SlideShare a Scribd company logo
Tree Data Structures
S. Sudarshan
Based partly on material from
Fawzi Emad & Chau-Wen Tseng
Trees Data Structures
 Tree
 Nodes
 Each node can have 0 or more children
 A node can have at most one parent
 Binary tree
 Tree with 0–2 children per node
Tree Binary Tree
Trees
 Terminology
 Root ⇒ no parent
 Leaf ⇒ no child
 Interior ⇒ non-leaf
 Height ⇒ distance from root to leaf
Root node
Leaf nodes
Interior nodes Height
Binary Search Trees
 Key property
 Value at node
 Smaller values in left subtree
 Larger values in right subtree
 Example
 X > Y
 X < Z
Y
X
Z
Binary Search Trees
 Examples
Binary
search trees
Not a binary
search tree
5
10
30
2 25 45
5
10
45
2 25 30
5
10
30
2
25
45
Binary Tree Implementation
Class Node {
int data; // Could be int, a class, etc
Node *left, *right; // null if empty
void insert ( int data ) { … }
void delete ( int data ) { … }
Node *find ( int data ) { … }
…
}
Iterative Search of Binary Tree
Node *Find( Node *n, int key) {
while (n != NULL) {
if (n->data == key) // Found it
return n;
if (n->data > key) // In left subtree
n = n->left;
else // In right subtree
n = n->right;
}
return null;
}
Node * n = Find( root, 5);
Recursive Search of Binary Tree
Node *Find( Node *n, int key) {
if (n == NULL) // Not found
return( n );
else if (n->data == key) // Found it
return( n );
else if (n->data > key) // In left subtree
return Find( n->left, key );
else // In right subtree
return Find( n->right, key );
}
Node * n = Find( root, 5);
Example Binary Searches
 Find ( root, 2 )
5
10
30
2 25 45
5
10
30
2
25
45
10 > 2, left
5 > 2, left
2 = 2, found
5 > 2, left
2 = 2, found
root
Example Binary Searches
 Find (root, 25 )
5
10
30
2 25 45
5
10
30
2
25
45
10 < 25, right
30 > 25, left
25 = 25, found
5 < 25, right
45 > 25, left
30 > 25, left
10 < 25, right
25 = 25, found
Types of Binary Trees
 Degenerate – only one child
 Complete – always two children
 Balanced – “mostly” two children
 more formal definitions exist, above are intuitive ideas
Degenerate
binary tree
Balanced
binary tree
Complete
binary tree
Binary Trees Properties
 Degenerate
 Height = O(n) for n
nodes
 Similar to linked list
 Balanced
 Height = O( log(n) )
for n nodes
 Useful for searches
Degenerate
binary tree
Balanced
binary tree
Binary Search Properties
 Time of search
 Proportional to height of tree
 Balanced binary tree
 O( log(n) ) time
 Degenerate tree
 O( n ) time
 Like searching linked list / unsorted array
Binary Search Tree Construction
 How to build & maintain binary trees?
 Insertion
 Deletion
 Maintain key property (invariant)
 Smaller values in left subtree
 Larger values in right subtree
Binary Search Tree – Insertion
 Algorithm
1. Perform search for value X
2. Search will end at node Y (if X not in tree)
3. If X < Y, insert new leaf X as new left subtree for
Y
4. If X > Y, insert new leaf X as new right subtree
for Y
 Observations
 O( log(n) ) operation for balanced tree
 Insertions may unbalance tree
Example Insertion
 Insert ( 20 )
5
10
30
2 25 45
10 < 20, right
30 > 20, left
25 > 20, left
Insert 20 on left
20
Binary Search Tree – Deletion
 Algorithm
1. Perform search for value X
2. If X is a leaf, delete X
3. Else // must delete internal node
a) Replace with largest value Y on left subtree
OR smallest value Z on right subtree
b) Delete replacement value (Y or Z) from subtree
Observation
 O( log(n) ) operation for balanced tree
 Deletions may unbalance tree
Example Deletion (Leaf)
 Delete ( 25 )
5
10
30
2 25 45
10 < 25, right
30 > 25, left
25 = 25, delete
5
10
30
2 45
Example Deletion (Internal Node)
 Delete ( 10 )
5
10
30
2 25 45
5
5
30
2 25 45
2
5
30
2 25 45
Replacing 10
with largest
value in left
subtree
Replacing 5
with largest
value in left
subtree
Deleting leaf
Example Deletion (Internal Node)
 Delete ( 10 )
5
10
30
2 25 45
5
25
30
2 25 45
5
25
30
2 45
Replacing 10
with smallest
value in right
subtree
Deleting leaf Resulting tree
Balanced Search Trees
 Kinds of balanced binary search trees
 height balanced vs. weight balanced
 “Tree rotations” used to maintain balance on insert/delete
 Non-binary search trees
 2/3 trees
 each internal node has 2 or 3 children
 all leaves at same depth (height balanced)
 B-trees
 Generalization of 2/3 trees
 Each internal node has between k/2 and k children
 Each node has an array of pointers to children
 Widely used in databases
Other (Non-Search) Trees
 Parse trees
 Convert from textual representation to tree
representation
 Textual program to tree
 Used extensively in compilers
 Tree representation of data
 E.g. HTML data can be represented as a tree
 called DOM (Document Object Model) tree
 XML
 Like HTML, but used to represent data
 Tree structured
Parse Trees
 Expressions, programs, etc can be
represented by tree structures
 E.g. Arithmetic Expression Tree
 A-(C/5 * 2) + (D*5 % 4)
+
- %
A * * 4
/ 2 D 5
C 5
Tree Traversal
 Goal: visit every node of a tree
 in-order traversal
void Node::inOrder () {
if (left != NULL) {
cout << “(“; left->inOrder(); cout << “)”;
}
cout << data << endl;
if (right != NULL) right->inOrder()
}Output: A – C / 5 * 2 + D * 5 % 4
To disambiguate: print brackets
+
- %
A * * 4
/ 2 D 5
C 5
Tree Traversal (contd.)
 pre-order and post-order:
void Node::preOrder () {
cout << data << endl;
if (left != NULL) left->preOrder ();
if (right != NULL) right->preOrder ();
}
void Node::postOrder () {
if (left != NULL) left->preOrder ();
if (right != NULL) right->preOrder ();
cout << data << endl;
}
Output: + - A * / C 5 2 % * D 5 4
Output: A C 5 / 2 * - D 5 * 4 % +
+
- %
A * * 4
/ 2 D 5
C 5
XML
 Data Representation
 E.g.
<dependency>
<object>sample1.o</object>
<depends>sample1.cpp</depends>
<depends>sample1.h</depends>
<rule>g++ -c sample1.cpp</rule>
</dependency>
 Tree representation
dependency
object depends
sample1.o sample1.cpp
depends
sample1.h
rule
g++ -c …
Graph Data Structures
 E.g: Airline networks, road networks, electrical circuits
 Nodes and Edges
 E.g. representation: class Node
 Stores name
 stores pointers to all adjacent nodes
 i,e. edge == pointer
 To store multiple pointers: use array or linked list
Ahm’bad
Delhi
Mumbai
Calcutta
Chennai
Madurai
End of Chapter
Ad

