SlideShare a Scribd company logo
DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/
" :
: : : : : : "
: : "
[DL Hacks]Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
• a
::D .: EC:IC G C : :G CE G AF E: CAD:G G I: G:E G I: ;CE E ::D
.: E .:GJCE F ;CE : ;CE :A: G ,: E
• tn
: D: :GECF F F G I C E C C G
C: ,: A : :G G :K :;; :
• :E ,
• ,
fdeoS RMV TsOLpdhm y ORivTcr PT
k TeoSNVwlgU a ub
•
•
•
•
•
•
• ) ( eihm z
y eca
. / . A : 3 3C 3
• w ~ D t sabk
• as r n
pjs l o gu v Q
u N _
x : 3 / : D . 0 0 / 0 3 / : 3 1 10 0 3/ 1 3
• (0
A A D E E 0 D A AD D B )3
• A D A
• E e cU [ vx e x
• i lp[ qmr hsogn
• 1 [ A I e [x A A
• D ][a R hf
• 1 x S
• mOk a M R
• AJ AB L A (0 e
• A D C P D E B t
• J D A AD LA d a t
• yu bw z ~e R
[DL Hacks]Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
E
S a )
( S
•
•
•
•
•
•
•
( DA E DC:
C: A:C A C:C:E C A C:E A 0A : : ( DA C A A . : A C
A :
• CA C
• ) a A : C N
• ) a osrx A : Ch f a R S a A : C N
• N b A : C h
• n vh ceL d N i m p
• g ce Uh Tfc G E C A
• A : Ch Nf Syou a N h
• -1
• t h l wku l v
• Pfw h
o i n
kG
7 n =
T )( N
i n A
d
tf 1- A
0 d 7 7 s
7 s 7
p -3 ,- tf n
7 d e i
•
•
•
•
•
d dt d s
ko - - f
= ns
[ T
d sN
] d
-45 73
k 6d = = e
= e =
395 823 s
= k d i
0 1
0 (1
0 1
0 ( 1
0 ( 1
0 ,1
0 ,1
0 ) 1
0 1
0 1
0 ( 1
0 ,1
0 1
p 332 - [
•
A
• NR o i
• L 2 LR mfn
ed A N Q
A
ADL Rh N )
h Ct
3 C O D A
C N A G A O
vS R DQ RNS A
O Q ON
( A C h T
S v r a C
N O OOTQ R N A
G c T S T
GD ARNS A O
[DL Hacks]Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
• edi
:: : - / / / - .// / / :
• diS / di
• A d S F PE mbT di
mG G
• a di
:: : - : /
• T W : d S : - di
• nh po Sg cl
•
•
G B
G 2
•
•
•
•
•
zs RD c : s R
H Wl n
• s Wz
• :t R
• e ik WP aW
• W C RDUD B
• T kxT HP ;
• B U s W
• mp k L W zD
• lpibno T ;
• /AAL 5APM A POE 1A AOE C MEODIN MA . ILAOEOE A OAM OE A
B M :M E E C /AAL 5APM 5AOR MGN B M 8AE B M AIA O 3A M E C
DOOLN MSE MC N "
• 0 POE OM OACEAN N A OAM OE A O 8AE B M AIA O
3A M E C
DOOLN MSE MC N " "
• DOOL RRR NENO L G GP MANA M D A POE MT ILPOE C CA
AOE C MEODIN DOI
• 7632. 67:242 :265 1050:2. /2 :233 :265
Zk fha goY_ cjlei mn b
DOOLN MSE MC N " "

More Related Content

What's hot (20)

CV分野での最近の脱○○系3選
CV分野での最近の脱○○系3選CV分野での最近の脱○○系3選
CV分野での最近の脱○○系3選
Kazuyuki Miyazawa
 
[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報
Deep Learning JP
 
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
Deep Learning JP
 
Automatic Mixed Precision の紹介
Automatic Mixed Precision の紹介Automatic Mixed Precision の紹介
Automatic Mixed Precision の紹介
Kuninobu SaSaki
 
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII
 
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
Yahoo!デベロッパーネットワーク
 
畳み込みニューラルネットワークの研究動向
畳み込みニューラルネットワークの研究動向畳み込みニューラルネットワークの研究動向
畳み込みニューラルネットワークの研究動向
Yusuke Uchida
 
