of� kernels. Note that as a result of the averaging over all kernels,
the Parzen windows estimate does not model the shape of the distribution very well
for the chosen parameters.

instances of digit0 only. Testing was done on both digit0 and on all other digits. We
present results for two values of�, one large, one small; for values in between, the
results are qualitatively similar. In the first experiment, we used� = 50%, thus aiming
for a description of “0-ness” which only captures half of all zeros in the training set.
As shown in figure 3, this leads tozero false positives (i.e. even though the learning
machine has not seen any non-0-s during training, it correctly identifies all non-0-s as
such), while still recognizing44% of the digits0 in the testset. Higher recognition
rates can be achieved using smaller values of�: for � = 5%, we get91% correct
recognition of digits0 in the test set, with a fairly moderate false positive rate of7%.

Whilst leading to encouraging results, this experiment did not really address the
actual task the algorithm was designed for. Therefore, we next focussed on a problem
of novelty detection. Again, we utilized the USPS set; however, this time we trained
the algorithm on the test set and used it to identify outliers — it is folklore in the
community that the USPS test set (Fig. 4) contains a number of patterns which are
hard or impossible to classify, due to segmentation errors or mislabelling (e.g. Vapnik,
1995). In this experiment, we augmented the input patterns by ten extra dimensions
corresponding to the class labels of the digits. The rationale for this is that if we disre-
garded the labels, there would be no hope to identify mislabelled patterns as outliers.
With the labels, the algorithm has the chance to identify both unusual patterns and
usual patterns with unusual labels. Fig. 5 shows the 20 worst outliers for the USPS
test set, respectively. Note that the algorithm indeed extracts patterns which are very
hard to assign to their respective classes. In the experiment, we used the same kernel
width as above, and a� value of5%. The latter was chosen roughly to reflect our ex-
pectations as to how many “bad” patterns there are in the test set: most good learning
algorithms achieve error rates of3 - 5% on the USPS benchmark (for a list of results,
cf. Vapnik (1995)).
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Figure 3: Experiments on the US postal service OCR dataset. Recognizer for digit0;
output histogram for the exemplars of0 in the training/test set, and on test exemplars
of other digits. Thex-axis gives the output values, i.e. the argument of the sgn function
in (10). For� = 50% (top), we get50% SVs and49% outliers (consistent with Propo-
sition 4), 44% true positive test examples, and zero false positives from the “other”
class. For� = 5% (bottom), we get6% and4% for SVs and outliers, respectively.
In that case, the true positive rate is improved to91%, while the false positive rate
increases to7%. The offset� is marked in the graphs.
Note, finally, that the plots show a Parzen windows density estimate of the output his-
tograms. In reality, many examples sit exactly at the offset value (the non-bound SVs).
Since this peak is smoothed out by the estimator, the fractions of outliers in the training
set appear slightly larger than it should be.
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� fraction of OLs fraction of SVs training time
1% 0.0% 10.0% 36
2% 0.0% 10.0% 39
3% 0.1% 10.0% 31
4% 0.6% 10.1% 40
5% 1.4% 10.6% 36
6% 1.8% 11.2% 33
7% 2.6% 11.5% 42
8% 4.1% 12.0% 53
9% 5.4% 12.9% 76

10% 6.2% 13.7% 65
20% 16.9% 22.6% 193
30% 27.5% 31.8% 269
40% 37.1% 41.7% 685
50% 47.4% 51.2% 1284
60% 58.2% 61.0% 1150
70% 68.3% 70.7% 1512
80% 78.5% 80.5% 2206
90% 89.4% 90.1% 2349

Table 1: Experimental results for various values of the outlier control constant�, USPS
test set, sizè = 2007. Note that� bounds the fractions of outliers and support
vectors from above and below, respectively (cf. Proposition 4). As we are not in the
asymptotic regime, there is some slack in the bounds; nevertheless,� can be used to
control the above fractions. Note, moreover, that training times (CPU time in seconds
on a Pentium II running at 450 MHz) increase as� approaches1. This is related to
the fact that almost all Lagrange multipliers will be at the upper bound in that case (cf.
Sec. 4). The system used in the outlier detection experiments is shown in bold face.

6 9 2 8 1 8 8 6 5 3

2 3 8 7 0 3 0 8 2 7

Figure 4: A subset of20 examples randomly drawn from the USPS test set, with class
labels.