More Related Content

What's hot (20)

Binary search tree operations
Binary search tree operationsBinary search tree operations
Binary search tree operations
Kamran Zafar
 
Data Structure and Algorithms Binary Search Tree
Data Structure and Algorithms Binary Search TreeData Structure and Algorithms Binary Search Tree
Data Structure and Algorithms Binary Search Tree
ManishPrajapati78
 
Binary Tree in Data Structure
Binary Tree in Data StructureBinary Tree in Data Structure
Binary Tree in Data Structure
Meghaj Mallick
 
Binary tree
Binary  treeBinary  tree
Binary tree
Vanitha Chandru
 
Linked list implementation of Queue
Linked list implementation of QueueLinked list implementation of Queue
Linked list implementation of Queue
Dr. Sindhia Lingaswamy
 
Doubly linked list (animated)
Doubly linked list (animated)Doubly linked list (animated)
Doubly linked list (animated)
DivyeshKumar Jagatiya
 
Binary trees1
Binary trees1Binary trees1
Binary trees1
Saurabh Mishra
 
Queues
QueuesQueues
Queues
Lovely Professional University
 
AVL Tree Data Structure
AVL Tree Data StructureAVL Tree Data Structure
AVL Tree Data Structure
Afaq Mansoor Khan
 
Linked List
Linked ListLinked List
Linked List
Ashim Lamichhane
 
Binary Search Tree in Data Structure
Binary Search Tree in Data StructureBinary Search Tree in Data Structure
Binary Search Tree in Data Structure
Dharita Chokshi
 
Binary search trees
Binary search treesBinary search trees
Binary search trees
Dwight Sabio
 