Active Learning の基礎と最近の研究
Active Learning の基礎と最近の研究Active Learning の基礎と最近の研究
Active Learning の基礎と最近の研究
Fumihiko Takahashi
 
楽しい研究のために今からできること 〜新しく研究を始める皆さんへ〜
楽しい研究のために今からできること 〜新しく研究を始める皆さんへ〜楽しい研究のために今からできること 〜新しく研究を始める皆さんへ〜
楽しい研究のために今からできること 〜新しく研究を始める皆さんへ〜
諒介 荒木
 
自然言語処理の最新技術動向紹介
自然言語処理の最新技術動向紹介自然言語処理の最新技術動向紹介
自然言語処理の最新技術動向紹介
Yahoo!デベロッパーネットワーク
 
機械学習で泣かないためのコード設計
機械学習で泣かないためのコード設計機械学習で泣かないためのコード設計
機械学習で泣かないためのコード設計
Takahiro Kubo
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
Satoshi Hara
 
[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−
[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−
[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−
Deep Learning JP
 
異常検知とGAN: Efficient GAN
異常検知とGAN: Efficient GAN異常検知とGAN: Efficient GAN
異常検知とGAN: Efficient GAN
Koichiro tamura
 
-SSIIの技術マップ- 過去•現在, そして未来 [領域]認識
-SSIIの技術マップ- 過去•現在, そして未来 [領域]認識-SSIIの技術マップ- 過去•現在, そして未来 [領域]認識
-SSIIの技術マップ- 過去•現在, そして未来 [領域]認識
Hironobu Fujiyoshi
 
Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2
Kota Matsui
 
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs 【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
Deep Learning JP
 
スペクトラルグラフ理論入門
スペクトラルグラフ理論入門スペクトラルグラフ理論入門
スペクトラルグラフ理論入門
irrrrr
 
[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係について[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係について
Deep Learning JP
 
工学系大学4年生のための論文の読み方
工学系大学4年生のための論文の読み方工学系大学4年生のための論文の読み方
工学系大学4年生のための論文の読み方
ychtanaka
 
CV分野での最近の脱○○系3選
CV分野での最近の脱○○系3選CV分野での最近の脱○○系3選
CV分野での最近の脱○○系3選
Kazuyuki Miyazawa
 
[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報
Deep Learning JP
 
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
Deep Learning JP
 
Automatic Mixed Precision の紹介
Automatic Mixed Precision の紹介Automatic Mixed Precision の紹介
Automatic Mixed Precision の紹介
Kuninobu SaSaki
 
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII
 
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
Yahoo!デベロッパーネットワーク
 
畳み込みニューラルネットワークの研究動向
畳み込みニューラルネットワークの研究動向畳み込みニューラルネットワークの研究動向
畳み込みニューラルネットワークの研究動向
Yusuke Uchida
 
Active Learning の基礎と最近の研究
Active Learning の基礎と最近の研究Active Learning の基礎と最近の研究
Active Learning の基礎と最近の研究
Fumihiko Takahashi
 
楽しい研究のために今からできること 〜新しく研究を始める皆さんへ〜
楽しい研究のために今からできること 〜新しく研究を始める皆さんへ〜楽しい研究のために今からできること 〜新しく研究を始める皆さんへ〜
楽しい研究のために今からできること 〜新しく研究を始める皆さんへ〜
諒介 荒木
 
機械学習で泣かないためのコード設計
機械学習で泣かないためのコード設計機械学習で泣かないためのコード設計
機械学習で泣かないためのコード設計
Takahiro Kubo
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
Satoshi Hara
 
[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−
[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−
[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−
Deep Learning JP
 
異常検知とGAN: Efficient GAN
異常検知とGAN: Efficient GAN異常検知とGAN: Efficient GAN
異常検知とGAN: Efficient GAN
Koichiro tamura
 
-SSIIの技術マップ- 過去•現在, そして未来 [領域]認識
-SSIIの技術マップ- 過去•現在, そして未来 [領域]認識-SSIIの技術マップ- 過去•現在, そして未来 [領域]認識
-SSIIの技術マップ- 過去•現在, そして未来 [領域]認識
Hironobu Fujiyoshi
 
Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2
Kota Matsui
 
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs 【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
Deep Learning JP
 
スペクトラルグラフ理論入門
スペクトラルグラフ理論入門スペクトラルグラフ理論入門
スペクトラルグラフ理論入門
irrrrr
 
[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係について[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係について
Deep Learning JP
 
