SlideShare a Scribd company logo
A Lightweight YOLOv2:
A Binarized CNN with a Parallel Support Vector 
Regression for an FPGA
Hiroki Nakahara, Haruyoshi Yonekawa, Tomoya Fujii, Shimpei Sato
Tokyo Institute of Technology, Japan
FPGA2018
@Monterey
Outline
• Background
• Convolutional Neural Network (CNN)
• Mixed‐precision CNN for a Lightweight YOLOv2
• Binary precision CNN
• Half precision support vector regression (SVR)
• FPGA Implementation
• Experimental Results
• Conclusion
2
Deep Learning is Everywhere
3
Convolutional Neural Network (CNN)
• Convolutional + Fully connected + Pooling
• State‐of‐the‐art performance in an image 
recognition task
• Widely applicable
4Source: https://www.mathworks.com/discovery/convolutional‐neural‐network.html
Image Recognition Tasks
• Classification
• Answer “category” of 
the object in an image
• Object Detection
• Classification 
+ localization
5
Easy
Hard
Baby (44%)
Son (23%)
Daughter (33%)
Son
Baby
Daughter
Applications
• Robotics, autonomous driving, security, drones…
6
Demo
7Available at https://www.youtube.com/watch?v=_iMboyu8iWc
Requirements in Embedded System
8
Cloud Embedded
Many classes (1000s) Few classes (<10)
Large workloads Frame rates (15‐30 FPS)
High efficiency
(Performance/W)
Low cost & low power
(1W‐5W)
Server form factor Custom form factor
J. Freeman (Intel), “FPGA Acceleration in the era of high level design”, HEART2017
Deep Learning Inference Device 
9
Flexibility
Power Performance
Efficiency
CPU
(Raspberry Pi3)
GPU
(Jetson TX2)
FPGA
(UltraZed)
ASIC
(Movidius)
• Flexibility: R&D costs for keeping on evolving 
algorithms
• Power performance efficiency
• FPGA has flexibility&better performance
Outline
• Background
• Convolutional Neural Network (CNN)
• Mixed‐precision CNN for a Lightweight YOLOv2
• Binary precision CNN
• Half precision support vector regression (SVR)
• FPGA Implementation
• Experimental Results
• Conclusion
10
Object Detection Problem
• Detecting and classifying multiple objects at the same time
• Evaluation criteria (from Pascal VOC):
11
Ground truth
annotation
Detection results:
>50% overlap of
bounding box(BBox)
with ground truth
One BBox for each
object
Confidence value
for each object
Person (50%)
#	 	 .
# 	 .
#	 	 .
# 	
1
11 , ∈ ,. ,…,
Average Precision (AP):
YOLOv2
(You Only Look Once version 2)
12
Input
Image
(Frame)
Feature maps
CONV+Pooling
CNN
CONV+Pooling
Class score
Bounding Box
Detection
J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger," arXiv preprint arXiv:1612.08242, 2016.
• Single CNN (One‐shot) object detector
• Both a classification and a BBox estimation for each grid
2D Convolutional Operation
13
Input feature map
Output feature map
Kernel
(Binary)
X0,0 x W0,0
X0,1 x W0,1
X0,2 x W0,2
X1,0 x W1,0
X1,1 x W1,1
X1,2 x W1,2
X2,0 x W2,0
X2,1 x W2,1
+) X2,2 x W2,2
y   
• Computational intensive part of the YOLOv2
Binarized CNN
14
x1
w0 (Bias)
fsgn(Y)
Y
z
w1
x2
w2
xn
wn
...
x1 x2 Y
‐1 ‐1 1
‐1 +1 ‐1
+1 ‐1 ‐1
+1 +1 1
x1 x2 Y
0 0 1
0 1 0
1 0 0
1 1 1
M. Courbariaux, I. Hubara, D. Soudry, R.E.Yaniv, Y. Bengio, “Binarized neural networks: Training deep neural 
networks with weights and activations constrained to +1 or ‐1," Computer Research Repository (CoRR), Mar., 
2016, http://arxiv.org/pdf/1602.02830v3.pdf
Improvements by Binarization
15
x1
w0 (Bias)
fsgn(Y)
Y
z
w1
x2
w2
xn
wn
...
x1 x2 Y
‐1 ‐1 1
‐1 +1 ‐1
+1 ‐1 ‐1
+1 +1 1
x1 x2 Y
0 0 1
0 1 0
1 0 0
1 1 1
EXNORs → Many MACs
Binary Precision → On‐chip Memory
Near Memory Realization by Binarization
E. Joel et al., “Tutorial on Hardware Architectures 
for Deep Neural Networks,” MICRO‐49, 2016. 16
On-chip
Memory
J. Dean, “Numbers everyone should know”
Source: https://gist.github.com/2841832
• High bandwidth (Left)
• Less power consumption (Right)
Typical CNN for Classification
17
Feature maps
CONV+Pooling CONV+Pooling
“5”
Input
image
...
Feature extraction layers
Classification
layers
3
2 0
1
4
5
6
7
8 9
Hypothesis
• Does binarized feature map has a location? → Yes
18
Feature maps
CONV+Pooling CONV+Pooling
“5”
Input
image
...
Feature extraction layers Classification
3
2 0
1
4
5
6
7
8 9
Regression
Problem
• Low precision NN is hard  to regress a function
• Example: sin(x) regression using a NN (3‐layers)
19
(a) Float 32 bit for 
activation and weight
(b) Float32 for 
activation and binary 
weight
(c) All binarized
Sin(x)
BinNNFloat32NN
Sin(x)
Miss
localization
Proposed YOLOv2
20
• Feature extraction layer: Binary precision
• Localization and classification layer: Half precision
CNN
(Feature
extraction)
F. maps Flatten SVR
Parallel SVR
x
y
h
w
conf
class
Feature Extraction
(+Location)
Localization + Classification
Support Vector Regression (SVR)
• Regression version of the Support Vector Machine (SVM)*1
• Passive aggressive (On‐line) training is supported*2
• Model decompression (sparse like) can be applied*3
			