Different Sorting tecniques in Data Structure
Different Sorting tecniques in Data StructureDifferent Sorting tecniques in Data Structure
Different Sorting tecniques in Data Structure
Tushar Gonawala
 
Terminology of tree
Terminology of treeTerminology of tree
Terminology of tree
RacksaviR
 
Trees, Binary Search Tree, AVL Tree in Data Structures
Trees, Binary Search Tree, AVL Tree in Data Structures Trees, Binary Search Tree, AVL Tree in Data Structures
Trees, Binary Search Tree, AVL Tree in Data Structures
Gurukul Kangri Vishwavidyalaya - Faculty of Engineering and Technology
 
Binary search tree
Binary search treeBinary search tree
Binary search tree
Kousalya M
 
Binary Search Tree in Data Structure
Binary Search Tree in Data StructureBinary Search Tree in Data Structure
Binary Search Tree in Data Structure
Meghaj Mallick
 
My lectures circular queue
My lectures circular queueMy lectures circular queue
My lectures circular queue
Senthil Kumar
 
Notes DATA STRUCTURE - queue
Notes DATA STRUCTURE - queueNotes DATA STRUCTURE - queue
Notes DATA STRUCTURE - queue
Farhanum Aziera
 
Tree and Binary Search tree
Tree and Binary Search treeTree and Binary Search tree
Tree and Binary Search tree
Muhazzab Chouhadry
 

Similar to 1.5 binary search tree (20)

Trees gt(1)
Trees gt(1)Trees gt(1)
Trees gt(1)
Gopi Saiteja
 
Trees (data structure)
Trees (data structure)Trees (data structure)
Trees (data structure)
Trupti Agrawal
 
Mca admission in india
Mca admission in indiaMca admission in india
Mca admission in india
Edhole.com
 
CS-102 BST_27_3_14v2.pdf
CS-102 BST_27_3_14v2.pdfCS-102 BST_27_3_14v2.pdf
CS-102 BST_27_3_14v2.pdf
ssuser034ce1
 
CS-102 BST_27_3_14.pdf
CS-102 BST_27_3_14.pdfCS-102 BST_27_3_14.pdf
CS-102 BST_27_3_14.pdf
ssuser034ce1
 
data structure on bca.
data structure on bca.data structure on bca.
data structure on bca.
invertis university
 
Introduction to data structure by anil dutt
Introduction to data structure by anil duttIntroduction to data structure by anil dutt
Introduction to data structure by anil dutt
Anil Dutt
 
17 Trees.ppt DSADSADSADSADSADSADSADSADSA
17 Trees.ppt DSADSADSADSADSADSADSADSADSA17 Trees.ppt DSADSADSADSADSADSADSADSADSA
17 Trees.ppt DSADSADSADSADSADSADSADSADSA
thehamzaihsan
 
Data Strcutres-Non Linear DS-Advanced Trees
Data Strcutres-Non Linear DS-Advanced TreesData Strcutres-Non Linear DS-Advanced Trees
Data Strcutres-Non Linear DS-Advanced Trees
sailaja156145
 
Data Structures and Agorithm: DS 10 Binary Search Tree.pptx
Data Structures and Agorithm: DS 10 Binary Search Tree.pptxData Structures and Agorithm: DS 10 Binary Search Tree.pptx
Data Structures and Agorithm: DS 10 Binary Search Tree.pptx
RashidFaridChishti
 
part4-trees.ppt
part4-trees.pptpart4-trees.ppt
part4-trees.ppt
Suneel61
 
Search data structures
Search data structuresSearch data structures
Search data structures
Ravi Pathak
 
mitochondria moment and super computer integration.ppt
mitochondria moment and super computer integration.pptmitochondria moment and super computer integration.ppt
mitochondria moment and super computer integration.ppt
AMMAD45
 
bst.ppt
bst.pptbst.ppt
bst.ppt
plagcheck
 
BinarySearchTrees.ppt
BinarySearchTrees.pptBinarySearchTrees.ppt
BinarySearchTrees.ppt
SARATHGARIKINA
 
BinarySearchTrees.ppt
BinarySearchTrees.pptBinarySearchTrees.ppt
BinarySearchTrees.ppt
ItsStranger1
 
BinarySearchTrees.ppt
BinarySearchTrees.pptBinarySearchTrees.ppt
BinarySearchTrees.ppt
plagcheck
 
data structure very BinarySearchTrees.ppt
data structure very BinarySearchTrees.pptdata structure very BinarySearchTrees.ppt
data structure very BinarySearchTrees.ppt
DharmannaRathod1
 
