SlideShare a Scribd company logo
Mathematical Theory and Modeling                                                                www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012

               On Generalized Dislocated Quasi Metrics
                                             P Sumati Kumari

  Department of Mathematics, FED – I, K L University, Green fields, Vaddeswaram, A.P,
                                    522502, India.

                                   Email:mumy143143143@gmail.com

Abstract
The notion of dislocated quasi metric is a generalization of metric that retains, an analogue of the illustrious
Banach’s Contraction principle and has useful applications in the semantic analysis of logic programming.
In this paper we introduce the concept of generalized dislocated quasi metric space.The purpose of this note
is to study topological properties of a gdq metric, its connection with generalized dislocated metric space
and to derive some fixed point theorems.
Keywords: Generalized dislocated metric, Generalized dislocated quasi metric, Contractive conditions,
coincidence point,  -property.

Introduction: Pascal Hitzler [1] presented variants of Banach’s Contraction principle for various modified
forms of a metric space including dislocated metric space and applied them to semantic analysis of logic
programs. In this context Hitzler raised some related questions on the topological aspects of dislocated
metrics.
         In this paper we establish the existence of a topology induced by a gdq metric, induce a
generalized dislocated metric (D metric) from a  gdq metric and prove that fixed point theorems for
gdq metric spaces can be derived from their analogues for D metric spaces . We then prove a D metric
version of Ciric’s fixed point theorem from which a good number of fixed point theorems can be deduced.
                                                              
Definition 1.1:[2]Let binary operation ◊ : R  R  R satisfies the following conditions:

      (I) ◊ is Associative and Commutative,
      (II) ◊ is continuous.

      Five typical examples are     a ◊b        a , b }, a ◊ b = a + b , a ◊ b = a b ,
                                           = max{
                                              ab                           
       a ◊ b = a b + a + b and a ◊ b =                  for each a , b ∈ R
                                          max a, b,1
Definition 1.2: [2] The binary operation ◊ is said to satisfy  -property if there exists a positive        real
number  such that a ◊ b ≤  max{ a , b } for every a , b ∈ R .
                                                                      

Definition 1.3: Let X be a nonempty set. A generalized dislocated quasi metric
                                                          
(or gdq metric) on X is a function gdq : X 2  R that satisfies the following
conditions for each x, y, z ∈ X .
                       
        (1) gdq x , y  0 ,
                       
        (2) gdq x , y  0 implies x  y
                                           
        (3) gdqx , z  ≤ gdq x , y ◊ gdq y, z      
The pair ( X , gdq ) is called a generalized dislocated quasi metric (or gdq metric) space.
If gdq satisfies gdq  x , y   gdq( y, x) also, then gdq is called generalized dislocated metric space.
Unless specified otherwise in what follows ( X , gdq ) stands for a gdq metric space.




                                                            1
Mathematical Theory and Modeling                                                                             www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012

Definition 1.4: If ( x /    )is a net in X and                  xX
                                                                   (x ) gdq converges to x
                                                                               we say that
and write gdq lim x = x if lim gdq( x x) = lim gdq( x x ) =0 .i.e For each  0 there exists
                                                                  

o         such that for all              0  gdq( x, x )  gdq( x , x) .We            also call   x, gdq limit   of
( x ). We introduce the following
Definition 1.5: Let A  X . x  X                       is said to be a       gdq limit point of A if there exists a net
(x ) in X such that gdq lim x = x.
                                              

Notation1.6:Let x  X , A   X and r >0,We write
D ( A )= {x / x  X and x is a gdq limit point of A }.
Br ( x)  { y / y  X and min{ gdq( x, y), gdq( y, x)} r} and Vr ( x) {x}  Br ( x) .
Remark 1.7: gdq lim x = x            iff     for every   0 there exists  0   such that
                                  

x B ( x) if    0

Proposition 1.8: Let ( X ,              gdq ) be a gdq metric space such that ◊ satisfies  -property with   0.

If a net ( x /    ) in X            gdq converges to x then x is unique.

Proof: Let ( x /    ) gdq converges to y and                    yx

Since ( x /    ) gdq converges to              x and y     then for each     0 there exists 1 , 2   such that
                                                                                                                      
for all     1  gdq( x, x )  gdq( x , x)                     and        2  gdq( y, x )  gdq( x , y ) 
                                                                                                                      
From triangular inequality we have, gdq                 x, y   gdq( x, x )gdq( x , y)
                                                                 max{gdq( x, x ), gdq( x , y)}
                                                                                
                                                                 max{         , } 
                                                                                
Which is a contradiction.
Hence  gdq ( x, y )=0 similarly gdq ( y, x )=0
x  y
Proposition 1.9: x  X is a gdq limit point of A  X iff for every r>0 , A  B r (x)  
Proof: Suppose x  D(A) . Then there exists a net ( x /    ) in A such that x = gdq lim x .
                                                                                                                

If r  0 ,   0   such that Br (x)  A   for    0 .
Conversely suppose that for every   r >0 Br (x)  A   .
Then for every positive integer n, there exists x n  B 1 ( x)  A so that
                                                                        n

gdq ( xn , x )<    1
                   n
                           ,   gdq ( x , xn )<     1
                                                   n
                                                        and   xn  A

                                                                    2
Mathematical Theory and Modeling                                                                                  www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012
Hence   gdq lim gdq ( xn x)  0 so that x  D(A)
                  n

Theorem 1.10: Let ( X ,              gdq ) be a gdq metric space such that ◊ satisfies  -property with
   1 and
 A  X and B  X then
              i.   D ( A )=  if A  
              ii. D ( A )  D ( B ) if A  B
              iii. D ( D ( A ))  D ( A )
              iv. D ( A  B )= D ( A )  D ( B )
Proof: (i) and (ii) are clear. That D ( A )  D ( B )  D ( A  B ) follows from (ii). To prove the
reverse inclusion, let x  D ( A  B ) , x = gdq lim ( x ) where ( x / α   ) is a net in A  B .
                                                                       

If     such that x  A for α   and α ≥  then ( x /α ≥  ,α   ) is a cofinal subnet of
( x /α   ) and lim gdq ( x , x ) = lim gdq ( x , x ) = lim gdq ( x , x )= lim gdq ( x , x )=0
                                                                                                  

so that x  D ( A ). If no such       exists in  then for every α   , choose β(α)   such that β(α)≥α
and           x  ( )  B. Then ( x ( ) / α   ) is a cofinal subnet in B of ( x / α   ) and
lim gdq ( x ( ) , x )= lim gdq ( x , x )= lim gdq ( x , x ) = lim gdq ( x , x ( ) ) = 0 so that
                                                                             

x  D ( B ).It now follows that D ( A  B )  D ( A )  D ( B ) and hence (iii) holds. To prove
(iv)
let x  D ( D ( A ) ),       x = gdq lim x , x  D ( A ) for α   , and  α   ,let ( x (  ) /β   (α))
                                              

be a net in    A Such that x = gdq lim  x                  .For each positive integer i     α i   such that
                                                       


                                     1                                                                                       1
 gdq ( x i , x )= gdq ( x , x i )< , and β i   ( α i )  gdq ( x i , x                  i   )= gdq ( x i , x i )<
                                                                                                                     i
                                                                                                                               .
                                     i                                        i                                              i
If we write α i =  i  i, then {  1, 2 ........ } is directed set with  i <  j
                i




 if i  j, gdq x i , x   gdq( x i , xi )gdq( xi , x)

                                      max{ gdq( x i , xi ), gdq( xi , x)}

                                     gdq( x i , xi )  gdq( xi , x)

                                         2
                                     <
                                         i

              gdq x, x i  
                                 2
Similarly,
                                 i

Hence   x  D( A ).

Corollory 1.11: If we write          A  A  D(A) for A  X the operation A  A satisfies Kurotawski’s

                                                                      3
Mathematical Theory and Modeling                                                             www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012

                                                                  _
Closure axioms[6] so that the set     { A / A  X and AC  AC } is a topology on X . We call
( X , gdq ,  ) topological space induced by gdq . We call A  X to be closed if A  A and open if
 A  .
Corollory 1.12: A  X is open (i.e A   ) iff for every x  A there exists   0  V ( x)  A
Proposition 1.13: Let ( X , gdq ) be a gdq metric space such that ◊ satisfies  -property with   1.
If x  X and   0 then V (x) is an open set in ( X , gdq ,  ).
Proof: Let y  B (x) and 0  r  min{  d ( x, y) ,   d ( y , x)}.
Then B       ( y )  B ( x)  A     , since z  Br ( y)  min{gdq( y, z ), gdq( z, y)}  r
         r           
                                                         gdq( y, z)  r
 min{  gdq( x, y),   gdq( y , x)}

Now
 gdq( x, z )  gdq( x, y )gdq ( y, z )
              max{gdq( x, y ), gdq ( y, z )}
             gdq( x, y )  gdq( y, z )
            
Similarly gdq( z, x)   therefore z  B ( x)
                                               
Hence    V (x) is open.
Proposition 1.14: Let ( X ,        gdq ) be a gdq metric space such that ◊ satisfies  -property with Then
(   X , gdq ,  ) is a Hausodorff space and first countable.
Proof: Suppose  x  y we have to find  such that A  ( B ( x)  {x})  ( B ( y) { y}) 
 Since x  y. One of gdq ( x , y ), gdq ( y , x ) is non zero. We may assume gdq ( y , x )>0
 Choose   0 such that 2  gdq( y, x) .we show that A  .
If z  A and z = y , z  x.   z  B (x) .
                            gdq ( z , x )< 
                                                  gdq( y, x)
                            gdq ( y , x )<  <                       which is a contradiction.
                                                       2
Similarly if z  y and z  x , z  A
If y  z  x then gdq ( y , x )  gdq ( y , z )  gdq ( z , x )
                                     max{gdq( y, z ), gdq ( z , x)}
                                    gdq( y, z )  gdq( z, x)
                                    2  gdq( y, x)                   which is a contradiction.

