SlideShare a Scribd company logo
Model Deployment
Alexey Grigorev
Principal Data Scientist — OLX Group
Founder — DataTalks.Club
2010
2012
2015
2018
mlbookcamp.com
Plan
● Different options to deploy a model (Lambda, Kubernetes, SageMaker)
● Kubernetes 101
● Deploying an XGB model with Flask and Kubernetes
● Deploying a Keras model with TF-Serving and Kubernetes
● Deploying a Keras model with Kubeflow
Ways to deploy a model
● Flask + AWS Elastic Beanstalk
● Serverless (AWS Lambda)
● Kubernetes (EKS)
● Kubeflow (EKS)
● AWS SageMaker
● ...
(or their alternatives in other cloud providers)
{
"tshirt": 0.9993,
"pants": 0.0005,
"shoes": 0.00004
}
AWS Lambda
Kubernetes
Ingress
Client
Node1
Node2
Pod A
Pod B Pod C
Pod D
Pod E
Pod F
Service
1
Service
2
Deployment 1
Deployment 2
Kubernetes Cluster
Kubeflow / KFServing
Ingress
Client
Node1
Node2
Pod A
Pod B Pod C
Pod D
Pod E
Pod F
Service
1
Service
2
Deployment 1
Deployment 2
Kubernetes Cluster
InferenceService
SageMaker
Client
Model
Endpoint
AWS SageMaker
SageMaker
AWS
Lambda vs SageMaker vs Kubernetes
● Lambda
○ Cheap for small load
○ Easy to manage
○ Not always transparent
Lambda vs SageMaker vs Kubernetes
● Lambda
○ Cheap for small load
○ Easy to manage
○ Not always transparent
● SageMaker (serving)
○ Easy to use/manage
○ Needs wrappers
○ Not always transparent
○ Expensive
Lambda vs SageMaker vs Kubernetes
● Lambda
○ Cheap for small load
○ Easy to manage
○ Not always transparent
● SageMaker (serving)
○ Easy to use/manage
○ Needs wrappers
○ Not always transparent
○ Expensive
● Kubernetes
○ Complex (for me)
○ More flexible
○ Cloud-agnostic *
○ Requires support
○ Cheaper for high load
* sort of
Kubernetes 101
Kubernetes glossary
● Pod ~ one instance of your service
● Deployment - a bunch of pods
● HPA - horizontal pod autoscaler
● Node - a server (e.g. EC2 instance)
● Service - an interface to the deployment
● Ingress - an interface to the cluster
Kubernetes in one picture
Deploying a Flask App
import xgboost as xgb
# load the model from the pickle file
@app.route('/predict', methods=['POST'])
def predict():
data = request.get_json()
result = apply_model(data)
return jsonify(result)
if __name__ == "__main__":
app.run(debug=True, host='0.0.0.0', port=9696)
FROM python:3.7.5-slim
RUN pip install flask gunicorn xgboost
COPY "model.py" "model.py"
EXPOSE 9696
ENTRYPOINT ["gunicorn", "--bind", "0.0.0.0:9696", "model:app"]
apiVersion: apps/v1
kind: Deployment
metadata:
name: xgb-model
labels:
app: xgb-model
spec:
replicas: 1
selector:
matchLabels:
app: xgb-model
template:
metadata:
labels:
app: xgb-model
spec:
containers:
- name: xgb-model
image: XXXXXXXXXXXX.dkr.ecr.eu-west-1.amazonaws.com/xgb-model:v100500
ports:
- containerPort: 9696
env:
- name: MODEL_PATH
value: "s3://models-bucket-pickle/xgboost.bin"
apiVersion: v1
kind: Service
metadata:
name: xgb-model
spec:
type: LoadBalancer
ports:
- port: 80
targetPort: 9696
protocol: TCP
name: http
selector:
app: xgb-model
kubectl apply -f deployment.yaml
kubectl apply -f service.yaml
Deploying a Keras Model
🎁
🎁
H5
saved_model
import tensorflow as tf
from tensorflow import keras
model = keras.models.load_model('keras-model.h5')
tf.saved_model.save(model, 'tf-model')
$ ls -lhR
.:
total 3,1M
4,0K assets
3,1M saved_model.pb
4,0K variables
./assets:
total 0
./variables:
total 83M
83M variables.data-00000-of-00001
15K variables.index
saved_model_cli show --dir tf-model --all
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
...
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['input_8'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 299, 299, 3)