: weight,  :  ‐th input, and  : bias.
21
*1 H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola and V. N. Vapnik, “Support Vector Regression Machines," 
Neural Information Processing Systems, No. 9, NIPS 1996, pp. 155‐161, 1997.
*3 T. Downs, K. E. Gates and A. Masters, “Exact simplication of support vector solutions," Journal of Machine 
Learning Research, Vol. 2, 2001, pp. 293‐297.
*2 M. Martin, “On‐Line Support Vector Machine Regression," ECML, pp.282‐294, 2002.
Outline
• Background
• Convolutional Neural Network (CNN)
• Mixed‐precision CNN for a Lightweight YOLOv2
• Binary precision CNN
• Half precision support vector regression (SVR)
• FPGA Implementation
• Experimental Results
• Conclusion
22
Pipelined Conv2D Circuit
x00 x01 x02 x03 x04
x10 x11 x12 x13 x14
x20 x21 x22 x23 x24
x30 x31 x32 x33 x34
x40 x41 x42 x43 x44
x22 x21 x20 x14 x13 x12 x11 x10 x04 x03 x02 x01 x00
+
Binarized
Weight
Mem.
Integer
Bias
Mem.
Write
Ctrl.
Logic
Counter
Binarized Feature Maps
(L=5, K=3)
9
Binarized MACs
(EXNORs + Adder Tree)
Sign
bit
Shift Register (2L+K bits)
Read M F.Maps at a time
B. Bosi, G. Bois and Y. Savaria, “Reconfigurable pipelined 2‐D convolvers for fast digital signal processing," IEEE Trans. 
on Very Large Scale Integration (VLSI) Systems, Vol. 7, No. 3, pp. 299‐308, 1999.
Parallel Binarized CNN Circuit
24
v
v
v
+
B. Weight
Mem.
Int. Bias
Mem.
Write
Ctrl.
Logic
Counter
Binarized
MACs
Sign
2L+K bits Shift Register
v
v
Ni F. maps
Read Ni bitsUpdate Ni+1 bits
On Chip Memory
Parallel SVR Circuit
25
Binarized
Feature map
memory
SVR for class_20
SVR for class_1
SVR for conf
SVR for w
SVR for h
SVR for y
SVR for x
Parallel SVR
Localization and
Classification
Feature
Extracted
CNN
From Binarized
F. Map memory
-1×w
w
0
1
+
Reg
+
bias
Weight
cache
Index
Clear
Circuit for a SVR
Overall Architecture
26
v
v
v
v
v
Streaming
Binarized
2D Conv.
Circuit
‐1×w
w 0
1
+
Reg
+
bWeight
Cache
(W.C.)
Index
Clear
SVR for class_20
SVR for conf.
SVR for x
AXI4‐BUS
Binarized
Weight
Cache
W.C.
W.C.
W.C.
Binarized
Weight
CacheF. map memory
Host ARM Processor
Outline
• Background
• Convolutional Neural Network (CNN)
• Mixed‐precision CNN for a Lightweight YOLOv2
• Binary precision CNN
• Half precision support vector regression (SVR)
• FPGA Implementation
• Experimental Results
• Conclusion
27
Training Result
• Environment
• CNN: Proposed YOLOv2
• Binarized Darknet19+SVR
• Dataset: Pascal VOC2007
• 21 class, 224x224 image size
• Framework
• Binary precision CNN: GUINNES*1
• Half precision SVR: Pegasos*2
• Accuracy (mAP)
• 67.6%
28
*1 H. Nakahara et. al, “A demonstration of the GUINNESS: A GUI based neural NEtwork SyntheSizer for an 
FPGA,” FPL, 2017, page 1. https://github.com/HirokiNakahara/GUINNESS
*2 S. S. Shwartz et. al, “Pegasos: primal estimated sub‐gradient solver for SVM,” Mathematical Programming, 
Vol . 127, No. 1, 2011, pp. 3‐30. https://github.com/ejlb/pegasos
Implementation Setup
• Board: Xilinx Inc. Zynq UltraScale+ 
MPSoC zcu102 evaluation board
• Zynq UltraScale+ MPSoC FPGA 
• Design tool: SDSoC 2017.4
• Timing constraint: 299.97MHz
29
Module #LUTs #FFs
#18Kb 
BRAMs
#DSP48Es
Binary CNN
(2D bin. Conv.)
108,138
(103,924)
358,868
(313,839)
1680
(0)
135
(0)
Parallel SVR 27,243 11,431 26 242
Total
(%)
135,381
(49.3)
370,299
(67.5)
1,706
(93.5)
377
(14.9)
Comparison
30
Platform Embedded CPU Embedded GPU FPGA
Device Quad‐core
ARM Cortex‐A57
256‐core
Pascal GPU
Zynq UltraScale+
MPSoC
Clock Freq. [GHz] 1.9 1.3 0.3
Memory 32 GB eMMC Flash 8GB LPDDR4 32.1 Mb BRAM
Time [msec]
(FPS) [sec‐1]
4210.0
(0.23)
715.9
(1.48*)
24.5
(40.81)
Dynamic Power [W] 4.0 7.0 4.5
Efficiency [FPS/W] 0.057 0.211 9.060
NVidia Jetson TX2 Xilinx ZCU102
* Chainer (version 1.24.0), source code: https://github.com/leetenki/YOLOv2
Conclusion
• Lightweight YOLOv2 for a real‐time object detector
• Mixed‐precision CNN
• Binary precision CNN: Feature extraction
• Half precision SVR: Classification and localization
• FPGA Implementation
• Outperforms an embedded GPU and a CPU
• Future Work: Applied to CNN‐based applications
• Single‐shot object detector (SSD, PVANet) 
• Semantic segmentation (FCN, U‐Net)
• Pose estimation (OpenPose)
• CNN SLAM
31
Thank you!
32
Contact: 
Hiroki Nakahara, Tokyo Institute of Technology
nakahara@ict.e.titech.ac.jp
Ad