                           Hence   A  
             Hence ( X ,   gdq ,  ) is a Hausodorff space.


                                                         4
Mathematical Theory and Modeling                                                                  www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012
If x  X then the collection    V1 ( x) is base at x .Hence ( X , gdq ,  ) is first countable.
                                  n
Remark 1.15: Proposition 1.14 enables us to deal with sequences instead of nets.
Definition 1.16: A sequence {xn } in X is a gdq Cauchy sequence if for every  0 there corresponds
a positive integerN 0  gdq( xn , xm )  or gdq( xm , xn ) whenever n  N 0 and m  N0
ie min{gdq( xn , xm )  , gdq( xm , xn ) }. And ( X , gdq ) is said to be gdq complete if every
gdq Cauchy sequence in X is gdq convergent.
                                                                                                  
Result 1.17: Define D ( x , y )= gdq ( x , y )  gdq ( y , x ), where a  b = a + b, for a , b  R .
                 1. D is a generalized dislocated metric( D metric) on X .
                 2. For any {x /  }in X and x  X gdq lim( x )  x  D lim( x )  x
                 3. X is a gdq Complete  X is D complete.
Proof:(i) and (ii) are clear.we prove (iii)
Let X is a gdq Complete
Let  {xn } be a Cauchy sequence in ( X , D ) and  0 then there exist a positive integer
n0  m, n  n0 . lim D( xn , xm ) 
                  lim[ gdq( xn xm )gdq( xm xn )] 
                     lim[ gdq( xn xm )  gdq( xm xn )] 
                     min{gdq( xn xm ), gdq( xm xn )} 
 {xn } is a gdq Cauchy sequence.
Hence convergent.
 lim gdq( xn , x)  lim gdq( x, xn )  0
 D( xn , x)  0
Hencce X is D complete.
Conversely suppose that,
Let X is D complete.
  {xn } be a gdq Cauchy sequence in X and  0 there exist a positive integer n0 
Let
                                  
min{gdq( xn xm ), gdq( xm xn )} 
                                  2
gdq( xn xm )  gdq( xm xn )} 
gdq( xn xm )gdq( xm xn )} 
D( xn xm ) 
Hence {xn } be a Cauchy sequence in ( X , D )
 there exist x in X  D lim xn  x  lim D( xn x)  0
 lim[ gdq( xn x )  gdq( x xn )]  0
 lim gdq( xn x )  lim gdq( x xn )]  0
Hence X is gdq D complete.
Remark: As a consequence of 1.17 we can derive a fixed point theorem for     gdq metric space if we can
prove the same for D metric space and derive the contractive inequality for D from gdq .



                                                       5
Mathematical Theory and Modeling                                                                           www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012

           TheD metric induced by a gdq metric on a set X is very useful in deriving fixed point
theorems for self maps on ( X , gdq ) from their analogues for ( X , D ).If a self map f on a gdq metric
space ( X , gdq ) satisfies a contractive inequality               gdq( f ( x), f ( y))  gdq ( x, y), Where  gdq is a
linear function of { gdq(u, v) /{u, v}  {x, y,                f ( x), f ( y)}} then f satisfies the contractive inequality
D( f ( x), f ( y))   D ( x, y) Where  D is obtained by replacing gdq in  gdq by D .

B.E Rhodes[4] collected good number of contractive inequalities considered by various authors and
established implications and nonimplications among them. We consider a few of them here.
          Let ( X , d ) be a metric space, x  X , y  Y , f a self map on X ,
And          a, b, c, h, a1 , a2 , a3 , a4 , a5 , ,  ,  nonnegative               real       numbers      (=constants),
a( x, y), b( x, y), c( x, y), p( x, y), q( x, y), r ( x, y)s( x, y) and t ( x, y) be nonnegative real valued
continuous function on X x X .

        1.    (Banach) : d (            f ( x ) , f ( y ))  a d ( x , y ) , 0  a  1
                                                                                             1
        2.    (Kannan) :             d ( f ( x), f ( y))  a { d ( x, f ( x)) + d ( y, f ( y)} , 0  a 
                                                                                             2
        3. (Bianchini): d ( f ( x), f ( y))  h max { d ( x, f ( x)) , d ( y, f ( y)) } , 0  h  1
        4. d ( f ( x ), f ( y ))  a d ( x , f ( x ))+ b d ( y , f ( y )) + c d ( x , y ) , a + b + c <1


      5.   d ( f ( x ) , f ( y ))  a( x, y) d ( x , f ( x ))+ b( x, y) d ( y , f ( y )) + c( x, y) d ( x , y ) ,
             sup {a( x, y)  b( x, y)  c( x, y) / x  X , y  Y }  1
             x , yX

                                                                                                                  1
        6.    (Chatterjea):            d ( f ( x ) , f ( y ))  a [ d ( x , f ( y )) + d ( y , f ( x )) ] , a 
                                                                                                                  2
        7.       d ( f ( x), f ( y))  h max [ d ( x, f ( y)) , d ( y, f ( x)) ] , 0  h  1
        8.       d ( f ( x ) , f ( y ))  a d ( x , f ( y )) + b d ( y , f ( x )) + c d ( x , y ) , a + b + c
              <1
        9.    d ( f ( x), f ( y))  a( x, y) d ( x , f ( y )) + b( x, y) d ( y , f ( x ))+ c( x, y) d ( x , y ) ,
                           sup {a( x, y)  b( x, y)  c( x, y) / x  X , y  Y }  1
                       x , yX

        10. (Hardy and Rogers):


d ( f ( x), f ( y))  a1d ( x, y)  a2 d ( x, f ( x))  a3 d ( y, f ( y))  a4 d ( x, f ( y))  a5 d ( y, f ( x)) ,


                 sup {  ai ( x, y) }  1 For every x  y
                 x , yX         i


        11. (Zamfirescu):For each               x, y  X at least one of the following is true:


                                                                   6
Mathematical Theory and Modeling                                                                     www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012
              I.   d ( f ( x), f ( y))  d ( x, y) , 0    1
                                                                                          1
             II.   d ( f ( x), f ( y))   [ d ( x, f ( x)) + d ( y, f ( y)) ] , 0   
                                                                                          2
                                                                                           1
            III.   d ( f ( x), f ( y))   [ d ( x, f ( y)) + d ( y, f ( x)) ]     , 0 
                                                                                           2
         12. (Ciric): For each   x, y  X

             d ( f ( x), f ( y))  q( x, y) d ( x , y )+ r ( x, y) d ( x , f ( x ))+ s( x, y) d ( y , f ( y )) +

                                           t ( x, y) [ d ( x, f ( y)) + d ( y, f ( x))]

                     sup {q( x, y)  r ( x, y)  s( x, y)  2t ( x, y)    1
                     x , yX


         13. (Ciric): For each   x, y  X
              d ( f ( x), f ( y))  h
              max{ d ( x, y) d ( x, f ( x)) , d ( y, f ( y)) , d ( x, f ( y)) , d ( y, f ( x)) } ,
              0  h 1


B.E Rhoades[4] established the following implications among the above inequalities:
       (2)  (3)  (5)  (12)  (13)
       (2)  (4)  (5)  (12)  (13)
       (6)  (7)  (9)  (13)
       (6)  (8)  (9)  (13)
       (6)  (10)  (11)  (12)  (13).
       If d is a D metric instead of a metric, it is possible that d ( x, x)  0. As such these
implications hold good in a  D metric space as well when “ x  y ” is replaced by “ D( x, y)  0 ”. More
over all these implications end up with (13). Thus a fixed point theorem for f satisfying the D metric
version of Ciric’s Contraction principal (13) yields fixed point theorem for f satisfying the D metric
version of other inequalities.
         Moreover d ( x, f ( x)) =0   f (x) = x when d is a metric. However “ f (x) = x ”does not
necessarily imply d ( x, f ( x)) =0 where d is a D metric. We in fact prove the existence of x such
that D( x, f ( x)) =0 which we call a coincidence point of f .We now prove the following analogue of
Ciric’s Contraction principle.
2 Main Results
Theorem 2.1 : Let ( X , D ) be a complete              D metric space such that ◊ satisfies  -property with
   1 , f a self map on X and 0  h  1 .If for all x, y with D( x, y)  0.
 D ( f ( x ), f ( y ))  h                                     max{ D                             ( x , y ), D
( x , f ( x )), D ( x , f ( y )), D ( y , f ( x )), D ( y , f ( y ))} ----(*)
Then f has a unique coincidence point.
Proof: Assume that f satisfies (*).