name: serving_default_input_8:0
The given SavedModel SignatureDef contains the following output(s):
outputs['dense_7'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 10)
name: StatefulPartitionedCall:0
Method name is: tensorflow/serving/predict
docker run -it --rm 
-p 8500:8500 
-v "$(pwd)/tf-model:/models/tf-model/1" 
-e MODEL_NAME=tf-model 
tensorflow/serving:2.3.0
2021-09-07 21:03:58.579046: I tensorflow_serving/model_servers/server.cc:367]
Running gRPC ModelServer at 0.0.0.0:8500 ...
[evhttp_server.cc : 238] NET_LOG: Entering the event loop ...
2021-09-07 21:03:58.582097: I tensorflow_serving/model_servers/server.cc:387]
Exporting HTTP/REST API at:localhost:8501 ...
pip install grpcio==1.32.0 
tensorflow-serving-api==2.3.0
https://github.com/alexeygrigorev/mlbookcamp-code/blob/master/chapter-09-kubernetes/09-image-preparation.ipynb
def np_to_protobuf(data):
return tf.make_tensor_proto(data, shape=data.shape)
pb_request = predict_pb2.PredictRequest()
pb_request.model_spec.name = 'tf-model'
pb_request.model_spec.signature_name = 'serving_default'
pb_request.inputs['input_8'].CopyFrom(np_to_protobuf(X))
pb_result = stub.Predict(pb_request, timeout=20.0)
pred = pb_result.outputs['dense_7'].float_val
Gateway
(Resize and
process image)
Flask
Model
(Make predictions)
TF-Serving
Pants
Raw
predictions
Pre-processed
image
Not so fast
def np_to_protobuf(data):
return tf.make_tensor_proto(data, shape=data.shape)
pb_request = predict_pb2.PredictRequest()
pb_request.model_spec.name = 'tf-model'
pb_request.model_spec.signature_name = 'serving_default'
pb_request.inputs['input_8'].CopyFrom(np_to_protobuf(X))
pb_result = stub.Predict(pb_request, timeout=20.0)
pred = pb_result.outputs['dense_7'].float_val
2,0 GB dependency?
Get only the things you need!
https://github.com/alexeygrigorev/tensorflow-protobuf
from tensorflow.keras.applications.xception import preprocess_input
https://github.com/alexeygrigorev/keras-image-helper
from keras_image_helper import create_preprocessor
preprocessor = create_preprocessor('xception', target_size=(299, 299))
url = 'http://bit.ly/mlbookcamp-pants'
X = preprocessor.from_url(url)
Next steps...
● Bake in the model into the TF-serving image
● Wrap the gRPC calls in a Flask app for the Gateway
● Write a Dockerfile for the Gateway
● Publish the images to ERC
Okay!
We’re ready to deploy to K8S
apiVersion: apps/v1
kind: Deployment
metadata:
name: tf-serving-model
labels:
app: tf-serving-model
spec:
replicas: 1
selector:
matchLabels:
app: tf-serving-model
template:
metadata:
labels:
app: tf-serving-model
spec:
containers:
- name: tf-serving-model
image: X.dkr.ecr.eu-west-1.amazonaws.com/model-serving:tf-serving-model
ports:
- containerPort: 8500
apiVersion: v1
kind: Service
metadata:
name: tf-serving-model
labels:
app: tf-serving-model
spec:
ports:
- port: 8500
targetPort: 8500
protocol: TCP
name: http
selector:
app: tf-serving-model
kubectl apply -f tf-serving-deployment.yaml
kubectl apply -f tf-serving-service.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: serving-gateway
labels:
app: serving-gateway
spec:
replicas: 1
selector:
matchLabels:
app: serving-gateway
template:
metadata:
labels:
app: serving-gateway
spec:
containers:
- name: serving-gateway
image: X.dkr.ecr.eu-west-1.amazonaws.com/model-serving:serving-gateway
ports:
- containerPort: 9696
env:
- name: TF_SERVING_HOST
value: "tf-serving-model.default.svc.cluster.local:8500"
apiVersion: v1
kind: Service
metadata:
name: serving-gateway
spec:
type: LoadBalancer
ports:
- port: 80
targetPort: 9696
protocol: TCP
name: http
selector:
app: serving-gateway
kubectl apply -f gateway-deployment.yaml
kubectl apply -f gateway-service.yaml
gRPC load balancing
https://kubernetes.io/blog/2018/11/07/grpc-load-balancing-on-kubernetes-without-tears/
Deploying deep learning models with Kubernetes and Kubeflow
Kubeflow / KFServing
Kubeflow
● Open-source ML platform with wany services (notebooks, pipelines, serving)
● KFServing makes it easier to deploy models compared to plain Kubernetes
Kubeflow / KFServing
Ingress
Client
Node1
Node2
Pod A
Pod B Pod C
Pod D
Pod E
Pod F
Service
1
Service
2
Deployment 1
Deployment 2
Kubernetes Cluster
InferenceService
Installing
https://mlbookcamp.com/article/kfserving-eks-install
git clone git@github.com:alexeygrigorev/kubeflow-deep-learning.git
cd kubeflow-deep-learning/install
./install.sh
Next...
● Upload the saved_model to S3
● Allow KFServing to access S3
https://mlbookcamp.com/article/kfserving-eks-install
apiVersion: "serving.kubeflow.org/v1beta1"
kind: "InferenceService"
metadata:
name: "tf-model"
spec:
default:
predictor:
serviceAccountName: sa
tensorflow:
storageUri: "s3://models-bucket-tf/tf-model"
kubectl apply -f tf-inference-service.yaml
$ kubectl get inferenceservice
NAME URL
flowers-sample http://tf-model.default.kubeflow.mlbookcamp.com/v1/models/tf-model ...
url = f'https://{model_url}:predict'
data = {
"instances": X.tolist()
}
resp = requests.post(url, json=data)
results = resp.json()
Pre-processing
(resize/process
images)
Post-processing
(transform
predictions)
Transformer
Model
(Make predictions)
KFServing
Pants
Raw
predictions
Pre-processed
image
apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
name: "tf-model"
spec:
default:
predictor:
serviceAccountName: sa
tensorflow:
storageUri: "s3://models-bucket-tf/tf-model"
transformer:
custom:
container:
image: "agrigorev/kfserving-keras-transformer:0.0.1"
name: user-container
env:
- name: MODEL_INPUT_SIZE
value: "299,299"
- name: KERAS_MODEL_NAME
value: "xception"
- name: MODEL_LABELS
value: "dress,hat,longsleeve,outwear,pants,shirt,shoes,shorts,skirt,t-shirt"
https://github.com/alexeygrigorev/kfserving-keras-transformer
url = f'https://{model_url}:predict'
data = {
"instances": [
{"url": "http://bit.ly/mlbookcamp-pants"},
]
}
resp = requests.post(url, json=data)
results = resp.json()
What’s the catch?
● Kubeflow runs on Kubernetes
● Not easy to run the whole thing locally
● Not easy to debug
● Istio
Summary
● AWS SageMaker vs AWS Lambda vs Kubernetes vs Kubeflow
Summary
● AWS SageMaker vs AWS Lambda vs Kubernetes vs Kubeflow
● Deploying models with Kubernetes: deployment + service
Summary
● AWS SageMaker vs AWS Lambda vs Kubernetes vs Kubeflow
● Deploying models with Kubernetes: deployment + service
● Deploying Keras models: TF-Serving + Gateway (over gRPC)
Summary
● AWS SageMaker vs AWS Lambda vs Kubernetes vs Kubeflow
● Deploying models with Kubernetes: deployment + service
● Deploying Keras models: TF-Serving + Gateway (over gRPC)
● KFServing: transformers + model
Summary
● AWS SageMaker vs AWS Lambda vs Kubernetes vs Kubeflow
● Deploying models with Kubernetes: deployment + service
● Deploying Keras models: TF-Serving + Gateway (over gRPC)
● KFServing: transformers + model
● No size fits all
mlbookcamp.com
● Learn Machine Learning by doing
projects
● http://bit.ly/mlbookcamp
● Get 40% off with code “grigorevpc”
Machine Learning
Bookcamp
mlzoomcamp.com
Learn Machine Learning Engineering in 4
months
Machine Learning
Zoomcamp
Zoom
@Al_Grigor
agrigorev
DataTalks.Club
Ad