BinarySearchTrees (1).ppt
BinarySearchTrees (1).pptBinarySearchTrees (1).ppt
BinarySearchTrees (1).ppt
plagcheck
 
Binary searchtrees
Binary searchtreesBinary searchtrees
Binary searchtrees
HasnainBaloch12
 
Trees (data structure)
Trees (data structure)Trees (data structure)
Trees (data structure)
Trupti Agrawal
 
Mca admission in india
Mca admission in indiaMca admission in india
Mca admission in india
Edhole.com
 
CS-102 BST_27_3_14v2.pdf
CS-102 BST_27_3_14v2.pdfCS-102 BST_27_3_14v2.pdf
CS-102 BST_27_3_14v2.pdf
ssuser034ce1
 
CS-102 BST_27_3_14.pdf
CS-102 BST_27_3_14.pdfCS-102 BST_27_3_14.pdf
CS-102 BST_27_3_14.pdf
ssuser034ce1
 
Introduction to data structure by anil dutt
Introduction to data structure by anil duttIntroduction to data structure by anil dutt
Introduction to data structure by anil dutt
Anil Dutt
 
17 Trees.ppt DSADSADSADSADSADSADSADSADSA
17 Trees.ppt DSADSADSADSADSADSADSADSADSA17 Trees.ppt DSADSADSADSADSADSADSADSADSA
17 Trees.ppt DSADSADSADSADSADSADSADSADSA
thehamzaihsan
 
Data Strcutres-Non Linear DS-Advanced Trees
Data Strcutres-Non Linear DS-Advanced TreesData Strcutres-Non Linear DS-Advanced Trees
Data Strcutres-Non Linear DS-Advanced Trees
sailaja156145
 
Data Structures and Agorithm: DS 10 Binary Search Tree.pptx
Data Structures and Agorithm: DS 10 Binary Search Tree.pptxData Structures and Agorithm: DS 10 Binary Search Tree.pptx
Data Structures and Agorithm: DS 10 Binary Search Tree.pptx
RashidFaridChishti
 
part4-trees.ppt
part4-trees.pptpart4-trees.ppt
part4-trees.ppt
Suneel61
 
Search data structures
Search data structuresSearch data structures
Search data structures
Ravi Pathak
 
mitochondria moment and super computer integration.ppt
mitochondria moment and super computer integration.pptmitochondria moment and super computer integration.ppt
mitochondria moment and super computer integration.ppt
AMMAD45
 
BinarySearchTrees.ppt
BinarySearchTrees.pptBinarySearchTrees.ppt
BinarySearchTrees.ppt
ItsStranger1
 
BinarySearchTrees.ppt
BinarySearchTrees.pptBinarySearchTrees.ppt
BinarySearchTrees.ppt
plagcheck
 
data structure very BinarySearchTrees.ppt
data structure very BinarySearchTrees.pptdata structure very BinarySearchTrees.ppt
data structure very BinarySearchTrees.ppt
DharmannaRathod1
 
BinarySearchTrees (1).ppt
BinarySearchTrees (1).pptBinarySearchTrees (1).ppt
BinarySearchTrees (1).ppt
plagcheck
 
Ad

More from Krish_ver2 (20)

5.5 back tracking
5.5 back tracking5.5 back tracking
5.5 back tracking
Krish_ver2
 
5.5 back track
5.5 back track5.5 back track
5.5 back track
Krish_ver2
 
5.5 back tracking 02
5.5 back tracking 025.5 back tracking 02
5.5 back tracking 02
Krish_ver2
 
5.4 randomized datastructures
5.4 randomized datastructures5.4 randomized datastructures
5.4 randomized datastructures
Krish_ver2
 
5.4 randomized datastructures
5.4 randomized datastructures5.4 randomized datastructures
5.4 randomized datastructures
Krish_ver2
 
5.4 randamized algorithm
5.4 randamized algorithm5.4 randamized algorithm
5.4 randamized algorithm
Krish_ver2
 
5.3 dynamic programming 03
5.3 dynamic programming 035.3 dynamic programming 03
5.3 dynamic programming 03
Krish_ver2
 
5.3 dynamic programming
5.3 dynamic programming5.3 dynamic programming
5.3 dynamic programming
Krish_ver2
 
5.3 dyn algo-i
5.3 dyn algo-i5.3 dyn algo-i
5.3 dyn algo-i
Krish_ver2
 
5.2 divede and conquer 03
5.2 divede and conquer 035.2 divede and conquer 03
5.2 divede and conquer 03
Krish_ver2
 