                                                          7
Mathematical Theory and Modeling                                                                                                            www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012

     x  X and any positive integer n write 0( x, m) ={ x , f ( x )…… f m ( x )} and
    For
 [ 0( x, m) ] =sup { D(u, v) /{u, v}  0( x, m) } .
We first prove the following
Lemma[7]: For every positive integer ‘ m ’ there exists a positive integer                                                             km          such that
 [ 0( x, m) ]  D( x , f ( x) )    k


Proof: To prove this it is enough if we prove that                              [ 0( x, m) ]   m

Where            m =max { D ( x , x )…….. D ( x , f m (x)) }                          ___________________(1)

We prove this by using Induction,

Assume that (1) is true for ‘ m ’ i.e                [ 0( x, m) ]   m

Now we have to prove for                  m +1 i.e  [ 0( x, m  1) ]   m1 __________(2)

We have            [ 0( f ( x), m) ]  max { D ( x , x ) ,…….. D ( x , f m (x)) , D ( x , f m1 ( x)) }

Also          D ( f i (x) , f m1 ( x))  max { D ( x , x ),…….. D ( x , f m (x)) , D ( f i 1 ( x) , f m1 ( x)) }
______(3)

                                                                    1i  m
Hence  [ 0( x, m  1) ] =Sup { D ( f ( x) , f ( x)) / 0  i  j  m  1} ,
                                     i         j


                                   =Sup {      D ( x , x ),…….. D ( x , f m (x)) , D ( x , f m1 ( x)) } 

                                                                 Sup { D (          f i ( x) , f j ( x)) / 0  i  j  m  1} ,

                                                max{                 D                 ( x , x )…….. D                        (x,   f m (x)) , D            (x
,   f m1 ( x)) ,  ( 0( f ( x), m) ) }
                                   m1           from (1) and (3)
Hence           [ 0( x, m  1) ]   m1 .     This proves the lemma.
Proof of the Theorem:
If 1  i  m , 1                   j m
                                                         i 1                          j 1
D ( f i(x), f              j
                               ( y )) =     D(f(f               ( x )),    f(f                ( y )))

                                h      max { D (    f     i 1
                                                                  ( x ),   f    j 1
                                                                                       ( y )) , D (     f      i 1
                                                                                                                      (x) ,   f i ( x )) , D ( f      i 1
                                                                                                                                                             (x)
          j
,   f         ( y )) ,

                                                                                                        j 1                                          j 1
                                                                                               D( f            (x)       ,   f i ( x )) ,   D( f             (x)
          j
,   f         ( x ))}


                                                                                8
Mathematical Theory and Modeling                                                                                               www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012
                       h  [ 0( x, m) ] __________________(1)
Also  [ 0( x, m) ]  max
                                          j 1          j                                                  m
                               {D( f           ( x ), f ( x )), D ( x , x ), D ( x , f ( x )),….. D ( x , f (x))}
_____(2)
If m , n are positive integers such that                 m  n then by (1)
         m              n                     m n 1       n 1                       n 1
D( f         (x),   f       (   x ))= D ( f             ( f      ( x )) , f ( f               ( x )))

                                   h     (0(   f     n 1
                                                              ( x ) , m  n  1))
                                    h D( f          n 1
                                                            (x),   f
                                                                       k1 n 1
                                                                                  ( x )) for some       k1 ; 0  k1  m  n  1
                                                                                                                (by above lemma)
                                   h2       (0( f
                                                            n2
                                                           (x),          m - n +2)
                                  ------------------------
                                  ------------------------
                       h n  [ 0( x, m) ]
By the lemma  k  0  k  m and  [ 0( x, m) ]  D ( x , f (x) )
                                                              k


Assume k  1, D ( x , f (x) )  D ( x , f ( x ))  D ( f ( x ) , f (x) )
                       k                                          k


                                       max{ D ( x , f ( x )), D ( f ( x ) , f k ( x))}
                                      D ( x , f ( x )) + D ( f ( x ) , f k (x) )
                                      D ( x , f ( x )) + h  [ 0( x, m) ]
                                      D ( x , f ( x )) + h D ( x , f k (x) )
                                       1
                D ( x , f k (x) )         D ( x , f ( x ))
                                     1 h

If   k =0 ,  [ 0( x, m) ]  D ( x , x )  D ( x , f ( x ))  D ( f ( x ), x )

                                                          max{ D ( x , f ( x )) , D ( f ( x ), x ) }

                                                             D ( x , f ( x ))  D ( f ( x ), x )

                                                         D ( x , f ( x )) + h D ( x , x                )


                     D  x, x   1 D  x, f  x  
                                  1 h
Hence    D ( f ( x ), f ( x ))  h n  [ 0( x, m) ]
              m         n


                                  hn
                                      D  x, f  x  
                                 1 h
This is true for every          m > n Since 0  h < 1. lim h n = 0.Hence { f                                m
                                                                                                                ( x )} is a Cauchy sequence in
( X , D) .
Since X is complete,  z  X so that lim f
                                                                   n
                                                                       ( x )= z
We prove that D( z, f ( z ))  0




                                                                           9
Mathematical Theory and Modeling                                                                           www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012

      0  D( z, f ( z ))  D( z, f n 1 ( z )) D( f n 1 ( z ), f ( z ))
                             max{D( z, f n 1 ( z )), D( f n 1 ( z ), f ( z ))}
                           D( z, f n 1 ( z ))  D( f n 1 ( z ), f ( z ))



By continuity of      f , lim D( f n1 ( x), f ( z))  0

Hence D( z,     f ( z))  0, hence z is a coincidence point of f .

Suppose                 z1 , z 2             are             coincidence                point         of             f then
D ( z1 , z1 )= D ( z1 , f ( z1 )  0, similarly D ( z 2 , z 2 )=0

If   D ( z1 , z 2 )  0. Then by (*),

D ( z1 , z 2 )= D ( f ( z1 ) , f ( z 2 ))

                h max{D( z1 , z2 ), D( z1 , f ( z1 ), D( z1 , f ( z2 ) ), D( z2 , f ( z1 ) ), D(z2 ,f (z2 ))}

               h D ( z1 , z 2 )      a contradiction


Hence    D ( z1 , z 2 )=0.Hence z1  z2 .This completes the proof.

We now prove a fixed point theorem for a self map on a D metric space satisfying the analogue of (12).
Theorem2.2: Let ( X , D ) be a complete D metric space such that ◊ satisfies  -property with
  1 and f :      X  X be a continuous mapping such that there exist real numbers
                       1         1          1 1     1
 , 0 ,   , 0    , 0  0  ,   min{ ,   ,  0} satisfying at least one of the
                       2         2          4 2     2
following for each x, y  X

               i.      D( f ( x), f ( y))   D( x, y)
              ii.      D( f ( x), f ( y))   0 { D( x, f ( x))  D( y, f ( y)) }
             iii.      D( f ( x), f ( y))   { D( x, f ( y))  D( y, f ( x)) }
Then     f has a unique coincidence point.
Proof:       Putting        y=       x in     the     above       and            =   max   { 2 , 20 , 2 }   we      get
D( f ( x), f ( x))   D( x, f ( x))

Again putting       y = f (x) in the above (i) (ii) (iii) yield

                D( f ( x), f 2 ( x))  2  D( x, f ( x))

                                                                10
Mathematical Theory and Modeling                                                               www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012
                                0
         D( f ( x), f 2 ( x))        D( x, f ( x))
                              1  0
                                
       D( f ( x), f 2 ( x))           D( x, f ( x))
                               1 
                              
If   h = max{2 , 0 ,                }then 0  h  1 and
                       1  0 1  
 D( f ( x), f 2 ( x))  h D( x, f ( x))
If m , n are positive integers such that m > n then we can show that
                                             n
                 D( f n ( x), f m ( x))  h D( x, f ( x))
                                          1h
                since 0  h  1 ; lim h  0
                                           n

           n
Hence { f (x) } is a Cauchy sequence in ( X , D) .
Since X is complete,  z in X  lim f (x) = z
                                               n
                                              n
                                   n1
Since    f is continuous, lim f          ( x) = f ( z) in ( X , D).
sin ce 0  D( z , f ( z ))  D( z , f n 1 ( x)) D( f n 1 ( x), f ( z ))
                    max{D( z , f n 1 ( x)), D( f n 1 ( x), f ( z ))}
                   D( z , f n 1 ( x))  D( f n 1 ( x), f ( z ))
              D( z , f ( z )) =0 , Hence z is a Coincidence point of f .
It follows that
Uniqueness : If z1 , z 2 are coincidence points of f then by hypothesis,

Either   D ( z1 , z 2 )   D ( z1 , z 2 ) or 0 or 2  D ( z1 , z 2 )
                  1             1
Since    0       and 0      we must have D ( z1 , z 2 )=0
                  2             4
 Hence z1  z 2 . This completes the proof.
          The D metric version for the contractive inequality (10) in the modified form (**) given below
 yields the following
                  X , D ) be a complete D metric space such that ◊ satisfies  -property with
 Theorem2.3 : Let (
   1 and f : X  X be a continuous mapping. Assume that there exist non-negative constants
 a i satisfying a1  a2  a3  2a4  2a5 < 1 such that for each x , y  X with x  y

 D ( f ( x ), f ( y ))  a1 D ( x , y )  a2 D ( x , f ( x ))  a3 D ( y , f ( y ))  a4 D ( x , f ( y ))  a5
 D ( y , f ( x ))
 -----(**). Then     f has a unique coincidence point.