More Related Content

Similar to Deploying deep learning models with Kubernetes and Kubeflow (20)

Deploying DL models with Kubernetes and Kubeflow
Deploying DL models with Kubernetes and KubeflowDeploying DL models with Kubernetes and Kubeflow
Deploying DL models with Kubernetes and Kubeflow
DataPhoenix
 
OpenShift Meetup - Tokyo - Service Mesh and Serverless Overview
OpenShift Meetup - Tokyo - Service Mesh and Serverless OverviewOpenShift Meetup - Tokyo - Service Mesh and Serverless Overview
OpenShift Meetup - Tokyo - Service Mesh and Serverless Overview
María Angélica Bracho
 
ОЛЕГ МАЦЬКІВ «Crash course on Operator Framework» Lviv DevOps Conference 2019
ОЛЕГ МАЦЬКІВ «Crash course on Operator Framework» Lviv DevOps Conference 2019ОЛЕГ МАЦЬКІВ «Crash course on Operator Framework» Lviv DevOps Conference 2019
ОЛЕГ МАЦЬКІВ «Crash course on Operator Framework» Lviv DevOps Conference 2019
UA DevOps Conference
 
Serverless Machine Learning Model Inference on Kubernetes with KServe.pdf
Serverless Machine Learning Model Inference on Kubernetes with KServe.pdfServerless Machine Learning Model Inference on Kubernetes with KServe.pdf
Serverless Machine Learning Model Inference on Kubernetes with KServe.pdf
Stavros Kontopoulos
 
Serving models using KFServing
Serving models using KFServingServing models using KFServing
Serving models using KFServing
Theofilos Papapanagiotou
 
Node Interactive: Node.js Performance and Highly Scalable Micro-Services
Node Interactive: Node.js Performance and Highly Scalable Micro-ServicesNode Interactive: Node.js Performance and Highly Scalable Micro-Services
Node Interactive: Node.js Performance and Highly Scalable Micro-Services
Chris Bailey
 
Running the-next-generation-of-cloud-native-applications-using-open-applicati...
Running the-next-generation-of-cloud-native-applications-using-open-applicati...Running the-next-generation-of-cloud-native-applications-using-open-applicati...
Running the-next-generation-of-cloud-native-applications-using-open-applicati...
NaveedAhmad239
 
Advanced Model Inferencing leveraging Kubeflow Serving, KNative and Istio
Advanced Model Inferencing leveraging Kubeflow Serving, KNative and IstioAdvanced Model Inferencing leveraging Kubeflow Serving, KNative and Istio
Advanced Model Inferencing leveraging Kubeflow Serving, KNative and Istio
Animesh Singh
 
Anthos Security: modernize your security posture for cloud native applications
Anthos Security: modernize your security posture for cloud native applicationsAnthos Security: modernize your security posture for cloud native applications
Anthos Security: modernize your security posture for cloud native applications
Greg Castle
 
Automatic Ingress in Kubernetes
Automatic Ingress in KubernetesAutomatic Ingress in Kubernetes
Automatic Ingress in Kubernetes
Rodrigo Reis
 
Kubernetes hands-on tutorial slides by zm
Kubernetes hands-on tutorial slides by zmKubernetes hands-on tutorial slides by zm
Kubernetes hands-on tutorial slides by zm
ZiyanMaraikar1
 
Kubernetes walkthrough
Kubernetes walkthroughKubernetes walkthrough
Kubernetes walkthrough
Sangwon Lee
 