工学系大学4年生のための論文の読み方
工学系大学4年生のための論文の読み方工学系大学4年生のための論文の読み方
工学系大学4年生のための論文の読み方
ychtanaka
 

Similar to [DL Hacks]Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning (20)

CVPR 2020 報告
CVPR 2020 報告CVPR 2020 報告
CVPR 2020 報告
cvpaper. challenge
 
Google Polymer in Action
Google Polymer in ActionGoogle Polymer in Action
Google Polymer in Action
Jeongkyu Shin
 
交通事故削減支援サービス DRIVE CHARTにおけるAI技術
交通事故削減支援サービスDRIVE CHARTにおけるAI技術交通事故削減支援サービスDRIVE CHARTにおけるAI技術
交通事故削減支援サービス DRIVE CHARTにおけるAI技術
Hirohito Okuda
 
OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料
OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料
OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料
VirtualTech Japan Inc.
 
katagaitai CTF workshop #10 AESに対する相関電力解析
katagaitai CTF workshop #10 AESに対する相関電力解析katagaitai CTF workshop #10 AESに対する相関電力解析
katagaitai CTF workshop #10 AESに対する相関電力解析
trmr
 
アーリース情報技術株式会社 会社案内 (2019/02/13)
アーリース情報技術株式会社 会社案内 (2019/02/13)アーリース情報技術株式会社 会社案内 (2019/02/13)
アーリース情報技術株式会社 会社案内 (2019/02/13)
Takeshi Mikami
 
Argoによる機械学習実行基盤の構築・運用からみえてきたこと
Argoによる機械学習実行基盤の構築・運用からみえてきたことArgoによる機械学習実行基盤の構築・運用からみえてきたこと
Argoによる機械学習実行基盤の構築・運用からみえてきたこと
Shinsaku Kono
 
[DL輪読会]Semi-convolutional Operators for Instance Segmentation
[DL輪読会]Semi-convolutional Operators for Instance Segmentation [DL輪読会]Semi-convolutional Operators for Instance Segmentation
[DL輪読会]Semi-convolutional Operators for Instance Segmentation
Deep Learning JP
 
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크
OpenStack Korea Community
 
深層学習による非滑らかな関数の推定
深層学習による非滑らかな関数の推定深層学習による非滑らかな関数の推定
深層学習による非滑らかな関数の推定
Masaaki Imaizumi
 
[DL Hacks]Pruning Convolutional Neural Networks for Resource Efficient Inference
[DL Hacks]Pruning Convolutional Neural Networks for Resource Efficient Inference[DL Hacks]Pruning Convolutional Neural Networks for Resource Efficient Inference
[DL Hacks]Pruning Convolutional Neural Networks for Resource Efficient Inference
Deep Learning JP
 
[DL輪読会] Revealing the Dark Secrets of BERT (EMNLP-IJCNLP, 2019)
[DL輪読会] Revealing the Dark Secrets of BERT (EMNLP-IJCNLP, 2019)[DL輪読会] Revealing the Dark Secrets of BERT (EMNLP-IJCNLP, 2019)
[DL輪読会] Revealing the Dark Secrets of BERT (EMNLP-IJCNLP, 2019)
Deep Learning JP
 
異常検知とGAN: ADGAN
異常検知とGAN: ADGAN異常検知とGAN: ADGAN
異常検知とGAN: ADGAN
Koichiro tamura
 
Semi-convolutional Operators for Instance Segmentation
Semi-convolutional Operators for Instance SegmentationSemi-convolutional Operators for Instance Segmentation
Semi-convolutional Operators for Instance Segmentation
Kento Doi
 
[DL輪読会]Tracking Objects as Points
[DL輪読会]Tracking Objects as Points[DL輪読会]Tracking Objects as Points
[DL輪読会]Tracking Objects as Points
Deep Learning JP
 
WebAPI LT レターペア管理APIでルービックキューブを速くする
WebAPI LT レターペア管理APIでルービックキューブを速くするWebAPI LT レターペア管理APIでルービックキューブを速くする
WebAPI LT レターペア管理APIでルービックキューブを速くする
Takafumi Sakakibara
 
Jawsdays2018 180310
Jawsdays2018 180310Jawsdays2018 180310
Jawsdays2018 180310
Daisuke Yoshioka
 