More Related Content

What's hot (20)

Mask R-CNN
Mask R-CNNMask R-CNN
Mask R-CNN
Chanuk Lim
 
Yolo v2 ai_tech_20190421
Yolo v2 ai_tech_20190421Yolo v2 ai_tech_20190421
Yolo v2 ai_tech_20190421
穗碧 陳
 
Statistics with R
Statistics with R Statistics with R
Statistics with R
Ruru Chowdhury
 
Feature Engineering
Feature EngineeringFeature Engineering
Feature Engineering
Sri Ambati
 
Graph neural networks overview
Graph neural networks overviewGraph neural networks overview
Graph neural networks overview
Rodion Kiryukhin
 
Machine learning pipeline with spark ml
Machine learning pipeline with spark mlMachine learning pipeline with spark ml
Machine learning pipeline with spark ml
datamantra
 
Image anomaly detection with generative adversarial networks
Image anomaly detection with generative adversarial networksImage anomaly detection with generative adversarial networks
Image anomaly detection with generative adversarial networks
SakshiSingh480
 
Introduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning ProgrammersIntroduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning Programmers
Kimikazu Kato
 
3-d interpretation from single 2-d image for autonomous driving II
3-d interpretation from single 2-d image for autonomous driving II3-d interpretation from single 2-d image for autonomous driving II
3-d interpretation from single 2-d image for autonomous driving II
Yu Huang
 
Python for Computer Vision - Revision 2nd Edition
Python for Computer Vision - Revision 2nd EditionPython for Computer Vision - Revision 2nd Edition
Python for Computer Vision - Revision 2nd Edition
Ahmed Gad
 
Artificial neural network
Artificial neural networkArtificial neural network
Artificial neural network
Vajiheh Zoghiyan
 
Introduction to Deep Learning, Keras, and TensorFlow
Introduction to Deep Learning, Keras, and TensorFlowIntroduction to Deep Learning, Keras, and TensorFlow
Introduction to Deep Learning, Keras, and TensorFlow
Sri Ambati
 