12 Factor Serverless Applications - Mike Morain, AWS - Cloud Native Day Tel A...
12 Factor Serverless Applications - Mike Morain, AWS - Cloud Native Day Tel A...12 Factor Serverless Applications - Mike Morain, AWS - Cloud Native Day Tel A...
12 Factor Serverless Applications - Mike Morain, AWS - Cloud Native Day Tel A...
Cloud Native Day Tel Aviv
 
KNATIVE - DEPLOY, AND MANAGE MODERN CONTAINER-BASED SERVERLESS WORKLOADS
KNATIVE - DEPLOY, AND MANAGE MODERN CONTAINER-BASED SERVERLESS WORKLOADSKNATIVE - DEPLOY, AND MANAGE MODERN CONTAINER-BASED SERVERLESS WORKLOADS
KNATIVE - DEPLOY, AND MANAGE MODERN CONTAINER-BASED SERVERLESS WORKLOADS
Elad Hirsch
 
Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]
Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]
Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]
Animesh Singh
 
Kubernetes One-Click Deployment: Hands-on Workshop (Mainz)
Kubernetes One-Click Deployment: Hands-on Workshop (Mainz)Kubernetes One-Click Deployment: Hands-on Workshop (Mainz)
Kubernetes One-Click Deployment: Hands-on Workshop (Mainz)
QAware GmbH
 
IBM Cloud University: Build, Deploy and Scale Node.js Microservices
IBM Cloud University: Build, Deploy and Scale Node.js MicroservicesIBM Cloud University: Build, Deploy and Scale Node.js Microservices
IBM Cloud University: Build, Deploy and Scale Node.js Microservices
Chris Bailey
 
Kubernetes Overview - Deploy your app with confidence
Kubernetes Overview - Deploy your app with confidenceKubernetes Overview - Deploy your app with confidence
Kubernetes Overview - Deploy your app with confidence
Omer Barel
 
muCon 2017 - 12 Factor Serverless Applications
muCon 2017 - 12 Factor Serverless ApplicationsmuCon 2017 - 12 Factor Serverless Applications
muCon 2017 - 12 Factor Serverless Applications
Chris Munns
 
Kubernetes Cluster API - managing the infrastructure of multi clusters (k8s ...
Kubernetes Cluster API - managing the infrastructure of  multi clusters (k8s ...Kubernetes Cluster API - managing the infrastructure of  multi clusters (k8s ...
Kubernetes Cluster API - managing the infrastructure of multi clusters (k8s ...
Tobias Schneck
 
Deploying DL models with Kubernetes and Kubeflow
Deploying DL models with Kubernetes and KubeflowDeploying DL models with Kubernetes and Kubeflow
Deploying DL models with Kubernetes and Kubeflow
DataPhoenix
 
OpenShift Meetup - Tokyo - Service Mesh and Serverless Overview
OpenShift Meetup - Tokyo - Service Mesh and Serverless OverviewOpenShift Meetup - Tokyo - Service Mesh and Serverless Overview
OpenShift Meetup - Tokyo - Service Mesh and Serverless Overview
María Angélica Bracho
 
ОЛЕГ МАЦЬКІВ «Crash course on Operator Framework» Lviv DevOps Conference 2019
ОЛЕГ МАЦЬКІВ «Crash course on Operator Framework» Lviv DevOps Conference 2019ОЛЕГ МАЦЬКІВ «Crash course on Operator Framework» Lviv DevOps Conference 2019
ОЛЕГ МАЦЬКІВ «Crash course on Operator Framework» Lviv DevOps Conference 2019
UA DevOps Conference
 
Serverless Machine Learning Model Inference on Kubernetes with KServe.pdf
Serverless Machine Learning Model Inference on Kubernetes with KServe.pdfServerless Machine Learning Model Inference on Kubernetes with KServe.pdf
Serverless Machine Learning Model Inference on Kubernetes with KServe.pdf
Stavros Kontopoulos
 