Proof:
Consider




                                                             11
Mathematical Theory and Modeling                                                                            www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012

D( f ( x), f 2 ( x))  a1D( x, f ( x))a2 D( x, f ( x)) a3 D( f ( x), f 2 ( x)) a4 D( x, f 2 ( x)) a5 D ( f ( x), f ( x))
                          max{a1 D( x, f ( x)), a2 D( x, f ( x)), a3 D( f ( x), f 2 ( x)), a4 D( x, f 2 ( x )), a5 D ( f ( x ), f ( x))}
                         a1 D( x, f ( x))  a2 D( x, f ( x))  a3 D( f ( x), f 2 ( x))  a4 D( x, f 2 ( x))  a5 D( f ( x), f ( x))
                         (a1  a2 ) D( x, f ( x))  a3 D( f ( x), f 2 ( x))  a4 D( x, f 2 ( x))  2a5 D ( x, f ( x ))

                              ( D( f ( x),       f ( x))  D( x, f ( x)) + D( f ( x), x))


                        a  a 2  2a 5                   a4                      a4 
D( f ( x), f 2 ( x))   1               D( x, f ( x)) +         D( x, f ( x)) +        
                        1  a3                          1  a3                  1  a3 
D( f ( x), f 2 ( x))

                        a1  a2  2a5  a4 
 D( f ( x), f ( x))  
              2
                                             D( x, f ( x))
                            1  a3  a 4   

                                                                         a1  a2  2a5  a4 
 D( f ( x), f ( x))   D( x, f ( x))
              2
                                                           where                           , 0<  < 1
                                                                         1  a3  a4        

If   m > n then

D( f n ( x), f m ( x))  D( f n ( x), f n 1 ( x))D( f n 1 ( x), f n  2 ( x))    D( f m 1 ( x), f m ( x))
                           max{D( f n ( x), f n 1 ( x)), D( f n 1 ( x), f n  2 ( x)),   , D( f m1 ( x), f m ( x))}
                          D( f n ( x), f n 1 ( x))  D( f n 1 ( x), f n  2 ( x))       D( f m1 ( x), f m ( x))


                           ( n   n1  .......   m1 ) D( x, f ( x))

                         =        (1     2 .......   mn1 ) D( x, f ( x))
                               n




                              n
                         <        D( x, f ( x))
                             1 

Hence {    f n (x) } is Cauchy sequence in ( X , D) , hence convergent.

Let     lim ( f n ( x))      then       f ( ) = lim ( f n1 ( x)) ( since f is continuous )
            n                                       n


So D( , f ( )) = lim D( f
                                   n
                                       ( x), f n1 ( x))
                    n




                                                                   12
Mathematical Theory and Modeling                                                               www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
Vol.2, No.2, 2012
                                 n
                        lim         D( x, f ( x))
                            n   1 

Since 0     < 1 , D( , f ( )) =0 .Hence f ( ) =  .

Hence      is a coincidence point for   f.

Uniqueness: If    D( , f ( ))  D( , f ( ))  0

 f ( ) =  and f ( ) =
Consider
D( , )  D( f ( ), f ( ))  a1D( , ) a2 D( , f ( )) a3 D( , f ( )) a4 D( , f ( )) a5 D( , f ( ))
                                   max{a1 D( , ), a2 D( , f ( )), a3 D( , f ( )), a4 D( , f ( )), a5 D( , f ( ))}
                                  a1D( , )  a2 D( , f ( ))  a3 D( , f ( ))  a4 D( , f ( ))  a5 D( , f ( ))
                                   D( , )            where   a1  a4  a5 1

 D( , )  0                  Hence   

Acknowledgement: The author is grateful to Dr. I.Ramabhadra Sarma for his valuable comments and
suggestions.

References:
 [1] Pascal Hitzler: Generalised metrices and topology in logic programming semantics, Ph. D
     Thesis,2001.
 [2] S.Sedghi: fixed point theorems for four mappings in d*-metric spaces, Thai journal of mathematics,
      vol 7(2009) November 1:9-19
 [3] S.G. Mathews: Metric domains for completeness, Technical report 76 , Department of computer
     science , University of Warwick, U.K, Ph.D Thesis 1985.
 [4] B.E.Rhoades : A comparison of various definitions of contractive mappings,Trans of the
       Amer.Math.Society          vol 226(1977) 257-290.
 [5] V.M.Sehgal : On fixed and periodic points for a class of mappings , journal of the London
       mathematical society     (2), 5, (1972) 571-576.
 [6] J. L. Kelley. General topology. D. Van Nostrand Company, Inc., 1960.
 [7] Lj. B. Ciric : A Generalisation of Banach’s Contraction Principle, American Mathematical Society,
     volume 45, Number 2, August 1974.




                                                       13

More Related Content

PDF
Some fixed point theorems in generalised dislocated metric spaces
Alexander Decker
 
PDF
11.some fixed point theorems in generalised dislocated metric spaces
Alexander Decker
 
PDF
Metric Embeddings and Expanders
Grigory Yaroslavtsev
 
PDF
Coincidence points for mappings under generalized contraction
Alexander Decker
 
PDF
A common fixed point theorem in cone metric spaces
Alexander Decker
 
PDF
Welcome to International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
PDF
Fixed points of contractive and Geraghty contraction mappings under the influ...
IJERA Editor
 
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
Some fixed point theorems in generalised dislocated metric spaces
Alexander Decker
 
11.some fixed point theorems in generalised dislocated metric spaces
Alexander Decker
 
Metric Embeddings and Expanders
Grigory Yaroslavtsev
 
Coincidence points for mappings under generalized contraction
Alexander Decker
 
A common fixed point theorem in cone metric spaces
Alexander Decker
 
Welcome to International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Fixed points of contractive and Geraghty contraction mappings under the influ...
IJERA Editor
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 

What's hot (20)

PDF
Ball Packings and Fat Voronoi Diagrams
Don Sheehy
 
PDF
Hf2412861289
IJERA Editor
 
PDF
Entity Linking via Graph-Distance Minimization
Roi Blanco
 
PDF
Fixed Point Theorems for Weak K-Quasi Contractions on a Generalized Metric Sp...
IJERA Editor
 
PDF
The Probability that a Matrix of Integers Is Diagonalizable
Jay Liew
 
PDF
Logistic Regression(SGD)
Prentice Xu
 
PDF
Low-rank tensor approximation (Introduction)
Alexander Litvinenko
 
PDF
1 cb02e45d01
nehagurjar
 
PDF
Gentle Introduction to Dirichlet Processes
Yap Wooi Hen
 
PDF
A focus on a common fixed point theorem using weakly compatible mappings
Alexander Decker
 
PDF
11.a focus on a common fixed point theorem using weakly compatible mappings
Alexander Decker
 
PDF
Bird’s-eye view of Gaussian harmonic analysis
Radboud University Medical Center
 
PDF
1404.1503
John Mendoza García
 
PDF
Local Volatility 1
Ilya Gikhman
 
PDF
Measures of risk on variability with application in stochastic activity networks
Alexander Decker
 
PDF
PhD thesis presentation of Nguyen Bich Van
Nguyen Bich Van
 
PDF
A new approach to constants of the motion and the helmholtz conditions
Alexander Decker
 
PDF
Supplement to local voatility
Ilya Gikhman
 
PDF
Physics of Algorithms Talk
jasonj383
 
PDF
Fuzzy inventory model with shortages in man power planning
Alexander Decker
 
Ball Packings and Fat Voronoi Diagrams
Don Sheehy
 
Hf2412861289
IJERA Editor
 
Entity Linking via Graph-Distance Minimization
Roi Blanco
 
Fixed Point Theorems for Weak K-Quasi Contractions on a Generalized Metric Sp...
IJERA Editor
 
The Probability that a Matrix of Integers Is Diagonalizable
Jay Liew
 
Logistic Regression(SGD)
Prentice Xu
 
Low-rank tensor approximation (Introduction)
Alexander Litvinenko
 
1 cb02e45d01
nehagurjar
 
Gentle Introduction to Dirichlet Processes
Yap Wooi Hen
 
A focus on a common fixed point theorem using weakly compatible mappings
Alexander Decker
 
11.a focus on a common fixed point theorem using weakly compatible mappings
Alexander Decker
 
Bird’s-eye view of Gaussian harmonic analysis
Radboud University Medical Center
 
Local Volatility 1
Ilya Gikhman
 
Measures of risk on variability with application in stochastic activity networks
Alexander Decker
 
PhD thesis presentation of Nguyen Bich Van
Nguyen Bich Van
 
A new approach to constants of the motion and the helmholtz conditions
Alexander Decker
 
Supplement to local voatility
Ilya Gikhman
 
Physics of Algorithms Talk
jasonj383
 
Fuzzy inventory model with shortages in man power planning
Alexander Decker
 
Ad

Viewers also liked (16)

PDF
Alumni Credit University of Missouri-Kansas City School of Law with Success
J. Mark Brewer
 
DOC
Song 1-Way Back into Love
Joyce Victorino
 
PPTX
Selling Children's Items On Ebay
believe52
 
PDF
Summer a pert5
sirkrisna
 
PDF
Chemical & process
Bisher Marad
 
DOCX
Bitacora isla proyecto2
juanpabrutus96
 
PPTX
Use Email Marketing wisely; Stand out from Junk Mail
believe52
 
PDF
Econometrics Homework Help
Assignmentpedia
 
PDF
บทความวิชาการ
nuydog
 
PPTX
E learning Development
ThinkingTree Consulting Pvt. Ltd.
 
PPT
Contrato laboral
CARLOS ORLANDO LACERNA VASQUEZ
 
DOC
Rancangan tahunan sains tahun 5
Eric Oon
 
PPTX
Bark & co solicitors news
Tequiefah Pedzotti
 
DOCX
Integración
juanpabrutus96
 
PPT
Project Overview
hypemanharper
 
Alumni Credit University of Missouri-Kansas City School of Law with Success
J. Mark Brewer
 
Song 1-Way Back into Love
Joyce Victorino
 
Selling Children's Items On Ebay
believe52
 
Summer a pert5
sirkrisna
 
Chemical & process
Bisher Marad
 
Bitacora isla proyecto2
juanpabrutus96
 
Use Email Marketing wisely; Stand out from Junk Mail
believe52
 
Econometrics Homework Help
Assignmentpedia
 
บทความวิชาการ
nuydog
 
E learning Development
ThinkingTree Consulting Pvt. Ltd.
 