AI local search
AI local searchAI local search
AI local search
Renas Rekany
 
Mask-RCNN for Instance Segmentation
Mask-RCNN for Instance SegmentationMask-RCNN for Instance Segmentation
Mask-RCNN for Instance Segmentation
Dat Nguyen
 
support vector regression
support vector regressionsupport vector regression
support vector regression
Akhilesh Joshi
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
Ding Li
 
Performance Metrics for Machine Learning Algorithms
Performance Metrics for Machine Learning AlgorithmsPerformance Metrics for Machine Learning Algorithms
Performance Metrics for Machine Learning Algorithms
Kush Kulshrestha
 
Machine Learning for Medical Image Analysis: What, where and how?
Machine Learning for Medical Image Analysis:What, where and how?Machine Learning for Medical Image Analysis:What, where and how?
Machine Learning for Medical Image Analysis: What, where and how?
Debdoot Sheet
 
Introduction to Generative Adversarial Networks (GANs)
Introduction to Generative Adversarial Networks (GANs)Introduction to Generative Adversarial Networks (GANs)
Introduction to Generative Adversarial Networks (GANs)
Appsilon Data Science
 
Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
Semantic Segmentation - Fully Convolutional Networks for Semantic SegmentationSemantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
岳華 杜
 
Yolo v2 ai_tech_20190421
Yolo v2 ai_tech_20190421Yolo v2 ai_tech_20190421
Yolo v2 ai_tech_20190421
穗碧 陳
 
Feature Engineering
Feature EngineeringFeature Engineering
Feature Engineering
Sri Ambati
 
Graph neural networks overview
Graph neural networks overviewGraph neural networks overview
Graph neural networks overview
Rodion Kiryukhin
 
Machine learning pipeline with spark ml
Machine learning pipeline with spark mlMachine learning pipeline with spark ml
Machine learning pipeline with spark ml
datamantra
 
Image anomaly detection with generative adversarial networks
Image anomaly detection with generative adversarial networksImage anomaly detection with generative adversarial networks
Image anomaly detection with generative adversarial networks
SakshiSingh480
 
Introduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning ProgrammersIntroduction to NumPy for Machine Learning Programmers
Introduction to NumPy for Machine Learning Programmers
Kimikazu Kato
 
3-d interpretation from single 2-d image for autonomous driving II
3-d interpretation from single 2-d image for autonomous driving II3-d interpretation from single 2-d image for autonomous driving II
3-d interpretation from single 2-d image for autonomous driving II
Yu Huang
 
Python for Computer Vision - Revision 2nd Edition
Python for Computer Vision - Revision 2nd EditionPython for Computer Vision - Revision 2nd Edition
Python for Computer Vision - Revision 2nd Edition
Ahmed Gad
 
Introduction to Deep Learning, Keras, and TensorFlow
Introduction to Deep Learning, Keras, and TensorFlowIntroduction to Deep Learning, Keras, and TensorFlow
Introduction to Deep Learning, Keras, and TensorFlow
Sri Ambati
 
Mask-RCNN for Instance Segmentation
Mask-RCNN for Instance SegmentationMask-RCNN for Instance Segmentation
Mask-RCNN for Instance Segmentation
Dat Nguyen
 
support vector regression
support vector regressionsupport vector regression
support vector regression
Akhilesh Joshi
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
Ding Li
 
Performance Metrics for Machine Learning Algorithms
Performance Metrics for Machine Learning AlgorithmsPerformance Metrics for Machine Learning Algorithms
Performance Metrics for Machine Learning Algorithms
Kush Kulshrestha
 
Machine Learning for Medical Image Analysis: What, where and how?
Machine Learning for Medical Image Analysis:What, where and how?Machine Learning for Medical Image Analysis:What, where and how?
Machine Learning for Medical Image Analysis: What, where and how?
Debdoot Sheet
 
Introduction to Generative Adversarial Networks (GANs)
Introduction to Generative Adversarial Networks (GANs)Introduction to Generative Adversarial Networks (GANs)
Introduction to Generative Adversarial Networks (GANs)
Appsilon Data Science
 
Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
Semantic Segmentation - Fully Convolutional Networks for Semantic SegmentationSemantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
岳華 杜
 

Similar to FPGA2018: A Lightweight YOLOv2: A binarized CNN with a parallel support vector regression for an FPGA (20)

TensorFlow London: Cutting edge generative models
TensorFlow London: Cutting edge generative modelsTensorFlow London: Cutting edge generative models
TensorFlow London: Cutting edge generative models
Seldon
 
FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...
FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...
FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...
Hiroki Nakahara
 