14



9−513 1−507 0−458 1−377 7−282 2−216 3−200 9−186 5−179 0−162

3−153 6−143 6−128 0−123 7−117 5−93 0−78 7−58 6−52 3−48

Figure 5: Outliers identified by the proposed algorithm, ranked by the negative output
of the SVM (the argument of (10)). The outputs (for convenience in units of10�5) are
written underneath each image in italics, the (alleged) class labels are given in bold
face. Note that most of the examples are “difficult” in that they are either atypical or
even mislabelled.

In the last experiment, we tested the runtime scaling behaviour of the proposed
SMO solver which is used for training the learning machine (Fig. 6). It was found
to depend on the value of� utilized. For the small values of� which are typically
used in outlier detection tasks, the algorithm scales very well to larger data sets, with
a dependency of training times on the sample size which is at most quadratic.

In addition to the experiments reported above, the present algorithm has since been
applied in several other domains, such as the modelling of parameter regimes for the
control of walking robots (Still and Sch¨olkopf, 2001), and condition monitoring of jet
engines (Hayton et al., 2001).

7 Discussion

One could view the present work as an attempt to provide a new algorithm which is in
line with Vapnik’s principle never to solve a problem which is more general than the
one that one is actually interested in. E.g., in situations where one is only interested
in detectingnovelty, it is not always necessary to estimate a full density model of the
data. Indeed, density estimation is more difficult than what we are doing, in several
respects.

Mathematically speaking, a density will only exist if the underlying probability
measure possesses an absolutely continuous distribution function. However, the gen-
eral problem of estimating the measure for a large class of sets, say the sets measure-
able in Borel’s sense, is not solvable (for a discussion, see e.g. Vapnik, 1998). There-
fore we need to restrict ourselves to making a statement about the measure ofsome
sets. Given a small class of sets, the simplest estimator which accomplishes this task
is the empirical measure, which simply looks at how many training points fall into the
region of interest. Our algorithm does the opposite. It starts with the number of train-
ing points that are supposed to fall into the region, and then estimates a region with
the desired property. Often, there will be many such regions — the solution becomes
unique only by applying a regularizer, which in our case enforces that the region be
small in a feature space associated to the kernel.

Therefore, we must keep in mind that the measure of smallness in this sense de-
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Figure 6: Training times vs. data set sizes` (both axes depict logs at base 2; CPU time
in seconds on a Pentium II running at 450 MHz, training on subsets of the USPS test
set); c = 0:5 � 256. As in Table 1, it can be seen that larger values of� generally
lead to longer training times (note that the plots use different y-axis ranges). However,
they also differ in their scaling with the sample size. The exponents can be directly
read off from the slope of the graphs, as they are plotted in log scale with equal axis
spacing: for small values of� (� 5%), the training times were approximately linear
in the training set size. The scaling gets worse as� increases. For large values of�,
training times are roughly proportional to the sample size raised to the power of2:5
(right plot). The results should be taken only as an indication of what is going on:
they were obtained using fairly small training sets, the largest being2007, the size of
the USPS test set. As a consequence, they are fairly noisy, and they strictly speaking
only refer to the examined regime. Encouragingly, the scaling is better than the cubic
one that one would expect when solving the optimization problem using all patterns
at once, cf. Sec. 4. Moreover, forsmallvalues of�, i.e. those typically used in outlier
detection (in Fig. 5, we used� = 5%), our algorithm was particularly efficient.
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pends on the kernel used, in a way that is no different to any other method that regu-
larizes in a feature space. A similar problem, however, appears in density estimation
already when done in input space. Letp denote a density onX. If we perform a (non-
linear) coordinate transformation in the input domainX, then the density values will
change; loosely speaking, what remains constant isp(x) �dx, whiledx is transformed,
too. When directly estimating the probabilitymeasureof regions, we are not faced
with this problem, as the regions automatically change accordingly.