Game Day in Action for Chaos Engineering - 윤석찬 (AWS 테크에반젤리스트) :: 한국 카오스엔지니어링 밋업
Game Day in Action for Chaos Engineering - 윤석찬 (AWS 테크에반젤리스트) ::  한국 카오스엔지니어링 밋업Game Day in Action for Chaos Engineering - 윤석찬 (AWS 테크에반젤리스트) ::  한국 카오스엔지니어링 밋업
Game Day in Action for Chaos Engineering - 윤석찬 (AWS 테크에반젤리스트) :: 한국 카오스엔지니어링 밋업
Channy Yun
 
【TECH×GAME COLLEGE#22】マイクリプトヒーローズの作り方
【TECH×GAME COLLEGE#22】マイクリプトヒーローズの作り方【TECH×GAME COLLEGE#22】マイクリプトヒーローズの作り方
【TECH×GAME COLLEGE#22】マイクリプトヒーローズの作り方
double jump.tokyo, inc
 
[DL輪読会]Addressing Failure Prediction by Learning Model Confidence
[DL輪読会]Addressing Failure Prediction by Learning Model Confidence[DL輪読会]Addressing Failure Prediction by Learning Model Confidence
[DL輪読会]Addressing Failure Prediction by Learning Model Confidence
Deep Learning JP
 
Google Polymer in Action
Google Polymer in ActionGoogle Polymer in Action
Google Polymer in Action
Jeongkyu Shin
 
交通事故削減支援サービス DRIVE CHARTにおけるAI技術
交通事故削減支援サービスDRIVE CHARTにおけるAI技術交通事故削減支援サービスDRIVE CHARTにおけるAI技術
交通事故削減支援サービス DRIVE CHARTにおけるAI技術
Hirohito Okuda
 
OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料
OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料
OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料
VirtualTech Japan Inc.
 
katagaitai CTF workshop #10 AESに対する相関電力解析
katagaitai CTF workshop #10 AESに対する相関電力解析katagaitai CTF workshop #10 AESに対する相関電力解析
katagaitai CTF workshop #10 AESに対する相関電力解析
trmr
 
アーリース情報技術株式会社 会社案内 (2019/02/13)
アーリース情報技術株式会社 会社案内 (2019/02/13)アーリース情報技術株式会社 会社案内 (2019/02/13)
アーリース情報技術株式会社 会社案内 (2019/02/13)
Takeshi Mikami
 
Argoによる機械学習実行基盤の構築・運用からみえてきたこと
Argoによる機械学習実行基盤の構築・運用からみえてきたことArgoによる機械学習実行基盤の構築・運用からみえてきたこと
Argoによる機械学習実行基盤の構築・運用からみえてきたこと
Shinsaku Kono
 
[DL輪読会]Semi-convolutional Operators for Instance Segmentation
[DL輪読会]Semi-convolutional Operators for Instance Segmentation [DL輪読会]Semi-convolutional Operators for Instance Segmentation
[DL輪読会]Semi-convolutional Operators for Instance Segmentation
Deep Learning JP
 
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크
OpenStack Korea Community
 
深層学習による非滑らかな関数の推定
深層学習による非滑らかな関数の推定深層学習による非滑らかな関数の推定
深層学習による非滑らかな関数の推定
Masaaki Imaizumi
 
[DL Hacks]Pruning Convolutional Neural Networks for Resource Efficient Inference
[DL Hacks]Pruning Convolutional Neural Networks for Resource Efficient Inference[DL Hacks]Pruning Convolutional Neural Networks for Resource Efficient Inference
[DL Hacks]Pruning Convolutional Neural Networks for Resource Efficient Inference
Deep Learning JP
 
[DL輪読会] Revealing the Dark Secrets of BERT (EMNLP-IJCNLP, 2019)
[DL輪読会] Revealing the Dark Secrets of BERT (EMNLP-IJCNLP, 2019)[DL輪読会] Revealing the Dark Secrets of BERT (EMNLP-IJCNLP, 2019)
[DL輪読会] Revealing the Dark Secrets of BERT (EMNLP-IJCNLP, 2019)
Deep Learning JP
 