Rancangan tahunan sains tahun 5
Eric Oon
 
Bark & co solicitors news
Tequiefah Pedzotti
 
Integración
juanpabrutus96
 
Project Overview
hypemanharper
 
Ad

Similar to On generalized dislocated quasi metrics (20)

PDF
Contribution of Fixed Point Theorem in Quasi Metric Spaces
AM Publications,India
 
PDF
International Journal of Computational Engineering Research(IJCER)
ijceronline
 
PDF
11.[29 35]a unique common fixed point theorem under psi varphi contractive co...
Alexander Decker
 
PDF
Notes
mikejack5
 
PDF
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
inventionjournals
 
PDF
7_AJMS_246_20.pdf
BRNSS Publication Hub
 
PDF
On Some Geometrical Properties of Proximal Sets and Existence of Best Proximi...
BRNSS Publication Hub
 
DOCX
2. Prasad_Komal JNU2015 (1)
Komal Goyal
 
PDF
Solutions for Problems from Applied Optimization by Ross Baldick
organicc488
 
PDF
Solutions for Problems from Applied Optimization by Ross Baldick
organicc488
 
PDF
A common fixed point of integral type contraction in generalized metric spacess
Alexander Decker
 
PDF
6 adesh kumar tripathi -71-74
Alexander Decker
 
PDF
Fixed point theorems for random variables in complete metric spaces
Alexander Decker
 
PDF
A new non symmetric information divergence of
eSAT Publishing House
 
PDF
Imo2008 sl
Christos Loizos
 
PDF
ma112011id535
matsushimalab
 
PDF
Some Special Functions of Complex Variable
rahulmonikasharma
 
PDF
11.a common fixed point theorem for compatible mapping
Alexander Decker
 
PDF
Imc2017 day2-solutions
Christos Loizos
 
Contribution of Fixed Point Theorem in Quasi Metric Spaces
AM Publications,India
 
International Journal of Computational Engineering Research(IJCER)
ijceronline
 
11.[29 35]a unique common fixed point theorem under psi varphi contractive co...
Alexander Decker
 
Notes
mikejack5
 
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
inventionjournals
 
7_AJMS_246_20.pdf
BRNSS Publication Hub
 
On Some Geometrical Properties of Proximal Sets and Existence of Best Proximi...
BRNSS Publication Hub
 
2. Prasad_Komal JNU2015 (1)
Komal Goyal
 
Solutions for Problems from Applied Optimization by Ross Baldick
organicc488
 
Solutions for Problems from Applied Optimization by Ross Baldick
organicc488
 
A common fixed point of integral type contraction in generalized metric spacess
Alexander Decker
 
6 adesh kumar tripathi -71-74
Alexander Decker
 
Fixed point theorems for random variables in complete metric spaces
Alexander Decker
 
A new non symmetric information divergence of
eSAT Publishing House
 
Imo2008 sl
Christos Loizos
 
ma112011id535
matsushimalab
 
Some Special Functions of Complex Variable
rahulmonikasharma
 
11.a common fixed point theorem for compatible mapping
Alexander Decker
 
Imc2017 day2-solutions
Christos Loizos
 

More from Alexander Decker (20)

PDF
Abnormalities of hormones and inflammatory cytokines in women affected with p...
Alexander Decker
 
PDF
A validation of the adverse childhood experiences scale in
Alexander Decker
 
PDF
A usability evaluation framework for b2 c e commerce websites
Alexander Decker
 
PDF
A universal model for managing the marketing executives in nigerian banks
Alexander Decker
 
PDF
A unique common fixed point theorems in generalized d
Alexander Decker
 
PDF
A trends of salmonella and antibiotic resistance
Alexander Decker
 
PDF
A transformational generative approach towards understanding al-istifham
Alexander Decker
 
PDF
A time series analysis of the determinants of savings in namibia
Alexander Decker
 
PDF
A therapy for physical and mental fitness of school children
Alexander Decker
 
PDF
A theory of efficiency for managing the marketing executives in nigerian banks
Alexander Decker
 
PDF
A systematic evaluation of link budget for
Alexander Decker
 
PDF
A synthetic review of contraceptive supplies in punjab
Alexander Decker
 
PDF
A synthesis of taylor’s and fayol’s management approaches for managing market...
Alexander Decker
 
PDF
A survey paper on sequence pattern mining with incremental
Alexander Decker
 
PDF
A survey on live virtual machine migrations and its techniques
Alexander Decker
 
PDF
A survey on data mining and analysis in hadoop and mongo db
Alexander Decker
 
PDF
A survey on challenges to the media cloud
Alexander Decker
 
PDF
A survey of provenance leveraged
Alexander Decker
 
PDF
A survey of private equity investments in kenya
Alexander Decker
 
PDF
A study to measures the financial health of
Alexander Decker
 
Abnormalities of hormones and inflammatory cytokines in women affected with p...
Alexander Decker
 
A validation of the adverse childhood experiences scale in
Alexander Decker
 
A usability evaluation framework for b2 c e commerce websites
Alexander Decker
 
A universal model for managing the marketing executives in nigerian banks
Alexander Decker
 
A unique common fixed point theorems in generalized d
Alexander Decker
 
A trends of salmonella and antibiotic resistance
Alexander Decker
 
A transformational generative approach towards understanding al-istifham
Alexander Decker
 
A time series analysis of the determinants of savings in namibia
Alexander Decker
 
A therapy for physical and mental fitness of school children
Alexander Decker
 
A theory of efficiency for managing the marketing executives in nigerian banks
Alexander Decker
 
A systematic evaluation of link budget for
Alexander Decker
 
A synthetic review of contraceptive supplies in punjab
Alexander Decker
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
Alexander Decker
 
A survey paper on sequence pattern mining with incremental
Alexander Decker
 
A survey on live virtual machine migrations and its techniques
Alexander Decker
 
A survey on data mining and analysis in hadoop and mongo db
Alexander Decker
 
A survey on challenges to the media cloud
Alexander Decker
 
A survey of provenance leveraged
Alexander Decker
 
A survey of private equity investments in kenya
Alexander Decker
 
A study to measures the financial health of
Alexander Decker
 

Recently uploaded (20)

PPTX
What-is-the-World-Wide-Web -- Introduction
tonifi9488
 
PDF
Accelerating Oracle Database 23ai Troubleshooting with Oracle AHF Fleet Insig...
Sandesh Rao
 
PPTX
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
PDF
Oracle AI Vector Search- Getting Started and what's new in 2025- AIOUG Yatra ...
Sandesh Rao
 
PPT
Coupa-Kickoff-Meeting-Template presentai
annapureddyn
 
PDF
Trying to figure out MCP by actually building an app from scratch with open s...
Julien SIMON
 
PDF
Beyond Automation: The Role of IoT Sensor Integration in Next-Gen Industries
Rejig Digital
 
PDF
Event Presentation Google Cloud Next Extended 2025
minhtrietgect
 
PDF
This slide provides an overview Technology
mineshkharadi333
 
PDF
NewMind AI Weekly Chronicles - July'25 - Week IV
NewMind AI
 
PDF
Cloud-Migration-Best-Practices-A-Practical-Guide-to-AWS-Azure-and-Google-Clou...
Artjoker Software Development Company
 
PDF
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
PDF
A Day in the Life of Location Data - Turning Where into How.pdf
Precisely
 
PDF
Doc9.....................................
SofiaCollazos
 
PDF
Google I/O Extended 2025 Baku - all ppts
HusseinMalikMammadli
 
PPTX
Coupa-Overview _Assumptions presentation
annapureddyn
 
PDF
Software Development Company | KodekX
KodekX
 
PDF
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
PDF
BLW VOCATIONAL TRAINING SUMMER INTERNSHIP REPORT
codernjn73
 
PDF
Presentation about Hardware and Software in Computer
snehamodhawadiya
 
What-is-the-World-Wide-Web -- Introduction
tonifi9488
 
Accelerating Oracle Database 23ai Troubleshooting with Oracle AHF Fleet Insig...
Sandesh Rao
 
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
Oracle AI Vector Search- Getting Started and what's new in 2025- AIOUG Yatra ...
Sandesh Rao
 
Coupa-Kickoff-Meeting-Template presentai
annapureddyn
 
Trying to figure out MCP by actually building an app from scratch with open s...
Julien SIMON
 
Beyond Automation: The Role of IoT Sensor Integration in Next-Gen Industries
Rejig Digital
 
Event Presentation Google Cloud Next Extended 2025
minhtrietgect
 
This slide provides an overview Technology
mineshkharadi333
 
NewMind AI Weekly Chronicles - July'25 - Week IV
NewMind AI
 
Cloud-Migration-Best-Practices-A-Practical-Guide-to-AWS-Azure-and-Google-Clou...
Artjoker Software Development Company
 
Structs to JSON: How Go Powers REST APIs
Emily Achieng
 
A Day in the Life of Location Data - Turning Where into How.pdf
Precisely
 
Doc9.....................................
SofiaCollazos
 
Google I/O Extended 2025 Baku - all ppts
HusseinMalikMammadli
 
Coupa-Overview _Assumptions presentation
annapureddyn
 
Software Development Company | KodekX
KodekX
 
AI Unleashed - Shaping the Future -Starting Today - AIOUG Yatra 2025 - For Co...
Sandesh Rao
 
