This document discusses an analysis of an emotion recognition system through speech signals using K-nearest neighbors (KNN) and Gaussian mixture model (KNN) classifiers. It provides background on the challenges of automatic emotion recognition from speech and describes common features extracted from speech like mel frequency cepstrum coefficients and prosodic features. The document outlines the process of an emotion recognition system including feature extraction, training classifiers on a speech database, and classifying emotions. It then gives more detail on the KNN and GMM classifiers and how they were used to classify six emotional states from the Berlin emotional speech database.