異常検知とGAN: ADGAN
異常検知とGAN: ADGAN異常検知とGAN: ADGAN
異常検知とGAN: ADGAN
Koichiro tamura
 
Semi-convolutional Operators for Instance Segmentation
Semi-convolutional Operators for Instance SegmentationSemi-convolutional Operators for Instance Segmentation
Semi-convolutional Operators for Instance Segmentation
Kento Doi
 
[DL輪読会]Tracking Objects as Points
[DL輪読会]Tracking Objects as Points[DL輪読会]Tracking Objects as Points
[DL輪読会]Tracking Objects as Points
Deep Learning JP
 
WebAPI LT レターペア管理APIでルービックキューブを速くする
WebAPI LT レターペア管理APIでルービックキューブを速くするWebAPI LT レターペア管理APIでルービックキューブを速くする
WebAPI LT レターペア管理APIでルービックキューブを速くする
Takafumi Sakakibara
 
Game Day in Action for Chaos Engineering - 윤석찬 (AWS 테크에반젤리스트) :: 한국 카오스엔지니어링 밋업
Game Day in Action for Chaos Engineering - 윤석찬 (AWS 테크에반젤리스트) ::  한국 카오스엔지니어링 밋업Game Day in Action for Chaos Engineering - 윤석찬 (AWS 테크에반젤리스트) ::  한국 카오스엔지니어링 밋업
Game Day in Action for Chaos Engineering - 윤석찬 (AWS 테크에반젤리스트) :: 한국 카오스엔지니어링 밋업
Channy Yun
 
【TECH×GAME COLLEGE#22】マイクリプトヒーローズの作り方
【TECH×GAME COLLEGE#22】マイクリプトヒーローズの作り方【TECH×GAME COLLEGE#22】マイクリプトヒーローズの作り方
【TECH×GAME COLLEGE#22】マイクリプトヒーローズの作り方
double jump.tokyo, inc
 
[DL輪読会]Addressing Failure Prediction by Learning Model Confidence
[DL輪読会]Addressing Failure Prediction by Learning Model Confidence[DL輪読会]Addressing Failure Prediction by Learning Model Confidence
[DL輪読会]Addressing Failure Prediction by Learning Model Confidence
Deep Learning JP
 

More from Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
Deep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
Deep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
 
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
Deep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
Deep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
 

Recently uploaded (20)

UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Buckeye Dreamin' 2023: De-fogging Debug Logs
Buckeye Dreamin' 2023: De-fogging Debug LogsBuckeye Dreamin' 2023: De-fogging Debug Logs
Buckeye Dreamin' 2023: De-fogging Debug Logs
Lynda Kane
 
Salesforce AI Associate 2 of 2 Certification.docx
Salesforce AI Associate 2 of 2 Certification.docxSalesforce AI Associate 2 of 2 Certification.docx
Salesforce AI Associate 2 of 2 Certification.docx
José Enrique López Rivera
 
Datastucture-Unit 4-Linked List Presentation.pptx
Datastucture-Unit 4-Linked List Presentation.pptxDatastucture-Unit 4-Linked List Presentation.pptx
Datastucture-Unit 4-Linked List Presentation.pptx
kaleeswaric3
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko
Fwdays
 
"Client Partnership — the Path to Exponential Growth for Companies Sized 50-5...
"Client Partnership — the Path to Exponential Growth for Companies Sized 50-5..."Client Partnership — the Path to Exponential Growth for Companies Sized 50-5...
"Client Partnership — the Path to Exponential Growth for Companies Sized 50-5...
Fwdays
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Automation Dreamin': Capture User Feedback From Anywhere
Automation Dreamin': Capture User Feedback From AnywhereAutomation Dreamin': Capture User Feedback From Anywhere
Automation Dreamin': Capture User Feedback From Anywhere
Lynda Kane
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from AnywhereAutomation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Lynda Kane
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Hands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordDataHands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordData
Lynda Kane
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Buckeye Dreamin' 2023: De-fogging Debug Logs
Buckeye Dreamin' 2023: De-fogging Debug LogsBuckeye Dreamin' 2023: De-fogging Debug Logs
Buckeye Dreamin' 2023: De-fogging Debug Logs
Lynda Kane
 
Salesforce AI Associate 2 of 2 Certification.docx
Salesforce AI Associate 2 of 2 Certification.docxSalesforce AI Associate 2 of 2 Certification.docx
Salesforce AI Associate 2 of 2 Certification.docx
José Enrique López Rivera
 