5.2 divide and conquer
5.2 divide and conquer5.2 divide and conquer
5.2 divide and conquer
Krish_ver2
 
5.2 divede and conquer 03
5.2 divede and conquer 035.2 divede and conquer 03
5.2 divede and conquer 03
Krish_ver2
 
5.1 greedyyy 02
5.1 greedyyy 025.1 greedyyy 02
5.1 greedyyy 02
Krish_ver2
 
5.1 greedy
5.1 greedy5.1 greedy
5.1 greedy
Krish_ver2
 
5.1 greedy 03
5.1 greedy 035.1 greedy 03
5.1 greedy 03
Krish_ver2
 
4.4 hashing02
4.4 hashing024.4 hashing02
4.4 hashing02
Krish_ver2
 
4.4 hashing
4.4 hashing4.4 hashing
4.4 hashing
Krish_ver2
 
4.4 hashing ext
4.4 hashing  ext4.4 hashing  ext
4.4 hashing ext
Krish_ver2
 
4.4 external hashing
4.4 external hashing4.4 external hashing
4.4 external hashing
Krish_ver2
 
4.2 bst
4.2 bst4.2 bst
4.2 bst
Krish_ver2
 
5.5 back tracking
5.5 back tracking5.5 back tracking
5.5 back tracking
Krish_ver2
 
5.5 back track
5.5 back track5.5 back track
5.5 back track
Krish_ver2
 
5.5 back tracking 02
5.5 back tracking 025.5 back tracking 02
5.5 back tracking 02
Krish_ver2
 
5.4 randomized datastructures
5.4 randomized datastructures5.4 randomized datastructures
5.4 randomized datastructures
Krish_ver2
 
5.4 randomized datastructures
5.4 randomized datastructures5.4 randomized datastructures
5.4 randomized datastructures
Krish_ver2
 
5.4 randamized algorithm
5.4 randamized algorithm5.4 randamized algorithm
5.4 randamized algorithm
Krish_ver2
 
5.3 dynamic programming 03
5.3 dynamic programming 035.3 dynamic programming 03
5.3 dynamic programming 03
Krish_ver2
 
5.3 dynamic programming
5.3 dynamic programming5.3 dynamic programming
5.3 dynamic programming
Krish_ver2
 
5.3 dyn algo-i
5.3 dyn algo-i5.3 dyn algo-i
5.3 dyn algo-i
Krish_ver2
 
5.2 divede and conquer 03
5.2 divede and conquer 035.2 divede and conquer 03
5.2 divede and conquer 03
Krish_ver2
 
5.2 divide and conquer
5.2 divide and conquer5.2 divide and conquer
5.2 divide and conquer
Krish_ver2
 
5.2 divede and conquer 03
5.2 divede and conquer 035.2 divede and conquer 03
5.2 divede and conquer 03
Krish_ver2
 
5.1 greedyyy 02
5.1 greedyyy 025.1 greedyyy 02
5.1 greedyyy 02
Krish_ver2
 
4.4 hashing ext
4.4 hashing  ext4.4 hashing  ext
4.4 hashing ext
Krish_ver2
 
4.4 external hashing
4.4 external hashing4.4 external hashing
4.4 external hashing
Krish_ver2
 
Ad

Recently uploaded (20)

Metamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative JourneyMetamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative Journey
Arshad Shaikh
 
Introduction-to-Communication-and-Media-Studies-1736283331.pdf
Introduction-to-Communication-and-Media-Studies-1736283331.pdfIntroduction-to-Communication-and-Media-Studies-1736283331.pdf
Introduction-to-Communication-and-Media-Studies-1736283331.pdf
james5028
 
Contact Lens:::: An Overview.pptx.: Optometry
Contact Lens:::: An Overview.pptx.: OptometryContact Lens:::: An Overview.pptx.: Optometry
Contact Lens:::: An Overview.pptx.: Optometry
MushahidRaza8
 
To study Digestive system of insect.pptx
To study Digestive system of insect.pptxTo study Digestive system of insect.pptx
To study Digestive system of insect.pptx
Arshad Shaikh
 
Geography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjectsGeography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjects
ProfDrShaikhImran
 
Real GitHub Copilot Exam Dumps for Success
Real GitHub Copilot Exam Dumps for SuccessReal GitHub Copilot Exam Dumps for Success
Real GitHub Copilot Exam Dumps for Success
Mark Soia
 