Information processing with artificial spiking neural networks
Information processing with artificial spiking neural networksInformation processing with artificial spiking neural networks
Information processing with artificial spiking neural networks
Advanced-Concepts-Team
 
Deep learning and image analytics using Python by Dr Sanparit
Deep learning and image analytics using Python by Dr SanparitDeep learning and image analytics using Python by Dr Sanparit
Deep learning and image analytics using Python by Dr Sanparit
BAINIDA
 
Details of Lazy Deep Learning for Images Recognition in ZZ Photo app
Details of Lazy Deep Learning for Images Recognition in ZZ Photo appDetails of Lazy Deep Learning for Images Recognition in ZZ Photo app
Details of Lazy Deep Learning for Images Recognition in ZZ Photo app
PAY2 YOU
 
Evolution of Deep Learning and new advancements
Evolution of Deep Learning and new advancementsEvolution of Deep Learning and new advancements
Evolution of Deep Learning and new advancements
Chitta Ranjan
 
Deep learning introduction basic information
Deep learning introduction basic informationDeep learning introduction basic information
Deep learning introduction basic information
AnoopCadlord1
 
Reservoir computing fast deep learning for sequences
Reservoir computing   fast deep learning for sequencesReservoir computing   fast deep learning for sequences
Reservoir computing fast deep learning for sequences
Claudio Gallicchio
 
Recent advances of AI for medical imaging : Engineering perspectives
Recent advances of AI for medical imaging : Engineering perspectivesRecent advances of AI for medical imaging : Engineering perspectives
Recent advances of AI for medical imaging : Engineering perspectives
Namkug Kim
 
A Survey on Image Processing using CNN in Deep Learning
A Survey on Image Processing using CNN in Deep LearningA Survey on Image Processing using CNN in Deep Learning
A Survey on Image Processing using CNN in Deep Learning
IRJET Journal
 
Deep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistryDeep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistry
Kenta Oono
 
Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...
Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...
Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...
Sergey Karayev
 
Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)
Julien SIMON
 
Final Poster
Final PosterFinal Poster
Final Poster
Elizabeth Koshelev
 
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
GeeksLab Odessa
 
Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)
Gaurav Mittal
 
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Universitat Politècnica de Catalunya
 
Dp2 ppt by_bikramjit_chowdhury_final
Dp2 ppt by_bikramjit_chowdhury_finalDp2 ppt by_bikramjit_chowdhury_final
Dp2 ppt by_bikramjit_chowdhury_final
Bikramjit Chowdhury
 
Can AI say from our eyes when we read relevant information?
Can AI say from our eyes when we read relevant information?Can AI say from our eyes when we read relevant information?
Can AI say from our eyes when we read relevant information?
Nilavra Bhattacharya
 
GTSRB Traffic Sign recognition using machine learning
GTSRB Traffic Sign recognition using machine learningGTSRB Traffic Sign recognition using machine learning
GTSRB Traffic Sign recognition using machine learning
Rupali Aher
 
TensorFlow London: Cutting edge generative models
TensorFlow London: Cutting edge generative modelsTensorFlow London: Cutting edge generative models
TensorFlow London: Cutting edge generative models
Seldon
 
FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...
FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...
FCCM2020: High-Throughput Convolutional Neural Network on an FPGA by Customiz...
Hiroki Nakahara
 
Information processing with artificial spiking neural networks
Information processing with artificial spiking neural networksInformation processing with artificial spiking neural networks
Information processing with artificial spiking neural networks
Advanced-Concepts-Team
 
Deep learning and image analytics using Python by Dr Sanparit
Deep learning and image analytics using Python by Dr SanparitDeep learning and image analytics using Python by Dr Sanparit
Deep learning and image analytics using Python by Dr Sanparit
BAINIDA
 
Details of Lazy Deep Learning for Images Recognition in ZZ Photo app
Details of Lazy Deep Learning for Images Recognition in ZZ Photo appDetails of Lazy Deep Learning for Images Recognition in ZZ Photo app
Details of Lazy Deep Learning for Images Recognition in ZZ Photo app
PAY2 YOU
 
Evolution of Deep Learning and new advancements
Evolution of Deep Learning and new advancementsEvolution of Deep Learning and new advancements
Evolution of Deep Learning and new advancements
Chitta Ranjan
 
Deep learning introduction basic information
Deep learning introduction basic informationDeep learning introduction basic information
Deep learning introduction basic information
AnoopCadlord1
 
Reservoir computing fast deep learning for sequences
Reservoir computing   fast deep learning for sequencesReservoir computing   fast deep learning for sequences
Reservoir computing fast deep learning for sequences
Claudio Gallicchio
 