An attractive property of the measure of smallness that we chose to use is that it can
also be placed in the context of regularization theory, leading to an interpretation of the
solution as maximally smooth in a sense which depends on the specific kernel used.
More specifically, let us assume thatk is Green’s function ofP �P for an operatorP
mapping into some inner product space (Smola et al., 1998; Girosi, 1998), and take a
look at the dual objective function that we minimize,X

i;j

�i�jk(xi;xj) =
X
i;j

�i�j(k(xi; :) � �xj (:))

=
X
i;j

�i�j(k(xi; :) � (P �Pk)(xj ; :))

=
X
i;j

�i�j((Pk)(xi; :) � (Pk)(xj ; :))

= ((P
X
i

�ik)(xi; :) � (P
X
j

�jk)(xj ; :))

= kPfk2;

usingf(x) =
P

i �ik(xi;x). The regularization operators of common kernels can be
shown to correspond to derivative operators (Poggio and Girosi, 1990) — therefore,
minimizing the dual objective function corresponds to maximizing the smoothness of
the functionf (which is, up to a thresholding operation, the function we estimate).
This, in turn, is related to a priorp(f) � e�kPfk

2

on the function space.
Interestingly, as the minimization of the dual objective function also corresponds

to a maximization of the margin in feature space, an equivalent interpretation is in
terms of a prior on the distribution of the unknown other class (the “novel” class in a
novelty detection problem) — trying to separate the data from the origin amounts to
assuming that the novel examples lie around the origin.

The main inspiration for our approach stems from the earliest work of Vapnik
and collaborators. In 1962, they proposed an algorithm for characterizing a set of
unlabelled data points by separating it from the origin using a hyperplane (Vapnik
and Lerner, 1963; Vapnik and Chervonenkis, 1974). However, they quickly moved on
to two-class classification problems, both in terms of algorithms and in terms of the
theoretical development of statistical learning theory which originated in those days.

From an algorithmic point of view, we can identify two shortcomings of the orig-
inal approach which may have caused research in this direction to stop for more than
three decades. Firstly, the original algorithm in (Vapnik and Chervonenkis, 1974) was
limited to linear decision rules in input space; secondly, there was no way of dealing
with outliers. In conjunction, these restrictions are indeed severe — a generic dataset
need not be separable from the origin by a hyperplane in input space.
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The two modifications that we have incorporated dispose of these shortcomings.
First, the kernel trick allows for a much larger class of functions by nonlinearly map-
ping into a high-dimensional feature space, and thereby increases the chances of a
separation from the origin being possible. In particular, using a Gaussian kernel (3),
such a separation is always possible, as shown in Sec. 5. The second modification
directly allows for the possibility of outliers. We have incorporated this ‘softness’ of
the decision rule using the�-trick (Schölkopf et al., 2000) and thus obtained a direct
handle on the fraction of outliers.

We believe that our approach, proposing a concrete algorithm with well-behaved
computational complexity (convex quadratic programming) for a problem that so far
has mainly been studied from a theoretical point of view has abundant practical appli-
cations. To turn the algorithm into an easy-to-use black-box method for practicioners,
questions like the selection of kernel parameters (such as the width of a Gaussian ker-
nel) have to be tackled. It is our hope that the theoretical results which we have briefly
outlined in this paper will provide a solid foundation for this formidable task. This,
alongside with algorithmic extensions such as the possibility of taking into account
information about the “abnormal” class Sch¨olkopf et al. (2000), is subject of current
research.
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A Supplementary Material for Sec. 2

Estimating the support of a density. The problem of estimatingC(1) appears to
have first been studied by Geffroy (1964) who consideredX = R

2 with piecewise con-
stant estimators. There have been a number of works studying a natural nonparametric
estimator ofC(1) (e.g. Chevalier (1976); Devroye and Wise (1980); see (Gayraud,
1997) for further references). The nonparametric estimator is simply

Ĉ` =
[̀
i=1

B(xi; �`) (34)
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whereB(x; �) is thel2(X) ball of radius� centered atx and(�`)` is an appropriately
chosen decreasing sequence. Devroye and Wise (1980) showed the asymptotic consis-
tency of (34) with respect to the symmetric difference betweenC(1) andĈ`. Cuevas
(1990) did the same, but for Hausdorff distance. Cuevas and Fraiman (1997) studied
the asymptotic consistency of aplug-inestimator ofC(1): Ĉplug�in = fx: p̂`(x) > 0g
wherep̂` is a kernel density estimator. In order to avoid problems withĈplug�in they
actually analyzed̂Cplug�in

� := fx: p̂`(x) > �`g where(�`)` is an appropriately cho-
sen sequence. Clearly for a given distribution,� is related to�, but this connection
can not be readily exploited by this type of estimator.