BLW VOCATIONAL TRAINING SUMMER INTERNSHIP REPORT
codernjn73
 
Presentation about Hardware and Software in Computer
snehamodhawadiya
 

On generalized dislocated quasi metrics

  • 1. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.2, 2012 On Generalized Dislocated Quasi Metrics P Sumati Kumari Department of Mathematics, FED – I, K L University, Green fields, Vaddeswaram, A.P, 522502, India. Email:[email protected] Abstract The notion of dislocated quasi metric is a generalization of metric that retains, an analogue of the illustrious Banach’s Contraction principle and has useful applications in the semantic analysis of logic programming. In this paper we introduce the concept of generalized dislocated quasi metric space.The purpose of this note is to study topological properties of a gdq metric, its connection with generalized dislocated metric space and to derive some fixed point theorems. Keywords: Generalized dislocated metric, Generalized dislocated quasi metric, Contractive conditions, coincidence point,  -property. Introduction: Pascal Hitzler [1] presented variants of Banach’s Contraction principle for various modified forms of a metric space including dislocated metric space and applied them to semantic analysis of logic programs. In this context Hitzler raised some related questions on the topological aspects of dislocated metrics. In this paper we establish the existence of a topology induced by a gdq metric, induce a generalized dislocated metric (D metric) from a gdq metric and prove that fixed point theorems for gdq metric spaces can be derived from their analogues for D metric spaces . We then prove a D metric version of Ciric’s fixed point theorem from which a good number of fixed point theorems can be deduced.    Definition 1.1:[2]Let binary operation ◊ : R  R  R satisfies the following conditions: (I) ◊ is Associative and Commutative, (II) ◊ is continuous. Five typical examples are a ◊b a , b }, a ◊ b = a + b , a ◊ b = a b , = max{ ab  a ◊ b = a b + a + b and a ◊ b = for each a , b ∈ R max a, b,1 Definition 1.2: [2] The binary operation ◊ is said to satisfy  -property if there exists a positive real number  such that a ◊ b ≤  max{ a , b } for every a , b ∈ R .  Definition 1.3: Let X be a nonempty set. A generalized dislocated quasi metric  (or gdq metric) on X is a function gdq : X 2  R that satisfies the following conditions for each x, y, z ∈ X .   (1) gdq x , y  0 ,   (2) gdq x , y  0 implies x  y    (3) gdqx , z  ≤ gdq x , y ◊ gdq y, z  The pair ( X , gdq ) is called a generalized dislocated quasi metric (or gdq metric) space. If gdq satisfies gdq  x , y   gdq( y, x) also, then gdq is called generalized dislocated metric space. Unless specified otherwise in what follows ( X , gdq ) stands for a gdq metric space. 1
  • 2. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.2, 2012 Definition 1.4: If ( x /    )is a net in X and xX (x ) gdq converges to x we say that and write gdq lim x = x if lim gdq( x x) = lim gdq( x x ) =0 .i.e For each  0 there exists    o   such that for all    0  gdq( x, x )  gdq( x , x) .We also call x, gdq limit of ( x ). We introduce the following Definition 1.5: Let A  X . x  X is said to be a gdq limit point of A if there exists a net (x ) in X such that gdq lim x = x.  Notation1.6:Let x  X , A  X and r >0,We write D ( A )= {x / x  X and x is a gdq limit point of A }. Br ( x)  { y / y  X and min{ gdq( x, y), gdq( y, x)} r} and Vr ( x) {x}  Br ( x) . Remark 1.7: gdq lim x = x iff for every   0 there exists  0   such that   x B ( x) if    0 Proposition 1.8: Let ( X , gdq ) be a gdq metric space such that ◊ satisfies  -property with   0. If a net ( x /    ) in X gdq converges to x then x is unique. Proof: Let ( x /    ) gdq converges to y and yx Since ( x /    ) gdq converges to x and y then for each  0 there exists 1 , 2   such that   for all   1  gdq( x, x )  gdq( x , x)  and    2  gdq( y, x )  gdq( x , y )    From triangular inequality we have, gdq  x, y   gdq( x, x )gdq( x , y)   max{gdq( x, x ), gdq( x , y)}     max{ , }    Which is a contradiction. Hence gdq ( x, y )=0 similarly gdq ( y, x )=0 x  y Proposition 1.9: x  X is a gdq limit point of A  X iff for every r>0 , A  B r (x)   Proof: Suppose x  D(A) . Then there exists a net ( x /    ) in A such that x = gdq lim x .  If r  0 ,   0   such that Br (x)  A   for    0 . Conversely suppose that for every r >0 Br (x)  A   . Then for every positive integer n, there exists x n  B 1 ( x)  A so that n gdq ( xn , x )< 1 n , gdq ( x , xn )< 1 n and xn  A 2
  • 3. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.2, 2012 Hence gdq lim gdq ( xn x)  0 so that x  D(A) n Theorem 1.10: Let ( X , gdq ) be a gdq metric space such that ◊ satisfies  -property with   1 and A  X and B  X then i. D ( A )=  if A   ii. D ( A )  D ( B ) if A  B iii. D ( D ( A ))  D ( A ) iv. D ( A  B )= D ( A )  D ( B ) Proof: (i) and (ii) are clear. That D ( A )  D ( B )  D ( A  B ) follows from (ii). To prove the reverse inclusion, let x  D ( A  B ) , x = gdq lim ( x ) where ( x / α   ) is a net in A  B .   If     such that x  A for α   and α ≥  then ( x /α ≥  ,α   ) is a cofinal subnet of ( x /α   ) and lim gdq ( x , x ) = lim gdq ( x , x ) = lim gdq ( x , x )= lim gdq ( x , x )=0         so that x  D ( A ). If no such  exists in  then for every α   , choose β(α)   such that β(α)≥α and x  ( )  B. Then ( x ( ) / α   ) is a cofinal subnet in B of ( x / α   ) and lim gdq ( x ( ) , x )= lim gdq ( x , x )= lim gdq ( x , x ) = lim gdq ( x , x ( ) ) = 0 so that         x  D ( B ).It now follows that D ( A  B )  D ( A )  D ( B ) and hence (iii) holds. To prove (iv) let x  D ( D ( A ) ), x = gdq lim x , x  D ( A ) for α   , and  α   ,let ( x (  ) /β   (α))   be a net in A Such that x = gdq lim  x .For each positive integer i  α i   such that    1 1 gdq ( x i , x )= gdq ( x , x i )< , and β i   ( α i )  gdq ( x i , x i )= gdq ( x i , x i )< i . i i i If we write α i =  i  i, then {  1, 2 ........ } is directed set with  i <  j  i if i  j, gdq x i , x   gdq( x i , xi )gdq( xi , x)   max{ gdq( x i , xi ), gdq( xi , x)}  gdq( x i , xi )  gdq( xi , x) 2 < i gdq x, x i   2 Similarly, i Hence x  D( A ). Corollory 1.11: If we write A  A  D(A) for A  X the operation A  A satisfies Kurotawski’s 3
  • 4. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.2, 2012 _ Closure axioms[6] so that the set   { A / A  X and AC  AC } is a topology on X . We call ( X , gdq ,  ) topological space induced by gdq . We call A  X to be closed if A  A and open if A  . Corollory 1.12: A  X is open (i.e A   ) iff for every x  A there exists   0  V ( x)  A Proposition 1.13: Let ( X , gdq ) be a gdq metric space such that ◊ satisfies  -property with   1. If x  X and   0 then V (x) is an open set in ( X , gdq ,  ). Proof: Let y  B (x) and 0  r  min{  d ( x, y) ,   d ( y , x)}. Then B ( y )  B ( x)  A , since z  Br ( y)  min{gdq( y, z ), gdq( z, y)}  r r   gdq( y, z)  r  min{  gdq( x, y),   gdq( y , x)} Now gdq( x, z )  gdq( x, y )gdq ( y, z )   max{gdq( x, y ), gdq ( y, z )}  gdq( x, y )  gdq( y, z )  Similarly gdq( z, x)   therefore z  B ( x)  Hence V (x) is open. Proposition 1.14: Let ( X , gdq ) be a gdq metric space such that ◊ satisfies  -property with Then ( X , gdq ,  ) is a Hausodorff space and first countable. Proof: Suppose x  y we have to find  such that A  ( B ( x)  {x})  ( B ( y) { y})  Since x  y. One of gdq ( x , y ), gdq ( y , x ) is non zero. We may assume gdq ( y , x )>0 Choose   0 such that 2  gdq( y, x) .we show that A  . If z  A and z = y , z  x. z  B (x) .  gdq ( z , x )<  gdq( y, x)  gdq ( y , x )<  < which is a contradiction. 2 Similarly if z  y and z  x , z  A If y  z  x then gdq ( y , x )  gdq ( y , z )  gdq ( z , x )   max{gdq( y, z ), gdq ( z , x)}  gdq( y, z )  gdq( z, x)  2  gdq( y, x) which is a contradiction. Hence A   Hence ( X , gdq ,  ) is a Hausodorff space. 4