Recent advances of AI for medical imaging : Engineering perspectives
Recent advances of AI for medical imaging : Engineering perspectivesRecent advances of AI for medical imaging : Engineering perspectives
Recent advances of AI for medical imaging : Engineering perspectives
Namkug Kim
 
A Survey on Image Processing using CNN in Deep Learning
A Survey on Image Processing using CNN in Deep LearningA Survey on Image Processing using CNN in Deep Learning
A Survey on Image Processing using CNN in Deep Learning
IRJET Journal
 
Deep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistryDeep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistry
Kenta Oono
 
Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...
Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...
Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...
Sergey Karayev
 
Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)
Julien SIMON
 
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
GeeksLab Odessa
 
Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)
Gaurav Mittal
 
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Universitat Politècnica de Catalunya
 
Dp2 ppt by_bikramjit_chowdhury_final
Dp2 ppt by_bikramjit_chowdhury_finalDp2 ppt by_bikramjit_chowdhury_final
Dp2 ppt by_bikramjit_chowdhury_final
Bikramjit Chowdhury
 
Can AI say from our eyes when we read relevant information?
Can AI say from our eyes when we read relevant information?Can AI say from our eyes when we read relevant information?
Can AI say from our eyes when we read relevant information?
Nilavra Bhattacharya
 
GTSRB Traffic Sign recognition using machine learning
GTSRB Traffic Sign recognition using machine learningGTSRB Traffic Sign recognition using machine learning
GTSRB Traffic Sign recognition using machine learning
Rupali Aher
 
Ad

More from Hiroki Nakahara (20)

ROS User Group Meeting #28 マルチ深層学習とROS
ROS User Group Meeting #28 マルチ深層学習とROSROS User Group Meeting #28 マルチ深層学習とROS
ROS User Group Meeting #28 マルチ深層学習とROS
Hiroki Nakahara
 
FPGAX2019
FPGAX2019FPGAX2019
FPGAX2019
Hiroki Nakahara
 
SBRA2018講演資料
SBRA2018講演資料SBRA2018講演資料
SBRA2018講演資料
Hiroki Nakahara
 
DSF2018講演スライド
DSF2018講演スライドDSF2018講演スライド
DSF2018講演スライド
Hiroki Nakahara
 
ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...
ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...
ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...
Hiroki Nakahara
 
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural NetworkISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
Hiroki Nakahara
 
FPT17: An object detector based on multiscale sliding window search using a f...
FPT17: An object detector based on multiscale sliding window search using a f...FPT17: An object detector based on multiscale sliding window search using a f...
FPT17: An object detector based on multiscale sliding window search using a f...
Hiroki Nakahara
 
(公開版)Reconf研2017GUINNESS
(公開版)Reconf研2017GUINNESS(公開版)Reconf研2017GUINNESS
(公開版)Reconf研2017GUINNESS
Hiroki Nakahara
 
(公開版)FPGAエクストリームコンピューティング2017
(公開版)FPGAエクストリームコンピューティング2017 (公開版)FPGAエクストリームコンピューティング2017
(公開版)FPGAエクストリームコンピューティング2017
Hiroki Nakahara
 
A Random Forest using a Multi-valued Decision Diagram on an FPGa
A Random Forest using a Multi-valued Decision Diagram on an FPGaA Random Forest using a Multi-valued Decision Diagram on an FPGa
A Random Forest using a Multi-valued Decision Diagram on an FPGa
Hiroki Nakahara
 
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
Hiroki Nakahara
 
2値化CNN on FPGAでGPUとガチンコバトル(公開版)
2値化CNN on FPGAでGPUとガチンコバトル(公開版)2値化CNN on FPGAでGPUとガチンコバトル(公開版)
2値化CNN on FPGAでGPUとガチンコバトル(公開版)
Hiroki Nakahara
 
Tensor flow usergroup 2016 (公開版)
Tensor flow usergroup 2016 (公開版)Tensor flow usergroup 2016 (公開版)
Tensor flow usergroup 2016 (公開版)
Hiroki Nakahara
 
FPGAX2016 ドキュンなFPGA
FPGAX2016 ドキュンなFPGAFPGAX2016 ドキュンなFPGA
FPGAX2016 ドキュンなFPGA
Hiroki Nakahara
 
電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた
電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた
電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた
Hiroki Nakahara
 
Altera sdk for open cl アンケート集計結果(公開版)
Altera sdk for open cl アンケート集計結果(公開版)Altera sdk for open cl アンケート集計結果(公開版)
Altera sdk for open cl アンケート集計結果(公開版)
Hiroki Nakahara
 
Naist2015 dec ver1
Naist2015 dec ver1Naist2015 dec ver1
Naist2015 dec ver1
Hiroki Nakahara
 