The most recent work relating to the estimation ofC(1) is by Gayraud (1997) who
has made an asymptotic minimax study of estimators offunctionalsof C(1). Two
examples arevolC(1) or the center ofC(1). (See also (Korostelev and Tsybakov,
1993, Chapter 8).)

Estimating high probability regions (� 6= 1). Polonik (1995b) has studied the use
of the “excess mass approach” (M¨uller, 1992) to construct an estimator of “generalized
�-clusters” which are related toC(�).

Define theexcess mass overC at level� as

EC(�) = supfH�(C):C 2 Cg

whereH�(�) = (P ���)(�) and again� denotes Lebesgue measure. Any set�C(�) 2
C such that

EC(�) = H�(�C(�))

is called ageneralized�-cluster inC. ReplaceP by P` in these definitions to obtain
their empirical counterpartsE`;C(�) and�`;C(�). In other words, his estimator is

�`;C(�) = argmax f(P` � ��)(C) : C 2 Cg

where themax is not necessarily unique. Now whilst�`;C(�) is clearly different from
C`(�), it is related to it in that it attempts to find small regions with as much excess
mass (which is similar to finding small regions with a given amount of probability
mass). Actually�`;C(�) is more closely related to the determination ofdensity contour
clustersat level�:

cp(�) := fx: p(x) � �g:
Simultaneously, and independently, Ben-David and Lindenbaum (1997) studied

the problem of estimatingcp(�). They too made use of VC classes but stated their
results in a stronger form which is meaningful for finite sample sizes.

Finally we point out a curious connection between minimum volume sets of a
distribution and its differential entropy in the case thatX is one dimensional. Suppose
X is a one dimensional random variable with densityp. LetS = C(1) be the support
of p and define thedifferential entropyof X by h(X) = � RS p(x) log p(x)dx. For

� > 0 and` 2 N, define thetypical setA(`)
� with respect top by

A(`)
� = f(x1; : : : ; x`) 2 S`: j � 1

` log p(x1; : : : ; x`)� h(X)j � �g;
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wherep(x1; : : : ; x`) =
Q`

i=1 p(xi). If (a`)` and (b`)` are sequences, the notation
a`

:
= b` meanslim`!1

1
` log

a`
b`

= 0: (Cover and Thomas, 1991, p.227) show that for

all �; � < 1
2 , then

volA(`)
�

:
= volC`(1� �)

:
= 2`h:

They point out that this result “indicates that the volume of the smallest set that con-
tains most of the probability is approximately2`h. This is a`-dimensional volume,
so the corresponding side length is(2`h)1=` = 2h. This provides an interpretation of
differential entropy.”

B Proofs of Sec. 5

Proof (Proposition 2) Due to the separability, the convex hull of the data does not
contain the origin. The existence and uniqueness of the hyperplane then follows from
the supporting hyperplane theorem (e.g. Bertsekas, 1995).

Moreover, separability implies that there actually exists some� > 0 andw 2 F
such that(w � xi) � � for i 2 [`] (by rescalingw, this can be seen to work for arbi-
trarily large�). The distance of the hyperplanefz 2 F : (w � z) = �g to the origin
is �=kwk. Therefore the optimal hyperplane is obtained by minimizingkwk subject to
these constraints, i.e. by the solution of (28).

Proof (Proposition 3) Ad (i). By construction, the separation of (31) is a point-
symmetric problem. Hence, the optimal separating hyperplane passes through the
origin, for, if it did not, we could obtain another optimal separating hyperplane by
reflecting the first one with respect to the origin — this would contradict the uniqueness
of the optimal separating hyperplane Vapnik (1995).

Next, observe that(�w; �) parametrizes the supporting hyperplane for the data set
reflected through the origin, and that it is parallel to the one given by(w; �). This
provides an optimal separation of the two sets, with distance2�, and a separating hy-
perplane(w; 0).
Ad (ii). By assumption,w is the shortest vector satisfyingyi(w � xi) � � (note that the
offset is0). Hence, equivalently, it also the shortest vector satisfying(w � yixi) � �
for i 2 [`].