Understanding P–N Junction Semiconductors: A Beginner’s Guide
Understanding P–N Junction Semiconductors: A Beginner’s GuideUnderstanding P–N Junction Semiconductors: A Beginner’s Guide
Understanding P–N Junction Semiconductors: A Beginner’s Guide
GS Virdi
 
Engage Donors Through Powerful Storytelling.pdf
Engage Donors Through Powerful Storytelling.pdfEngage Donors Through Powerful Storytelling.pdf
Engage Donors Through Powerful Storytelling.pdf
TechSoup
 
Sinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_NameSinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_Name
keshanf79
 
2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx
contactwilliamm2546
 
Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025
Mebane Rash
 
YSPH VMOC Special Report - Measles Outbreak Southwest US 4-30-2025.pptx
YSPH VMOC Special Report - Measles Outbreak  Southwest US 4-30-2025.pptxYSPH VMOC Special Report - Measles Outbreak  Southwest US 4-30-2025.pptx
YSPH VMOC Special Report - Measles Outbreak Southwest US 4-30-2025.pptx
Yale School of Public Health - The Virtual Medical Operations Center (VMOC)
 
Link your Lead Opportunities into Spreadsheet using odoo CRM
Link your Lead Opportunities into Spreadsheet using odoo CRMLink your Lead Opportunities into Spreadsheet using odoo CRM
Link your Lead Opportunities into Spreadsheet using odoo CRM
Celine George
 
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 AccountingHow to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
Celine George
 
Exercise Physiology MCQS By DR. NASIR MUSTAFA
Exercise Physiology MCQS By DR. NASIR MUSTAFAExercise Physiology MCQS By DR. NASIR MUSTAFA
Exercise Physiology MCQS By DR. NASIR MUSTAFA
Dr. Nasir Mustafa
 
Grade 2 - Mathematics - Printable Worksheet
Grade 2 - Mathematics - Printable WorksheetGrade 2 - Mathematics - Printable Worksheet
Grade 2 - Mathematics - Printable Worksheet
Sritoma Majumder
 
Political History of Pala dynasty Pala Rulers NEP.pptx
Political History of Pala dynasty Pala Rulers NEP.pptxPolitical History of Pala dynasty Pala Rulers NEP.pptx
Political History of Pala dynasty Pala Rulers NEP.pptx
Arya Mahila P. G. College, Banaras Hindu University, Varanasi, India.
 
YSPH VMOC Special Report - Measles Outbreak Southwest US 5-3-2025.pptx
YSPH VMOC Special Report - Measles Outbreak  Southwest US 5-3-2025.pptxYSPH VMOC Special Report - Measles Outbreak  Southwest US 5-3-2025.pptx
YSPH VMOC Special Report - Measles Outbreak Southwest US 5-3-2025.pptx
Yale School of Public Health - The Virtual Medical Operations Center (VMOC)
 
apa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdfapa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdf
Ishika Ghosh
 
How to manage Multiple Warehouses for multiple floors in odoo point of sale
How to manage Multiple Warehouses for multiple floors in odoo point of saleHow to manage Multiple Warehouses for multiple floors in odoo point of sale
How to manage Multiple Warehouses for multiple floors in odoo point of sale
Celine George
 
Metamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative JourneyMetamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative Journey
Arshad Shaikh
 
Introduction-to-Communication-and-Media-Studies-1736283331.pdf
Introduction-to-Communication-and-Media-Studies-1736283331.pdfIntroduction-to-Communication-and-Media-Studies-1736283331.pdf
Introduction-to-Communication-and-Media-Studies-1736283331.pdf
james5028
 
Contact Lens:::: An Overview.pptx.: Optometry
Contact Lens:::: An Overview.pptx.: OptometryContact Lens:::: An Overview.pptx.: Optometry
Contact Lens:::: An Overview.pptx.: Optometry
MushahidRaza8
 
To study Digestive system of insect.pptx
To study Digestive system of insect.pptxTo study Digestive system of insect.pptx
To study Digestive system of insect.pptx
Arshad Shaikh
 
Geography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjectsGeography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjects
ProfDrShaikhImran
 
Real GitHub Copilot Exam Dumps for Success
Real GitHub Copilot Exam Dumps for SuccessReal GitHub Copilot Exam Dumps for Success
Real GitHub Copilot Exam Dumps for Success
Mark Soia
 