Nested RNSを用いたディープニューラルネットワークのFPGA実装
Nested RNSを用いたディープニューラルネットワークのFPGA実装Nested RNSを用いたディープニューラルネットワークのFPGA実装
Nested RNSを用いたディープニューラルネットワークのFPGA実装
Hiroki Nakahara
 
FPL15 talk: Deep Convolutional Neural Network on FPGA
FPL15 talk: Deep Convolutional Neural Network on FPGAFPL15 talk: Deep Convolutional Neural Network on FPGA
FPL15 talk: Deep Convolutional Neural Network on FPGA
Hiroki Nakahara
 
私のファミコンのfpsは530000です。もちろんフルパワーで(以下略
私のファミコンのfpsは530000です。もちろんフルパワーで(以下略私のファミコンのfpsは530000です。もちろんフルパワーで(以下略
私のファミコンのfpsは530000です。もちろんフルパワーで(以下略
Hiroki Nakahara
 
ROS User Group Meeting #28 マルチ深層学習とROS
ROS User Group Meeting #28 マルチ深層学習とROSROS User Group Meeting #28 マルチ深層学習とROS
ROS User Group Meeting #28 マルチ深層学習とROS
Hiroki Nakahara
 
DSF2018講演スライド
DSF2018講演スライドDSF2018講演スライド
DSF2018講演スライド
Hiroki Nakahara
 
ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...
ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...
ISCAS'18: A Deep Neural Network on the Nested RNS (NRNS) on an FPGA: Applied ...
Hiroki Nakahara
 
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural NetworkISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
ISMVL2018: A Ternary Weight Binary Input Convolutional Neural Network
Hiroki Nakahara
 
FPT17: An object detector based on multiscale sliding window search using a f...
FPT17: An object detector based on multiscale sliding window search using a f...FPT17: An object detector based on multiscale sliding window search using a f...
FPT17: An object detector based on multiscale sliding window search using a f...
Hiroki Nakahara
 
(公開版)Reconf研2017GUINNESS
(公開版)Reconf研2017GUINNESS(公開版)Reconf研2017GUINNESS
(公開版)Reconf研2017GUINNESS
Hiroki Nakahara
 
(公開版)FPGAエクストリームコンピューティング2017
(公開版)FPGAエクストリームコンピューティング2017 (公開版)FPGAエクストリームコンピューティング2017
(公開版)FPGAエクストリームコンピューティング2017
Hiroki Nakahara
 
A Random Forest using a Multi-valued Decision Diagram on an FPGa
A Random Forest using a Multi-valued Decision Diagram on an FPGaA Random Forest using a Multi-valued Decision Diagram on an FPGa
A Random Forest using a Multi-valued Decision Diagram on an FPGa
Hiroki Nakahara
 
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
Hiroki Nakahara
 
2値化CNN on FPGAでGPUとガチンコバトル(公開版)
2値化CNN on FPGAでGPUとガチンコバトル(公開版)2値化CNN on FPGAでGPUとガチンコバトル(公開版)
2値化CNN on FPGAでGPUとガチンコバトル(公開版)
Hiroki Nakahara
 
Tensor flow usergroup 2016 (公開版)
Tensor flow usergroup 2016 (公開版)Tensor flow usergroup 2016 (公開版)
Tensor flow usergroup 2016 (公開版)
Hiroki Nakahara
 
FPGAX2016 ドキュンなFPGA
FPGAX2016 ドキュンなFPGAFPGAX2016 ドキュンなFPGA
FPGAX2016 ドキュンなFPGA
Hiroki Nakahara
 
電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた
電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた
電波望遠鏡用の分光器をAltera SDK for OpenCL使ってサクッと作ってみた
Hiroki Nakahara
 
Altera sdk for open cl アンケート集計結果(公開版)
Altera sdk for open cl アンケート集計結果(公開版)Altera sdk for open cl アンケート集計結果(公開版)
Altera sdk for open cl アンケート集計結果(公開版)
Hiroki Nakahara
 
Nested RNSを用いたディープニューラルネットワークのFPGA実装
Nested RNSを用いたディープニューラルネットワークのFPGA実装Nested RNSを用いたディープニューラルネットワークのFPGA実装
Nested RNSを用いたディープニューラルネットワークのFPGA実装
Hiroki Nakahara
 
FPL15 talk: Deep Convolutional Neural Network on FPGA
FPL15 talk: Deep Convolutional Neural Network on FPGAFPL15 talk: Deep Convolutional Neural Network on FPGA
FPL15 talk: Deep Convolutional Neural Network on FPGA
Hiroki Nakahara
 