Node Interactive: Node.js Performance and Highly Scalable Micro-Services
Node Interactive: Node.js Performance and Highly Scalable Micro-ServicesNode Interactive: Node.js Performance and Highly Scalable Micro-Services
Node Interactive: Node.js Performance and Highly Scalable Micro-Services
Chris Bailey
 
Running the-next-generation-of-cloud-native-applications-using-open-applicati...
Running the-next-generation-of-cloud-native-applications-using-open-applicati...Running the-next-generation-of-cloud-native-applications-using-open-applicati...
Running the-next-generation-of-cloud-native-applications-using-open-applicati...
NaveedAhmad239
 
Advanced Model Inferencing leveraging Kubeflow Serving, KNative and Istio
Advanced Model Inferencing leveraging Kubeflow Serving, KNative and IstioAdvanced Model Inferencing leveraging Kubeflow Serving, KNative and Istio
Advanced Model Inferencing leveraging Kubeflow Serving, KNative and Istio
Animesh Singh
 
Anthos Security: modernize your security posture for cloud native applications
Anthos Security: modernize your security posture for cloud native applicationsAnthos Security: modernize your security posture for cloud native applications
Anthos Security: modernize your security posture for cloud native applications
Greg Castle
 
Automatic Ingress in Kubernetes
Automatic Ingress in KubernetesAutomatic Ingress in Kubernetes
Automatic Ingress in Kubernetes
Rodrigo Reis
 
Kubernetes hands-on tutorial slides by zm
Kubernetes hands-on tutorial slides by zmKubernetes hands-on tutorial slides by zm
Kubernetes hands-on tutorial slides by zm
ZiyanMaraikar1
 
Kubernetes walkthrough
Kubernetes walkthroughKubernetes walkthrough
Kubernetes walkthrough
Sangwon Lee
 
12 Factor Serverless Applications - Mike Morain, AWS - Cloud Native Day Tel A...
12 Factor Serverless Applications - Mike Morain, AWS - Cloud Native Day Tel A...12 Factor Serverless Applications - Mike Morain, AWS - Cloud Native Day Tel A...
12 Factor Serverless Applications - Mike Morain, AWS - Cloud Native Day Tel A...
Cloud Native Day Tel Aviv
 
KNATIVE - DEPLOY, AND MANAGE MODERN CONTAINER-BASED SERVERLESS WORKLOADS
KNATIVE - DEPLOY, AND MANAGE MODERN CONTAINER-BASED SERVERLESS WORKLOADSKNATIVE - DEPLOY, AND MANAGE MODERN CONTAINER-BASED SERVERLESS WORKLOADS
KNATIVE - DEPLOY, AND MANAGE MODERN CONTAINER-BASED SERVERLESS WORKLOADS
Elad Hirsch
 
Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]
Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]
Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]
Animesh Singh
 
Kubernetes One-Click Deployment: Hands-on Workshop (Mainz)
Kubernetes One-Click Deployment: Hands-on Workshop (Mainz)Kubernetes One-Click Deployment: Hands-on Workshop (Mainz)
Kubernetes One-Click Deployment: Hands-on Workshop (Mainz)
QAware GmbH
 
IBM Cloud University: Build, Deploy and Scale Node.js Microservices
IBM Cloud University: Build, Deploy and Scale Node.js MicroservicesIBM Cloud University: Build, Deploy and Scale Node.js Microservices
IBM Cloud University: Build, Deploy and Scale Node.js Microservices
Chris Bailey
 
Kubernetes Overview - Deploy your app with confidence
Kubernetes Overview - Deploy your app with confidenceKubernetes Overview - Deploy your app with confidence
Kubernetes Overview - Deploy your app with confidence
Omer Barel
 
muCon 2017 - 12 Factor Serverless Applications
muCon 2017 - 12 Factor Serverless ApplicationsmuCon 2017 - 12 Factor Serverless Applications
muCon 2017 - 12 Factor Serverless Applications
Chris Munns
 
Kubernetes Cluster API - managing the infrastructure of multi clusters (k8s ...
Kubernetes Cluster API - managing the infrastructure of  multi clusters (k8s ...Kubernetes Cluster API - managing the infrastructure of  multi clusters (k8s ...
Kubernetes Cluster API - managing the infrastructure of multi clusters (k8s ...
Tobias Schneck
 