Understanding P–N Junction Semiconductors: A Beginner’s Guide
Understanding P–N Junction Semiconductors: A Beginner’s GuideUnderstanding P–N Junction Semiconductors: A Beginner’s Guide
Understanding P–N Junction Semiconductors: A Beginner’s Guide
GS Virdi
 
Engage Donors Through Powerful Storytelling.pdf
Engage Donors Through Powerful Storytelling.pdfEngage Donors Through Powerful Storytelling.pdf
Engage Donors Through Powerful Storytelling.pdf
TechSoup
 
Sinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_NameSinhala_Male_Names.pdf Sinhala_Male_Name
Sinhala_Male_Names.pdf Sinhala_Male_Name
keshanf79
 
2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx
contactwilliamm2546
 
Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025
Mebane Rash
 
Link your Lead Opportunities into Spreadsheet using odoo CRM
Link your Lead Opportunities into Spreadsheet using odoo CRMLink your Lead Opportunities into Spreadsheet using odoo CRM
Link your Lead Opportunities into Spreadsheet using odoo CRM
Celine George
 
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 AccountingHow to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
Celine George
 
Exercise Physiology MCQS By DR. NASIR MUSTAFA
Exercise Physiology MCQS By DR. NASIR MUSTAFAExercise Physiology MCQS By DR. NASIR MUSTAFA
Exercise Physiology MCQS By DR. NASIR MUSTAFA
Dr. Nasir Mustafa
 
Grade 2 - Mathematics - Printable Worksheet
Grade 2 - Mathematics - Printable WorksheetGrade 2 - Mathematics - Printable Worksheet
Grade 2 - Mathematics - Printable Worksheet
Sritoma Majumder
 
apa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdfapa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdf
Ishika Ghosh
 
How to manage Multiple Warehouses for multiple floors in odoo point of sale
How to manage Multiple Warehouses for multiple floors in odoo point of saleHow to manage Multiple Warehouses for multiple floors in odoo point of sale
How to manage Multiple Warehouses for multiple floors in odoo point of sale
Celine George
 