Datastucture-Unit 4-Linked List Presentation.pptx
Datastucture-Unit 4-Linked List Presentation.pptxDatastucture-Unit 4-Linked List Presentation.pptx
Datastucture-Unit 4-Linked List Presentation.pptx
kaleeswaric3
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko
Fwdays
 
"Client Partnership — the Path to Exponential Growth for Companies Sized 50-5...
"Client Partnership — the Path to Exponential Growth for Companies Sized 50-5..."Client Partnership — the Path to Exponential Growth for Companies Sized 50-5...
"Client Partnership — the Path to Exponential Growth for Companies Sized 50-5...
Fwdays
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Automation Dreamin': Capture User Feedback From Anywhere
Automation Dreamin': Capture User Feedback From AnywhereAutomation Dreamin': Capture User Feedback From Anywhere
Automation Dreamin': Capture User Feedback From Anywhere
Lynda Kane
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from AnywhereAutomation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Lynda Kane
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Hands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordDataHands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordData
Lynda Kane
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 

[DL Hacks]Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning

  • 1. DEEP LEARNING JP [DL Papers] http://deeplearning.jp/ " : : : : : : : " : : "
  • 3. • a ::D .: EC:IC G C : :G CE G AF E: CAD:G G I: G:E G I: ;CE E ::D .: E .:GJCE F ;CE : ;CE :A: G ,: E • tn : D: :GECF F F G I C E C C G C: ,: A : :G G :K :;; : • :E , • , fdeoS RMV TsOLpdhm y ORivTcr PT k TeoSNVwlgU a ub
  • 5. • ) ( eihm z y eca . / . A : 3 3C 3 • w ~ D t sabk • as r n pjs l o gu v Q u N _ x : 3 / : D . 0 0 / 0 3 / : 3 1 10 0 3/ 1 3
  • 6. • (0 A A D E E 0 D A AD D B )3 • A D A • E e cU [ vx e x • i lp[ qmr hsogn • 1 [ A I e [x A A • D ][a R hf • 1 x S • mOk a M R • AJ AB L A (0 e • A D C P D E B t • J D A AD LA d a t • yu bw z ~e R
  • 10. • ( DA E DC: C: A:C A C:C:E C A C:E A 0A : : ( DA C A A . : A C A : • CA C • ) a A : C N • ) a osrx A : Ch f a R S a A : C N • N b A : C h • n vh ceL d N i m p • g ce Uh Tfc G E C A • A : Ch Nf Syou a N h • -1 • t h l wku l v • Pfw h
  • 11. o i n kG 7 n = T )( N i n A d tf 1- A 0 d 7 7 s 7 s 7 p -3 ,- tf n 7 d e i
  • 14. d dt d s ko - - f = ns [ T d sN ] d -45 73 k 6d = = e = e = 395 823 s = k d i 0 1 0 (1 0 1 0 ( 1 0 ( 1 0 ,1 0 ,1 0 ) 1 0 1 0 1 0 ( 1 0 ,1 0 1 p 332 - [
  • 15. • A
  • 16. • NR o i • L 2 LR mfn ed A N Q A ADL Rh N ) h Ct 3 C O D A C N A G A O vS R DQ RNS A O Q ON ( A C h T S v r a C N O OOTQ R N A G c T S T GD ARNS A O
  • 18. • edi :: : - / / / - .// / / : • diS / di • A d S F PE mbT di mG G • a di :: : - : / • T W : d S : - di • nh po Sg cl
  • 19.
  • 20.
  • 24. • zs RD c : s R H Wl n • s Wz • :t R • e ik WP aW • W C RDUD B • T kxT HP ; • B U s W • mp k L W zD • lpibno T ;
  • 25. • /AAL 5APM A POE 1A AOE C MEODIN MA . ILAOEOE A OAM OE A B M :M E E C /AAL 5APM 5AOR MGN B M 8AE B M AIA O 3A M E C DOOLN MSE MC N " • 0 POE OM OACEAN N A OAM OE A O 8AE B M AIA O 3A M E C DOOLN MSE MC N " " • DOOL RRR NENO L G GP MANA M D A POE MT ILPOE C CA AOE C MEODIN DOI • 7632. 67:242 :265 1050:2. /2 :233 :265 Zk fha goY_ cjlei mn b DOOLN MSE MC N " "