私のファミコンのfpsは530000です。もちろんフルパワーで(以下略
私のファミコンのfpsは530000です。もちろんフルパワーで(以下略私のファミコンのfpsは530000です。もちろんフルパワーで(以下略
私のファミコンのfpsは530000です。もちろんフルパワーで(以下略
Hiroki Nakahara
 
Ad

Recently uploaded (20)

ELectronics Boards & Product Testing_Shiju.pdf
ELectronics Boards & Product Testing_Shiju.pdfELectronics Boards & Product Testing_Shiju.pdf
ELectronics Boards & Product Testing_Shiju.pdf
Shiju Jacob
 
Data Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptxData Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptx
RushaliDeshmukh2
 
Compiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptxCompiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptx
RushaliDeshmukh2
 
fluke dealers in bangalore..............
fluke dealers in bangalore..............fluke dealers in bangalore..............
fluke dealers in bangalore..............
Haresh Vaswani
 
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdffive-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
AdityaSharma944496
 
π0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalizationπ0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalization
NABLAS株式会社
 
Level 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical SafetyLevel 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical Safety
JoseAlbertoCariasDel
 
Smart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptxSmart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptx
rushikeshnavghare94
 
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptxExplainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
MahaveerVPandit
 
Raish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdfRaish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdf
RaishKhanji
 
Introduction to Zoomlion Earthmoving.pptx
Introduction to Zoomlion Earthmoving.pptxIntroduction to Zoomlion Earthmoving.pptx
Introduction to Zoomlion Earthmoving.pptx
AS1920
 
Introduction to FLUID MECHANICS & KINEMATICS
Introduction to FLUID MECHANICS &  KINEMATICSIntroduction to FLUID MECHANICS &  KINEMATICS
Introduction to FLUID MECHANICS & KINEMATICS
narayanaswamygdas
 
AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)
Vəhid Gəruslu
 
Avnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights FlyerAvnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights Flyer
WillDavies22
 
Smart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineeringSmart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineering
rushikeshnavghare94
 
introduction to machine learining for beginers
introduction to machine learining for beginersintroduction to machine learining for beginers
introduction to machine learining for beginers
JoydebSheet
 
Metal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistryMetal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistry
mee23nu
 
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdfRICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
MohamedAbdelkader115
 
Mathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdfMathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdf
TalhaShahid49
 
some basics electrical and electronics knowledge
some basics electrical and electronics knowledgesome basics electrical and electronics knowledge
some basics electrical and electronics knowledge
nguyentrungdo88
 
ELectronics Boards & Product Testing_Shiju.pdf
ELectronics Boards & Product Testing_Shiju.pdfELectronics Boards & Product Testing_Shiju.pdf
ELectronics Boards & Product Testing_Shiju.pdf
Shiju Jacob
 
Data Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptxData Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptx
RushaliDeshmukh2
 
Compiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptxCompiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptx
RushaliDeshmukh2
 
fluke dealers in bangalore..............
fluke dealers in bangalore..............fluke dealers in bangalore..............
fluke dealers in bangalore..............
Haresh Vaswani
 
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdffive-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
AdityaSharma944496
 
π0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalizationπ0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalization
NABLAS株式会社
 
Level 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical SafetyLevel 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical Safety
JoseAlbertoCariasDel
 
Smart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptxSmart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptx
rushikeshnavghare94
 
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptxExplainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
MahaveerVPandit
 
Raish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdfRaish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdf
RaishKhanji
 
Introduction to Zoomlion Earthmoving.pptx
Introduction to Zoomlion Earthmoving.pptxIntroduction to Zoomlion Earthmoving.pptx
Introduction to Zoomlion Earthmoving.pptx
AS1920
 
Introduction to FLUID MECHANICS & KINEMATICS
Introduction to FLUID MECHANICS &  KINEMATICSIntroduction to FLUID MECHANICS &  KINEMATICS
Introduction to FLUID MECHANICS & KINEMATICS
narayanaswamygdas
 
AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)
Vəhid Gəruslu
 
Avnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights FlyerAvnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights Flyer
WillDavies22
 
Smart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineeringSmart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineering
rushikeshnavghare94
 
introduction to machine learining for beginers
introduction to machine learining for beginersintroduction to machine learining for beginers
introduction to machine learining for beginers
JoydebSheet
 
Metal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistryMetal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistry
mee23nu
 
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdfRICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
MohamedAbdelkader115
 
Mathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdfMathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdf
TalhaShahid49
 
some basics electrical and electronics knowledge
some basics electrical and electronics knowledgesome basics electrical and electronics knowledge
some basics electrical and electronics knowledge
nguyentrungdo88
 

FPGA2018: A Lightweight YOLOv2: A binarized CNN with a parallel support vector regression for an FPGA