  • 5. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.2, 2012 If x  X then the collection V1 ( x) is base at x .Hence ( X , gdq ,  ) is first countable. n Remark 1.15: Proposition 1.14 enables us to deal with sequences instead of nets. Definition 1.16: A sequence {xn } in X is a gdq Cauchy sequence if for every  0 there corresponds a positive integerN 0  gdq( xn , xm )  or gdq( xm , xn ) whenever n  N 0 and m  N0 ie min{gdq( xn , xm )  , gdq( xm , xn ) }. And ( X , gdq ) is said to be gdq complete if every gdq Cauchy sequence in X is gdq convergent.  Result 1.17: Define D ( x , y )= gdq ( x , y )  gdq ( y , x ), where a  b = a + b, for a , b  R . 1. D is a generalized dislocated metric( D metric) on X . 2. For any {x /  }in X and x  X gdq lim( x )  x  D lim( x )  x 3. X is a gdq Complete  X is D complete. Proof:(i) and (ii) are clear.we prove (iii) Let X is a gdq Complete Let {xn } be a Cauchy sequence in ( X , D ) and  0 then there exist a positive integer n0  m, n  n0 . lim D( xn , xm )  lim[ gdq( xn xm )gdq( xm xn )]  lim[ gdq( xn xm )  gdq( xm xn )]  min{gdq( xn xm ), gdq( xm xn )}   {xn } is a gdq Cauchy sequence. Hence convergent.  lim gdq( xn , x)  lim gdq( x, xn )  0  D( xn , x)  0 Hencce X is D complete. Conversely suppose that, Let X is D complete. {xn } be a gdq Cauchy sequence in X and  0 there exist a positive integer n0  Let  min{gdq( xn xm ), gdq( xm xn )}  2 gdq( xn xm )  gdq( xm xn )}  gdq( xn xm )gdq( xm xn )}  D( xn xm )  Hence {xn } be a Cauchy sequence in ( X , D )  there exist x in X  D lim xn  x  lim D( xn x)  0  lim[ gdq( xn x )  gdq( x xn )]  0  lim gdq( xn x )  lim gdq( x xn )]  0 Hence X is gdq D complete. Remark: As a consequence of 1.17 we can derive a fixed point theorem for gdq metric space if we can prove the same for D metric space and derive the contractive inequality for D from gdq . 5
  • 6. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.2, 2012 TheD metric induced by a gdq metric on a set X is very useful in deriving fixed point theorems for self maps on ( X , gdq ) from their analogues for ( X , D ).If a self map f on a gdq metric space ( X , gdq ) satisfies a contractive inequality gdq( f ( x), f ( y))  gdq ( x, y), Where  gdq is a linear function of { gdq(u, v) /{u, v}  {x, y, f ( x), f ( y)}} then f satisfies the contractive inequality D( f ( x), f ( y))   D ( x, y) Where  D is obtained by replacing gdq in  gdq by D . B.E Rhodes[4] collected good number of contractive inequalities considered by various authors and established implications and nonimplications among them. We consider a few of them here. Let ( X , d ) be a metric space, x  X , y  Y , f a self map on X , And a, b, c, h, a1 , a2 , a3 , a4 , a5 , ,  ,  nonnegative real numbers (=constants), a( x, y), b( x, y), c( x, y), p( x, y), q( x, y), r ( x, y)s( x, y) and t ( x, y) be nonnegative real valued continuous function on X x X . 1. (Banach) : d ( f ( x ) , f ( y ))  a d ( x , y ) , 0  a  1 1 2. (Kannan) : d ( f ( x), f ( y))  a { d ( x, f ( x)) + d ( y, f ( y)} , 0  a  2 3. (Bianchini): d ( f ( x), f ( y))  h max { d ( x, f ( x)) , d ( y, f ( y)) } , 0  h  1 4. d ( f ( x ), f ( y ))  a d ( x , f ( x ))+ b d ( y , f ( y )) + c d ( x , y ) , a + b + c <1 5. d ( f ( x ) , f ( y ))  a( x, y) d ( x , f ( x ))+ b( x, y) d ( y , f ( y )) + c( x, y) d ( x , y ) , sup {a( x, y)  b( x, y)  c( x, y) / x  X , y  Y }  1 x , yX 1 6. (Chatterjea): d ( f ( x ) , f ( y ))  a [ d ( x , f ( y )) + d ( y , f ( x )) ] , a  2 7. d ( f ( x), f ( y))  h max [ d ( x, f ( y)) , d ( y, f ( x)) ] , 0  h  1 8. d ( f ( x ) , f ( y ))  a d ( x , f ( y )) + b d ( y , f ( x )) + c d ( x , y ) , a + b + c <1 9. d ( f ( x), f ( y))  a( x, y) d ( x , f ( y )) + b( x, y) d ( y , f ( x ))+ c( x, y) d ( x , y ) , sup {a( x, y)  b( x, y)  c( x, y) / x  X , y  Y }  1 x , yX 10. (Hardy and Rogers): d ( f ( x), f ( y))  a1d ( x, y)  a2 d ( x, f ( x))  a3 d ( y, f ( y))  a4 d ( x, f ( y))  a5 d ( y, f ( x)) , sup {  ai ( x, y) }  1 For every x  y x , yX i 11. (Zamfirescu):For each x, y  X at least one of the following is true: 6
  • 7. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.2, 2012 I. d ( f ( x), f ( y))  d ( x, y) , 0    1 1 II. d ( f ( x), f ( y))   [ d ( x, f ( x)) + d ( y, f ( y)) ] , 0    2 1 III. d ( f ( x), f ( y))   [ d ( x, f ( y)) + d ( y, f ( x)) ] , 0  2 12. (Ciric): For each x, y  X d ( f ( x), f ( y))  q( x, y) d ( x , y )+ r ( x, y) d ( x , f ( x ))+ s( x, y) d ( y , f ( y )) + t ( x, y) [ d ( x, f ( y)) + d ( y, f ( x))] sup {q( x, y)  r ( x, y)  s( x, y)  2t ( x, y)    1 x , yX 13. (Ciric): For each x, y  X d ( f ( x), f ( y))  h max{ d ( x, y) d ( x, f ( x)) , d ( y, f ( y)) , d ( x, f ( y)) , d ( y, f ( x)) } , 0  h 1 B.E Rhoades[4] established the following implications among the above inequalities: (2)  (3)  (5)  (12)  (13) (2)  (4)  (5)  (12)  (13) (6)  (7)  (9)  (13) (6)  (8)  (9)  (13) (6)  (10)  (11)  (12)  (13). If d is a D metric instead of a metric, it is possible that d ( x, x)  0. As such these implications hold good in a D metric space as well when “ x  y ” is replaced by “ D( x, y)  0 ”. More over all these implications end up with (13). Thus a fixed point theorem for f satisfying the D metric version of Ciric’s Contraction principal (13) yields fixed point theorem for f satisfying the D metric version of other inequalities. Moreover d ( x, f ( x)) =0  f (x) = x when d is a metric. However “ f (x) = x ”does not necessarily imply d ( x, f ( x)) =0 where d is a D metric. We in fact prove the existence of x such that D( x, f ( x)) =0 which we call a coincidence point of f .We now prove the following analogue of Ciric’s Contraction principle. 2 Main Results Theorem 2.1 : Let ( X , D ) be a complete D metric space such that ◊ satisfies  -property with   1 , f a self map on X and 0  h  1 .If for all x, y with D( x, y)  0. D ( f ( x ), f ( y ))  h max{ D ( x , y ), D ( x , f ( x )), D ( x , f ( y )), D ( y , f ( x )), D ( y , f ( y ))} ----(*) Then f has a unique coincidence point. Proof: Assume that f satisfies (*). 7
  • 8. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.2, 2012 x  X and any positive integer n write 0( x, m) ={ x , f ( x )…… f m ( x )} and For  [ 0( x, m) ] =sup { D(u, v) /{u, v}  0( x, m) } . We first prove the following Lemma[7]: For every positive integer ‘ m ’ there exists a positive integer km such that  [ 0( x, m) ]  D( x , f ( x) ) k Proof: To prove this it is enough if we prove that  [ 0( x, m) ]   m Where  m =max { D ( x , x )…….. D ( x , f m (x)) } ___________________(1) We prove this by using Induction, Assume that (1) is true for ‘ m ’ i.e  [ 0( x, m) ]   m Now we have to prove for m +1 i.e  [ 0( x, m  1) ]   m1 __________(2) We have  [ 0( f ( x), m) ]  max { D ( x , x ) ,…….. D ( x , f m (x)) , D ( x , f m1 ( x)) } Also D ( f i (x) , f m1 ( x))  max { D ( x , x ),…….. D ( x , f m (x)) , D ( f i 1 ( x) , f m1 ( x)) } ______(3)  1i  m Hence  [ 0( x, m  1) ] =Sup { D ( f ( x) , f ( x)) / 0  i  j  m  1} , i j =Sup { D ( x , x ),…….. D ( x , f m (x)) , D ( x , f m1 ( x)) }  Sup { D ( f i ( x) , f j ( x)) / 0  i  j  m  1} ,  max{ D ( x , x )…….. D (x, f m (x)) , D (x , f m1 ( x)) ,  ( 0( f ( x), m) ) }   m1 from (1) and (3) Hence  [ 0( x, m  1) ]   m1 . This proves the lemma. Proof of the Theorem: If 1  i  m , 1  j m i 1 j 1 D ( f i(x), f j ( y )) = D(f(f ( x )), f(f ( y ))) h max { D ( f i 1 ( x ), f j 1 ( y )) , D ( f i 1 (x) , f i ( x )) , D ( f i 1 (x) j , f ( y )) , j 1 j 1 D( f (x) , f i ( x )) , D( f (x) j , f ( x ))} 8