More from DataPhoenix (6)

Exploring Infrastructure Management for GenAI Beyond Kubernetes
Exploring Infrastructure Management for GenAI Beyond KubernetesExploring Infrastructure Management for GenAI Beyond Kubernetes
Exploring Infrastructure Management for GenAI Beyond Kubernetes
DataPhoenix
 
ODS.ai Odessa Meetup #4: NLP: изменения за последние 10 лет
ODS.ai Odessa Meetup #4: NLP: изменения за последние 10 летODS.ai Odessa Meetup #4: NLP: изменения за последние 10 лет
ODS.ai Odessa Meetup #4: NLP: изменения за последние 10 лет
DataPhoenix
 
ODS.ai Odessa Meetup #4: Чему учит нас участите в соревновательном ML
ODS.ai Odessa Meetup #4: Чему учит нас участите в соревновательном MLODS.ai Odessa Meetup #4: Чему учит нас участите в соревновательном ML
ODS.ai Odessa Meetup #4: Чему учит нас участите в соревновательном ML
DataPhoenix
 
The A-Z of Data: Introduction to MLOps
The A-Z of Data: Introduction to MLOpsThe A-Z of Data: Introduction to MLOps
The A-Z of Data: Introduction to MLOps
DataPhoenix
 
ODS.ai Odessa Meetup #3: Object Detection in the Wild
ODS.ai Odessa Meetup #3: Object Detection in the WildODS.ai Odessa Meetup #3: Object Detection in the Wild
ODS.ai Odessa Meetup #3: Object Detection in the Wild
DataPhoenix
 
ODS.ai Odessa Meetup #3: Enterprise data management - весело или нет?!
ODS.ai Odessa Meetup #3: Enterprise data management - весело или нет?!ODS.ai Odessa Meetup #3: Enterprise data management - весело или нет?!
ODS.ai Odessa Meetup #3: Enterprise data management - весело или нет?!
DataPhoenix
 
Exploring Infrastructure Management for GenAI Beyond Kubernetes
Exploring Infrastructure Management for GenAI Beyond KubernetesExploring Infrastructure Management for GenAI Beyond Kubernetes
Exploring Infrastructure Management for GenAI Beyond Kubernetes
DataPhoenix
 
ODS.ai Odessa Meetup #4: NLP: изменения за последние 10 лет
ODS.ai Odessa Meetup #4: NLP: изменения за последние 10 летODS.ai Odessa Meetup #4: NLP: изменения за последние 10 лет
ODS.ai Odessa Meetup #4: NLP: изменения за последние 10 лет
DataPhoenix
 
ODS.ai Odessa Meetup #4: Чему учит нас участите в соревновательном ML
ODS.ai Odessa Meetup #4: Чему учит нас участите в соревновательном MLODS.ai Odessa Meetup #4: Чему учит нас участите в соревновательном ML
ODS.ai Odessa Meetup #4: Чему учит нас участите в соревновательном ML
DataPhoenix
 
The A-Z of Data: Introduction to MLOps
The A-Z of Data: Introduction to MLOpsThe A-Z of Data: Introduction to MLOps
The A-Z of Data: Introduction to MLOps
DataPhoenix
 
ODS.ai Odessa Meetup #3: Object Detection in the Wild
ODS.ai Odessa Meetup #3: Object Detection in the WildODS.ai Odessa Meetup #3: Object Detection in the Wild
ODS.ai Odessa Meetup #3: Object Detection in the Wild
DataPhoenix
 
ODS.ai Odessa Meetup #3: Enterprise data management - весело или нет?!
ODS.ai Odessa Meetup #3: Enterprise data management - весело или нет?!ODS.ai Odessa Meetup #3: Enterprise data management - весело или нет?!
ODS.ai Odessa Meetup #3: Enterprise data management - весело или нет?!
DataPhoenix
 
Ad

Recently uploaded (20)

How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Ad

Deploying deep learning models with Kubernetes and Kubeflow