This document provides a review of different classifiers used for text classification on social media data. It discusses how social media data is often unstructured and contains users' opinions and sentiments. Various machine learning algorithms can be used to classify this social media text data, extracting meaningful information. The document focuses on describing Naive Bayes classifiers, which are commonly used for text classification tasks. It explains how Naive Bayes classifiers work by calculating the posterior probability that a document belongs to a certain class, based on applying Bayes' theorem with an independence assumption between features.