Proof (Proposition 4)Parts (i) and (ii) follow directly from Proposition 3 and the fact
that outliers are dealt with in exactly the same way as margin errors in the optimization
problem for the binary classification case (Sch¨olkopf et al., 2000). The basic idea is
that (9) imposes constraints on the fraction of patterns that can have�i = 1=(�`),
upper bounding the fraction of outliers, and on the fraction of patterns that must have
�i > 0, the SVs. Alternatively, the result can be proven directly based on the primal
objective function (4), as sketched presently: to this end, note that when changing�,
the term

P
i �i will change proportionally to thenumberof points that have a nonzero

�i (the outliers), plus, when changing� in the positive direction, the number of points
which are just about to get a nonzero�, i.e. which siton the hyperplane (the SVs). At
the optimum of (4), we therefore have (i) and (ii).
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Part (iii) can be proven by a uniform convergence argument showing that since the
covering numbers of kernel expansions regularized by a norm in some feature space
are well-behaved, the fraction of points which lie exactly on the hyperplane is asymp-
totically negligible (cf. Sch¨olkopf et al., 2000).

Proof (Proposition 5)Supposexo is an outlier, i.e.�o > 0, hence by the KKT condi-
tions (e.g. Bertsekas, 1995)�o = 1=(�`). Transforming it intox0o := xo+� �w, where
j�j < �o=kwk, leads to a slack which is still nonzero, i.e.�0o > 0, hence we still have
�o = 1=(�`). Therefore,�0 = � is still feasible, as is the primal solution(w0; �0; �0).
Here, we use�0i = (1 + � � �o)�i for i 6= o, w0 = (1 + � � �o)w, and�0 as computed
from (12). Finally, the KKT conditions are still satisfied, as still�0o = 1=(�`). Thus
(Bertsekas, 1995, e.g.),� is still the optimal solution.

We now move on to the Proof of Theorem 7. We start by introducing a common
tool for measuring the capacity of a classF of functions that mapX to R.

Definition 8 Let (X; d) be a pseudo-metric space, letA be a subset ofX and � > 0.
A setU � X is an �-cover for A if, for everya 2 A, there existsu 2 U such that
d(a; u) � �. The�-covering numberof A, N(�; A; d), is the minimal cardinality of an
�-cover forA (if there is no such finite cover then it is defined to be1).

Note that we have used less than or equal to in the definition of a cover. This
is somewhat unconventional, but will not change the bounds we use. It is, however,
technically useful in the proofs.

The idea is thatU should be finite but approximate all ofA with respect to the
pseudometricd. We will use thel1 norm over a finite sampleX = (x1; : : : ;x`) for
the pseudo-norm onF,

kfklX
1

:= max
x2X

jf(x)j: (35)

(The (pseudo)-norm induces a (pseudo)-metric in the usual way.) SupposeX is a
compact subset ofX. LetN(�;F; `) = maxX2X` N(�;F; l

X
1) (the maximum exists by

definition of the covering number and compactness ofX).
We require a technical restriction on the function class which is satisfied by stan-

dard classes such as kernel based linear function classes and neural networks with
bounded weights (see Shawe-Taylor and Williamson (1999) for further details.)

Definition 9 Let

SX:F! R
` ; SX: f 7! (f(x1); f(x2); : : : ; f(x`))

denote the multiple evaluation map induced byX = (x1; : : : ;x`) 2 X`. We say that
a class of functionsF is sturdyif for all ` 2 N and allX 2 X` the imageSX(F) of F
underSX is a compact subset ofR` .

Lemma 10 (Shawe-Taylor and Williamson (1999))LetF be a sturdy class of func-
tions. Then for eachN 2 N, N � 1 and any fixed sequenceX 2 X`, the infimum
inff
 : N(
;F;X) � Ng; is attained.
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We treatX = (x1; : : : ;x`) both as a sequence and a set, for example writingx 2 X

to meanx = xi for somei 2 [`]. The concatenation of two sequencesX = (xi)i2[l]
andX0 = (x0i)i2[`] isXX0 = (x1; : : : ;x`;x

0
1; : : : ;x

0
`).

We will make use of the following fundamental lemma.

