Anomaly detection (or Outlier analysis) is the identification of items, events or observations which do not conform to an expected pattern or other items in a dataset. It is used is applications such as intrusion detection, fraud detection, fault detection and monitoring processes in various domains including energy, healthcare and finance. In this talk, we will introduce anomaly detection and discuss the various analytical and machine learning techniques used in in this field. Through a case study, we will discuss how anomaly detection techniques could be applied to energy data sets. We will also demonstrate, using R and Apache Spark, an application to help reinforce concepts in anomaly detection and best practices in analyzing and reviewing results.