1.5 binary search tree

  • 1. Tree Data Structures S. Sudarshan Based partly on material from Fawzi Emad & Chau-Wen Tseng
  • 2. Trees Data Structures  Tree  Nodes  Each node can have 0 or more children  A node can have at most one parent  Binary tree  Tree with 0–2 children per node Tree Binary Tree
  • 3. Trees  Terminology  Root ⇒ no parent  Leaf ⇒ no child  Interior ⇒ non-leaf  Height ⇒ distance from root to leaf Root node Leaf nodes Interior nodes Height
  • 4. Binary Search Trees  Key property  Value at node  Smaller values in left subtree  Larger values in right subtree  Example  X > Y  X < Z Y X Z
  • 5. Binary Search Trees  Examples Binary search trees Not a binary search tree 5 10 30 2 25 45 5 10 45 2 25 30 5 10 30 2 25 45
  • 6. Binary Tree Implementation Class Node { int data; // Could be int, a class, etc Node *left, *right; // null if empty void insert ( int data ) { … } void delete ( int data ) { … } Node *find ( int data ) { … } … }
  • 7. Iterative Search of Binary Tree Node *Find( Node *n, int key) { while (n != NULL) { if (n->data == key) // Found it return n; if (n->data > key) // In left subtree n = n->left; else // In right subtree n = n->right; } return null; } Node * n = Find( root, 5);
  • 8. Recursive Search of Binary Tree Node *Find( Node *n, int key) { if (n == NULL) // Not found return( n ); else if (n->data == key) // Found it return( n ); else if (n->data > key) // In left subtree return Find( n->left, key ); else // In right subtree return Find( n->right, key ); } Node * n = Find( root, 5);
  • 9. Example Binary Searches  Find ( root, 2 ) 5 10 30 2 25 45 5 10 30 2 25 45 10 > 2, left 5 > 2, left 2 = 2, found 5 > 2, left 2 = 2, found root
  • 10. Example Binary Searches  Find (root, 25 ) 5 10 30 2 25 45 5 10 30 2 25 45 10 < 25, right 30 > 25, left 25 = 25, found 5 < 25, right 45 > 25, left 30 > 25, left 10 < 25, right 25 = 25, found
  • 11. Types of Binary Trees  Degenerate – only one child  Complete – always two children  Balanced – “mostly” two children  more formal definitions exist, above are intuitive ideas Degenerate binary tree Balanced binary tree Complete binary tree
  • 12. Binary Trees Properties  Degenerate  Height = O(n) for n nodes  Similar to linked list  Balanced  Height = O( log(n) ) for n nodes  Useful for searches Degenerate binary tree Balanced binary tree
  • 13. Binary Search Properties  Time of search  Proportional to height of tree  Balanced binary tree  O( log(n) ) time  Degenerate tree  O( n ) time  Like searching linked list / unsorted array
  • 14. Binary Search Tree Construction  How to build & maintain binary trees?  Insertion  Deletion  Maintain key property (invariant)  Smaller values in left subtree  Larger values in right subtree
  • 15. Binary Search Tree – Insertion  Algorithm 1. Perform search for value X 2. Search will end at node Y (if X not in tree) 3. If X < Y, insert new leaf X as new left subtree for Y 4. If X > Y, insert new leaf X as new right subtree for Y  Observations  O( log(n) ) operation for balanced tree  Insertions may unbalance tree
  • 16. Example Insertion  Insert ( 20 ) 5 10 30 2 25 45 10 < 20, right 30 > 20, left 25 > 20, left Insert 20 on left 20
  • 17. Binary Search Tree – Deletion  Algorithm 1. Perform search for value X 2. If X is a leaf, delete X 3. Else // must delete internal node a) Replace with largest value Y on left subtree OR smallest value Z on right subtree b) Delete replacement value (Y or Z) from subtree Observation  O( log(n) ) operation for balanced tree  Deletions may unbalance tree
  • 18. Example Deletion (Leaf)  Delete ( 25 ) 5 10 30 2 25 45 10 < 25, right 30 > 25, left 25 = 25, delete 5 10 30 2 45
  • 19. Example Deletion (Internal Node)  Delete ( 10 ) 5 10 30 2 25 45 5 5 30 2 25 45 2 5 30 2 25 45 Replacing 10 with largest value in left subtree Replacing 5 with largest value in left subtree Deleting leaf
  • 20. Example Deletion (Internal Node)  Delete ( 10 ) 5 10 30 2 25 45 5 25 30 2 25 45 5 25 30 2 45 Replacing 10 with smallest value in right subtree Deleting leaf Resulting tree
  • 21. Balanced Search Trees  Kinds of balanced binary search trees  height balanced vs. weight balanced  “Tree rotations” used to maintain balance on insert/delete  Non-binary search trees  2/3 trees  each internal node has 2 or 3 children  all leaves at same depth (height balanced)  B-trees  Generalization of 2/3 trees  Each internal node has between k/2 and k children  Each node has an array of pointers to children  Widely used in databases
  • 22. Other (Non-Search) Trees  Parse trees  Convert from textual representation to tree representation  Textual program to tree  Used extensively in compilers  Tree representation of data  E.g. HTML data can be represented as a tree  called DOM (Document Object Model) tree  XML  Like HTML, but used to represent data  Tree structured
  • 23. Parse Trees  Expressions, programs, etc can be represented by tree structures  E.g. Arithmetic Expression Tree  A-(C/5 * 2) + (D*5 % 4) + - % A * * 4 / 2 D 5 C 5
  • 24. Tree Traversal  Goal: visit every node of a tree  in-order traversal void Node::inOrder () { if (left != NULL) { cout << “(“; left->inOrder(); cout << “)”; } cout << data << endl; if (right != NULL) right->inOrder() }Output: A – C / 5 * 2 + D * 5 % 4 To disambiguate: print brackets + - % A * * 4 / 2 D 5 C 5
  • 25. Tree Traversal (contd.)  pre-order and post-order: void Node::preOrder () { cout << data << endl; if (left != NULL) left->preOrder (); if (right != NULL) right->preOrder (); } void Node::postOrder () { if (left != NULL) left->preOrder (); if (right != NULL) right->preOrder (); cout << data << endl; } Output: + - A * / C 5 2 % * D 5 4 Output: A C 5 / 2 * - D 5 * 4 % + + - % A * * 4 / 2 D 5 C 5
  • 26. XML  Data Representation  E.g. <dependency> <object>sample1.o</object> <depends>sample1.cpp</depends> <depends>sample1.h</depends> <rule>g++ -c sample1.cpp</rule> </dependency>  Tree representation dependency object depends sample1.o sample1.cpp depends sample1.h rule g++ -c …
  • 27. Graph Data Structures  E.g: Airline networks, road networks, electrical circuits  Nodes and Edges  E.g. representation: class Node  Stores name  stores pointers to all adjacent nodes  i,e. edge == pointer  To store multiple pointers: use array or linked list Ahm’bad Delhi Mumbai Calcutta Chennai Madurai