Lemma 11 (Vapnik (1979), page 168)LetX be a set andS a system of sets inX, and
P a probability measure onS. For X 2 X` andA 2 S, define�X(A) := jX \ Aj=`.
If ` > 2=�, then

P `

�
X: sup

A2S
j�X(A)� P (A)j > �

�
� 2P 2`

�
XX0: sup

A2S
j�X(A)� �X0(A)j > �=2

�
:

Below, the notationsdte andbtc denote the smallest integer� t and the largest
integer� t, respectively. Several of the theorems below claim some event occurs with
probability1 � �. In all cases,0 < � < 1 is understood, and� is presumed in fact to
be small.

Theorem 12 Consider any distributionP onX and a sturdy real-valued function class
F onX. Supposex1; : : : ;x` are generated i.i.d. fromP . Then with probability1 � �
over such aǹ -sample, for anyf 2 F and for any
 > 0,

P

�
x : f(x) < min

i2[`]
f(xi)� 2


�
� �(`; k; �) := 2

` (k + log `
� );

wherek = dlogN(
;F; 2`)e.
Proof Fix 
 > 0 and consider the event that the sample drawn fails to satisfy the
criterion

J =

�
X 2 X`:9f 2 F; P

�
x : f(x) < min

i2[`]
f(xi)� 2


�
> �

�
:

We must show thatP `(J) � � for � = �(`; k; �). We first consider a fixedk and apply
Lemma 11 (note that the condition` > 2=� is satisfied) to obtain

P `(J) � 2P 2`

�
XX0:9f 2 F;

����
�
x0j 2 X0 : f(x0j) < min

i2[`]
f(xi)� 2


����� > �`=2

�
:

The next stage of the proof is to consider a
k-coverU of Fwith respect to the pseudo-
metric lXX

0

1 , where the existence of


k = minf
 : N(
;F; 2`) � 2kg
is guaranteed by Lemma 10. Suppose that for somef 2 F,����

�
x0j 2 X0 : f(x0j) < min

i2[`]
f(xi)� 2


����� > �`=2:

There existŝf 2 U with kf�f̂klXX0
1

� 
k � 
 and thereforef(x) < mini2[`] f(xi)�
2
 implies f̂(x) < mini2[`] f̂(xi). This implies thatf̂ satisfies����

�
x0j 2 X0 : f̂(x0j) < min

i2[`]
f̂(xi)

����� > �`=2:
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Hence, we can upper bound the probabilityP `(J) by

P `(J) � 2P 2`

�
XX0:9f̂ 2 B;

����
�
x0j 2 X0 : f̂(x0j) < min

i2[`]
f̂(xi)

����� > �`=2

�
:

By definition of k, the setU has at most2k elements and thus applying the union
bound (Vapnik, 1979, e.g.) over these possibilities gives

P `(J) � 2 � 2kP 2`

�
XX0:

����
�
x0j 2 X0 : f̂(x0j) < min

i2[`]
f̂(xi)

����� > �`=2

�
:

The final stage is to apply the permutation argument to bound the probability of the
event on the right hand side by the fraction of swapping permutations which leave the
event true for any fixed double sampleXX0. If we order the valueŝf(x) for x 2 XX0

the event remains true only if thed�`=2e points with smallest values remain on the
right hand side. Hence, the fraction of permutations is bounded by2�d�`=2e giving an
overall bound of

P `(J) � 2k+1�d�`=2e

) P `(J) � 2k+1��`=2:

We complete the proof by setting the right hand side equal to2�=` and solving for�,
ensuring that for a fixed value ofk, with probability at least1� 2�=`

P

�
x : f(x) < min

i2[`]
f(xi)� 2


�
� �(`; k; �) = 2

` (k + log `
� ):

But the result is trivial fork > `=2 and so applying the union bound over the integer
possibilities1 � k � `=2 ensures that it fails for somek with probability at most� as
required.

Though Theorem 12 provides the basis of our analysis it suffers from a weakness
that a single perhaps unusual point may significantly reduce the minimummini2[`] f(xi).
We therefore now consider a technique which will enable us to ignore some of the
smallest values in the setff(xi):xi 2 Xg at a corresponding cost to the complexity
of the function class. The technique was originally considered for analysing soft mar-
gin classification in (Shawe-Taylor and Cristianini, 1999) but we will adapt it for the
unsupervised problem we are considering here.