  • 9. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.2, 2012  h  [ 0( x, m) ] __________________(1) Also  [ 0( x, m) ]  max j 1 j m {D( f ( x ), f ( x )), D ( x , x ), D ( x , f ( x )),….. D ( x , f (x))} _____(2) If m , n are positive integers such that m  n then by (1) m n m n 1 n 1 n 1 D( f (x), f ( x ))= D ( f ( f ( x )) , f ( f ( x ))) h (0( f n 1 ( x ) , m  n  1))  h D( f n 1 (x), f k1 n 1 ( x )) for some k1 ; 0  k1  m  n  1 (by above lemma) h2 (0( f n2 (x), m - n +2) ------------------------ ------------------------  h n  [ 0( x, m) ] By the lemma  k  0  k  m and  [ 0( x, m) ]  D ( x , f (x) ) k Assume k  1, D ( x , f (x) )  D ( x , f ( x ))  D ( f ( x ) , f (x) ) k k   max{ D ( x , f ( x )), D ( f ( x ) , f k ( x))}  D ( x , f ( x )) + D ( f ( x ) , f k (x) )  D ( x , f ( x )) + h  [ 0( x, m) ]  D ( x , f ( x )) + h D ( x , f k (x) ) 1  D ( x , f k (x) )  D ( x , f ( x )) 1 h If k =0 ,  [ 0( x, m) ]  D ( x , x )  D ( x , f ( x ))  D ( f ( x ), x )   max{ D ( x , f ( x )) , D ( f ( x ), x ) }  D ( x , f ( x ))  D ( f ( x ), x )  D ( x , f ( x )) + h D ( x , x )  D  x, x   1 D  x, f  x   1 h Hence D ( f ( x ), f ( x ))  h n  [ 0( x, m) ] m n hn  D  x, f  x   1 h This is true for every m > n Since 0  h < 1. lim h n = 0.Hence { f m ( x )} is a Cauchy sequence in ( X , D) . Since X is complete,  z  X so that lim f n ( x )= z We prove that D( z, f ( z ))  0 9
  • 10. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.2, 2012 0  D( z, f ( z ))  D( z, f n 1 ( z )) D( f n 1 ( z ), f ( z ))   max{D( z, f n 1 ( z )), D( f n 1 ( z ), f ( z ))}  D( z, f n 1 ( z ))  D( f n 1 ( z ), f ( z )) By continuity of f , lim D( f n1 ( x), f ( z))  0 Hence D( z, f ( z))  0, hence z is a coincidence point of f . Suppose z1 , z 2 are coincidence point of f then D ( z1 , z1 )= D ( z1 , f ( z1 )  0, similarly D ( z 2 , z 2 )=0 If D ( z1 , z 2 )  0. Then by (*), D ( z1 , z 2 )= D ( f ( z1 ) , f ( z 2 ))  h max{D( z1 , z2 ), D( z1 , f ( z1 ), D( z1 , f ( z2 ) ), D( z2 , f ( z1 ) ), D(z2 ,f (z2 ))}  h D ( z1 , z 2 ) a contradiction Hence D ( z1 , z 2 )=0.Hence z1  z2 .This completes the proof. We now prove a fixed point theorem for a self map on a D metric space satisfying the analogue of (12). Theorem2.2: Let ( X , D ) be a complete D metric space such that ◊ satisfies  -property with   1 and f : X  X be a continuous mapping such that there exist real numbers 1 1 1 1 1  , 0 ,   , 0    , 0  0  ,   min{ ,   ,  0} satisfying at least one of the 2 2 4 2 2 following for each x, y  X i. D( f ( x), f ( y))   D( x, y) ii. D( f ( x), f ( y))   0 { D( x, f ( x))  D( y, f ( y)) } iii. D( f ( x), f ( y))   { D( x, f ( y))  D( y, f ( x)) } Then f has a unique coincidence point. Proof: Putting y= x in the above and  = max { 2 , 20 , 2 } we get D( f ( x), f ( x))   D( x, f ( x)) Again putting y = f (x) in the above (i) (ii) (iii) yield D( f ( x), f 2 ( x))  2  D( x, f ( x)) 10
  • 11. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.2, 2012 0 D( f ( x), f 2 ( x))  D( x, f ( x)) 1  0   D( f ( x), f 2 ( x))  D( x, f ( x)) 1     If h = max{2 , 0 , }then 0  h  1 and 1  0 1   D( f ( x), f 2 ( x))  h D( x, f ( x)) If m , n are positive integers such that m > n then we can show that n D( f n ( x), f m ( x))  h D( x, f ( x)) 1h since 0  h  1 ; lim h  0 n n Hence { f (x) } is a Cauchy sequence in ( X , D) . Since X is complete,  z in X  lim f (x) = z n n n1 Since f is continuous, lim f ( x) = f ( z) in ( X , D). sin ce 0  D( z , f ( z ))  D( z , f n 1 ( x)) D( f n 1 ( x), f ( z ))   max{D( z , f n 1 ( x)), D( f n 1 ( x), f ( z ))}  D( z , f n 1 ( x))  D( f n 1 ( x), f ( z )) D( z , f ( z )) =0 , Hence z is a Coincidence point of f . It follows that Uniqueness : If z1 , z 2 are coincidence points of f then by hypothesis, Either D ( z1 , z 2 )   D ( z1 , z 2 ) or 0 or 2  D ( z1 , z 2 ) 1 1 Since 0   and 0    we must have D ( z1 , z 2 )=0 2 4 Hence z1  z 2 . This completes the proof. The D metric version for the contractive inequality (10) in the modified form (**) given below yields the following X , D ) be a complete D metric space such that ◊ satisfies  -property with Theorem2.3 : Let (   1 and f : X  X be a continuous mapping. Assume that there exist non-negative constants a i satisfying a1  a2  a3  2a4  2a5 < 1 such that for each x , y  X with x  y D ( f ( x ), f ( y ))  a1 D ( x , y )  a2 D ( x , f ( x ))  a3 D ( y , f ( y ))  a4 D ( x , f ( y ))  a5 D ( y , f ( x )) -----(**). Then f has a unique coincidence point. Proof: Consider 11
  • 12. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.2, 2012 D( f ( x), f 2 ( x))  a1D( x, f ( x))a2 D( x, f ( x)) a3 D( f ( x), f 2 ( x)) a4 D( x, f 2 ( x)) a5 D ( f ( x), f ( x))   max{a1 D( x, f ( x)), a2 D( x, f ( x)), a3 D( f ( x), f 2 ( x)), a4 D( x, f 2 ( x )), a5 D ( f ( x ), f ( x))}  a1 D( x, f ( x))  a2 D( x, f ( x))  a3 D( f ( x), f 2 ( x))  a4 D( x, f 2 ( x))  a5 D( f ( x), f ( x))  (a1  a2 ) D( x, f ( x))  a3 D( f ( x), f 2 ( x))  a4 D( x, f 2 ( x))  2a5 D ( x, f ( x )) ( D( f ( x), f ( x))  D( x, f ( x)) + D( f ( x), x))   a  a 2  2a 5   a4   a4  D( f ( x), f 2 ( x))   1  D( x, f ( x)) +   D( x, f ( x)) +    1  a3  1  a3  1  a3  D( f ( x), f 2 ( x))  a1  a2  2a5  a4   D( f ( x), f ( x))   2  D( x, f ( x))  1  a3  a 4   a1  a2  2a5  a4   D( f ( x), f ( x))   D( x, f ( x)) 2 where    , 0<  < 1  1  a3  a4  If m > n then D( f n ( x), f m ( x))  D( f n ( x), f n 1 ( x))D( f n 1 ( x), f n  2 ( x))    D( f m 1 ( x), f m ( x))   max{D( f n ( x), f n 1 ( x)), D( f n 1 ( x), f n  2 ( x)),   , D( f m1 ( x), f m ( x))}  D( f n ( x), f n 1 ( x))  D( f n 1 ( x), f n  2 ( x))       D( f m1 ( x), f m ( x))  ( n   n1  .......   m1 ) D( x, f ( x)) = (1     2 .......   mn1 ) D( x, f ( x)) n n < D( x, f ( x)) 1  Hence { f n (x) } is Cauchy sequence in ( X , D) , hence convergent. Let   lim ( f n ( x)) then f ( ) = lim ( f n1 ( x)) ( since f is continuous ) n n So D( , f ( )) = lim D( f n ( x), f n1 ( x)) n 12
  • 13. Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.2, 2012 n  lim D( x, f ( x)) n 1  Since 0   < 1 , D( , f ( )) =0 .Hence f ( ) =  . Hence  is a coincidence point for f. Uniqueness: If D( , f ( ))  D( , f ( ))  0  f ( ) =  and f ( ) = Consider D( , )  D( f ( ), f ( ))  a1D( , ) a2 D( , f ( )) a3 D( , f ( )) a4 D( , f ( )) a5 D( , f ( ))   max{a1 D( , ), a2 D( , f ( )), a3 D( , f ( )), a4 D( , f ( )), a5 D( , f ( ))}  a1D( , )  a2 D( , f ( ))  a3 D( , f ( ))  a4 D( , f ( ))  a5 D( , f ( ))   D( , ) where   a1  a4  a5 1  D( , )  0 Hence    Acknowledgement: The author is grateful to Dr. I.Ramabhadra Sarma for his valuable comments and suggestions. References: [1] Pascal Hitzler: Generalised metrices and topology in logic programming semantics, Ph. D Thesis,2001. [2] S.Sedghi: fixed point theorems for four mappings in d*-metric spaces, Thai journal of mathematics, vol 7(2009) November 1:9-19 [3] S.G. Mathews: Metric domains for completeness, Technical report 76 , Department of computer science , University of Warwick, U.K, Ph.D Thesis 1985. [4] B.E.Rhoades : A comparison of various definitions of contractive mappings,Trans of the Amer.Math.Society vol 226(1977) 257-290. [5] V.M.Sehgal : On fixed and periodic points for a class of mappings , journal of the London mathematical society (2), 5, (1972) 571-576. [6] J. L. Kelley. General topology. D. Van Nostrand Company, Inc., 1960. [7] Lj. B. Ciric : A Generalisation of Banach’s Contraction Principle, American Mathematical Society, volume 45, Number 2, August 1974. 13