We will remove minimal points by increasing their output values. This corresponds
to having a non-zero slack variable�i in the algorithm, where we use the class of linear
functions in feature space in the application of the theorem. There are well-known
bounds for the log covering numbers of this class. We measure the increase in terms
ofD (Definition 6).

Let X be an inner product space. The following definition introduces a new inner
product space based onX.

Definition 13 LetL(X) be the set of real valued non-negative functionsf onX with
supportsupp(f) countable, that is functions inL(X) are non-zero for at most count-
ably many points. We define the inner product of two functionsf; g 2 L(X), by

f � g =
X

x2supp(f)

f(x)g(x):
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The 1-norm onL(X) is defined bykfk1 =
P
x2supp(f) f(x) and letLB(X) := ff 2

L(X): kfk1 � Bg. Now we define an embedding ofX into the inner product space
X� L(X) as follows.

� :X ! X� L(X)

� : x 7! (x; �x);

where�x 2 L(X) is defined by

�x(y) =

�
1; if y = x;
0; otherwise.

For a functionf 2 F, a set of training examplesX, and� 2 R, we define the function
gf 2 L(X) by

gf (y) = gX;�
f (y) =

X
x2X

d(x; f; �)�x(y):

Theorem 14 Fix B > 0. Consider a fixed but unknown probability distributionP
which has no atomic components on the input spaceX and a sturdy class of real valued
functionsF. Then with probability1 � � over randomly drawn training sequencesX
of size`, for all 
 > 0 and anyf 2 F and any� such thatgf = gX;�

f 2 LB(X),
(i.e.

P
x2X d(x; f; �) � B.)

P fx: f(x) < � � 2
g � 2
` (k + log `

� ); (36)

wherek =
�
logN(
=2;F; 2`) + logN(
=2; LB(X); 2`)

�
:

(The assumption onP can in fact be weakened to require only that there is no point
x 2 X satisfyingf(x) < � � 2
 that has discrete probability.)
Proof We first form the spaceX � L(X) and embed the spaceX into it with the
mapping� of Definition 13. We extend the class of functionsF acting onX to the
classF+ L(X) := ff + g: f 2 F; g 2 L(X)g, whose action is defined by

(f + g):X � L(X) ! R

(f + g): (x; h) 7! f(x) + g � h:

Note that the definition of sturdiness of a class of functionsF only requiresSX(F)
be compact. We can thus conclude thatSX(L

B(X)) is compact for anyX 2 X. Since
SX(F+LB(X)) = SX(F)+SX(L

B(X)) andF is sturdy by assumption, we conclude
thatF+ LB(X) is also sturdy.

We can bound thelog covering numbers of the spaceF + LB(X) in terms of the
component spaces as follows. For any
 > 0,

logN(
;F+ LB(X); `) � logN(
=2;F; `) + logN(
=2; LB(X); `);

since we can create a cover forF + LB(X) from pairs of functions taken from the
two component covers. We can therefore apply Theorem 12 to the combined function
class. The function(f + gf ) 2 F+ LB(X) satisfies the following two properties:
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1. Forx 2 X we have

(f + gf )(�(x)) = f(x) + d(x; f; �) � �;

and thereforemini2[`](f + gf )(�(xi)) � �.

2. Forx 62 X,
(f + gf )(�(x)) = f(x):

Denote byJ the event in (36). Observe thatx 62 X ) (f(x) < � � 2
 )
(f+gf )(�(x)) < ��2
). Thus up to a set of measure zero,J � fx: (f+gf )(�(x)) <
� � 2
g =: K. But Theorem 12 impliesP (K) � 2

` (k + log `
� ).

The theorem bounds the probability of a new example falling in the region for
which f(x) has value less than� � 2
, this being the complement of the estimate for
the support of the distribution. In the algorithm described in this paper, one would
use the hyperplane shifted by2
 towards the origin to define the region. Note that
there is no restriction placed on the class of functions though these functions could be
probability density functions.

The result shows that we can bound the probability of points falling outside the re-
gion of estimated support by a quantity involving the ratio of the log covering numbers
(which can be bounded by the fat shattering dimension at scale proportional to
) and
the number of training examples, plus a factor involving the 1-norm of the slack vari-
ables. The result is stronger than related results given by Ben-David and Lindenbaum
(1997): their bound involves the square root of the ratio of the Pollard dimension (the
fat shattering dimension when
 tends to 0) and the number of training examples.

We now derive a result from the theorem for the specific situation considered in
this paper, namely where the choice of function class is the class of linear functions
in a kernel defined feature space. The following lemma follows immediately from
Lemma 7.14 of (Shawe-Taylor and Cristianini, 2000).

Lemma 15 For all 
 > 0,

logN(
; LB(X); `) � b log

�
e(`+ b� 1)

b

�
;

whereb =
j
B
2


k
.

We use the following covering number bound for the linear function class itself.

Theorem 16 (Williamson et al. (2000))Let F be the class of linear classifiers with
norm at most 1 confined to a ball of radius1 about the origin, then for� � c=

p
`,

logN(�;F; `) � c2 log(2 ln(2)c2 �2`)

�2

wherec = 103.
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(If � � c=
p
` the bound is� ` and so the application of it below would be trivial in

any case. Note too that by setting�0 = �=R the result extends to functions confined to
any radiusR > 0 trivially.)

We are now ready to present the theorem that bounds the probabilities of falling
outside the estimated region of support for the algorithm described in the main body
of the paper. The functions considered are linear functions in the kernel defined fea-
ture space. The estimation depends on the norm of the functionfw, which can be
determined from the parameters by

kwk2 =
X
i;j2[`]

�i�jk(xi;xj):

Theorem 17 Consider a fixed but unknown probability distributionP with no atomic
components on the spaceF with support contained in a ball of radius1 about the
origin and a linear class of functions onF defined byF := ffw:x 7! (x � w) 2
R: w 2 Fg. Then with probability1 � � over randomly drawn training sequencesX
of size`, for all 
 > 0 and anyfw 2 F,

P fx: fw(x) < � � 2
g � 2

`

�
k + log

`2

2�

�
;

where

k =
c1 log(c2
̂

2`)


̂2
+
D


̂
log

�
e

�
(2`� 1)
̂

D
+ 1

��
+ 2;

c1 = 4c2, c2 = ln(2)=c2, c = 103, 
̂ = 
=kwk, andD = D(X; fw; �).

Proof First observe that by applying a fixed shift to all the functions we can without
loss of generality treat the offset as0. We wish to apply Theorem 14 to the linear
function classF with norm no greater than 1. Hence, we rescale the function to obtain
f̂ = fw=kwk and ĝ = gfw=kwk = gfw=kwk. Note that the functionfw and margin


define the same region aŝf with margin
̂ = 
=kwk. Furthermore,

D(X; f̂ ; 0) = D(X; fw; 0)=kwk:

We have to take account of the fact that theB of Theorem 14 is not fixed here, but is
allowed to depend on the data sample. We thus stratify over possible values ofB. We
apply the theorem for each value of�

logN(
̂=2; LB(X); 2`)
�
;

whereB = D(X; f̂ ; 0), so that it suffices to make at most`=2 applications for the
possible non-trivial bounds (using a confidence of�=(`=2) for each bound). Using
Lemma 15 and Theorem 16 we obtain the following bound on the covering numbers.
Let b = bB
̂ c. Then we have

dlogN(
̂=2;F; 2`) +
�
logN(
̂=2; LB(X); 2`)

��
�

2
666
c24 log

�
ln(2)
c2 
̂2`

�

̂2

+

�
b log

�
e(2`+ b� 1)

b

��3777
29



� c1 log(c2
̂
2`)


̂2
+ b log

�
e(2`+ b� 1)

b

�
+ 2

� c1 log(c2
̂
2`)


̂2
+
D


̂
log

�
e(2` + (D=
̂)� 1)
̂

D

�
+ 2

=
c1 log(c2
̂

2`)


̂2
+
D


̂
log

�
e

�
(2`� 1)
̂

D
+ 1

��
+ 2;

where the last inequality follows from the fact thatb log(e(2`�b+1)=b) is monotonic
in b. Note, moreover, that we have been somewhat sloppy in not excluding the case
b = 0 in the denominator of the log argument. The argument, however, goes through
if we take into account theb in front of the log and replace the whole term by its limit
asb approaches0.

Now we can develop a version of the above theorem directly applicable to the
algorithm presented in this paper.
Proof (Theorem 7)The proof is immediate upon identifying� with � and rescaling
2
 to 
.
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