SlideShare a Scribd company logo
DATA MODELS
During the course of this presentation, we may make forward-looking statements regarding future events or the
expected performance of the company. We caution you that such statements reflect our current
expectations and estimates based on factors currently known to us and that actual events or results could differ
materially. For important factors that may cause actual results to differ from those contained in our forward-
looking statements, please review our filings with the SEC. The forward-looking statements made in this
presentation are being made as of the time and date of its live presentation. If reviewed after its live
presentation, this presentation may not contain current or accurate information. We do not assume any
obligation to update any forward-looking statements we may make. In addition, any information about
our roadmap outlines our general product direction and is subject to change at any time without notice. It is for
informational purposes only and shall not, be incorporated into any contract or other commitment. Splunk
undertakes no obligation either to develop the features or functionality described or to include any such feature
or functionality in a future release.
Splunk, Splunk>, Splunk Storm, Listen to Your Data, SPL and The Engine for Machine Data are trademarks and registered trademarks of
Splunk Inc. in the United States and other countries. All other brand names, product names, or trademarks belong to their respective
owners.
©2013 Splunk Inc. All rights reserved.
Legal Notices
2
AnalyticsBig Picture
Build complex reports without the
search language
Provides more meaningful representation
of underlying raw machine data
Acceleration technology delivers up to
1000x faster analytics over Splunk 5
3
Pivot
Data
Model
Analytics
Store
Operational IntelligenceAcrossthe Enterprise
IT professional
Create and share data models
Accelerate data models and custom
searches with the analytics store
Create reports with pivot
Developer Analyst
Leverage data models to
abstract data
Leverage pivot in custom apps
Create reports using pivot based on
data models created by IT
Pivot
Data
Model
Raw
Data
Analytics
Store
[10/11/12
18:57:04 UTC]
000000b0
Pivot is a query builder.
Data Models 101
Data set
Source
Source
Source
Sourcetype
Success
Failure
Warning
Data set
Business division
Source
Source
Business division
Source
Source
Common model
Technology 1
Technology 2
Technology 3
Context
sourcetype=access_combined source = "/home/ssorkin/banner_access.log.2013.6.gz"
| eval unique=(uid + useragent) | stats dc(unique) by os_name
| rename dc(unique) as "Unique Visitors" os_name as "Operating System"
search and filter | munge | report | clean-up
Splunk Search Language
Hurdles
• Simplesearcheseasy…Multi-stagemunging/reportingishard!
• Needtounderstanddata’sstructuretoconstructsearch
• Non-technicalusersmaynothavedatasourcedomainknowledge
• Splunkadminsdonothaveend-usersearchcontext
index=main source=*/banner_access* uri_path=/js/*/*/login/* guid=* useragent!=*KTXN* useragent!=*GomezAgent*
clientip!=206.80.3.67 clientip!=198.144.207.62 clientip!=97.65.63.66 clientip!=175.45.37.78
clientip!=209.119.210.194 clientip!=212.36.37.138 clientip!=204.156.84.0/24 clientip!=216.221.226.0/24
clientip!=207.87.200.162 | rex field=uri_path "/js/(?<t>[^/]*)/(?<v>[^/]*)/login/(?<l>[^/]*)” | eval license =
case(l LIKE "prod%" AND t="pro", "enterprise", l LIKE "trial%" AND t="pro", "trial", t="free", "free”) | rex field=v
"^(?<vers>d.d)” | bin span=1d _time as day | stats values(vers) as vers min(day) as min_day
min(eval(if(vers=="5.0", _time, null()))) as min_day_50 dc(day) as days values(license) as license by guid | eval
type = if(match(vers,"4.*"), "upgrade", "not upgrade") + "/" + if(days > 1, "repeat", "not repeat")| search
license=enterprise | eval _time = min_day_50| timechart count by type| streamstats sum(*) as *
Data Model Goals
• Makeiteasytoshare/reusedomainknowledge
• Admins/powerusersbuilddatamodels
• Non-technicalusersinteractwithdataviapivotUI
Data Models101
What is a Data Model?
Adatamodelisasearch-timemappingofdataontoahierarchicalstructure
Encapsulatetheknowledgeneededtobuildasearch
Pivotreportsarebuildontopofdatamodels
Data-independent
Screenshot here
A Data Model is a Collection of Objects
Screenshot here
Objects Have Constraints and Attributes
Screenshot here
Child Objects Inherit Constraints and Attributes
Screenshot here
Child Objects Inherit Constraints and Attributes
Building Data Models
Three Root ObjectTypes
Event
– MapstoSplunkevents
– Requiresconstraints
andattributes
Three Root ObjectTypes
Event
– MapstoSplunkevents
– Requiresconstraints
andattributes
Search
– MapstoarbitrarySplunksearch(may
includegenerating,transformingand
reportingsearchcommands)
– Requiressearchstringattributes
• Transaction
– MapstogroupsofSplunkeventsor
groupsofSplunksearchresults
– Requiresobjectstogroup,fields/
conditionstogroupby,andattributes
Three Root ObjectTypes
Event
– MapstoSplunkevents
– Requiresconstraints
andattributes
Search
– MapstoarbitrarySplunksearch(may
includegenerating,transformingand
reportingsearchcommands)
Requiressearchstringattributes
Transaction
– MapstogroupsofSplunkeventsor
groupsofSplunksearchresults
– Requiresobjectstogroup,fields/
conditionstogroupby,andattributes
Object Attributes
Auto-extracted–defaultandpre-defined
fields
Evalexpression–anewfieldbasedonan
expressionthatyoudefine
Lookup–leverageanexistinglookuptable
Regularexpression–extractanewfield
basedonregex
GeoIP–addgeolocationfieldssuchas
latitude,longitude,country,etc.
Object Attributes
Setfieldtypes
Configurevariousflags
Note:Childobjectconfigurationcandifferfromparent
Best Practices
Use event objects as often as possible
– Benefit from data model acceleration
Resist the urge to use search objects instead of event objects!!
– Event based searches can be optimized better
Minimize object hierarchy depth when possible
– Constraint based filtering is less efficientdeeper down the tree
Event object with deepest tree (and most matching results) first
– Model-wide acceleration only for first event object and its descendants
Warnings!
Objectconstraintsandattributes cannotcontainpipesorsubsearches
Atransactionobjectrequiresatleastoneeventorsearchobjectinthedatamodel
Lookupsusedinattributesmustbegloballyvisible(oratleastvisibletotheapp
usingthedatamodel)
Noversioningondatamodels(andobjects)!
From Data Models to
Reports
Usingthe UI
Subhead
Count of http_success
events, split by useragent
events
fields
Under the Hood: Object SearchString
Generation
Syntax:
<constraints search> | <my attribute
definitions>
Example:
sourcetype=access_* OR sourcetype=iis*
uri=* uri_path=* status=* clientip=*
referer=* useragent=*
Under the Hood: Object SearchString
Generation
Syntax:
<base search> | <my attribute definitions>
Example:
_time=* host=* source=* sourcetype=*
uri=* status<600 clientip=* referer=*
useragent=* (sourcetype=access_* OR
source=*.log) | eval userid=clientip |
stats first(_time) as earliest,
last(_time) as latest, list(uri_path) as
uri_list by userid
| earliest=* latest=* uri_list=*
Under the Hood: Object SearchString
Generation
Syntax:
<objects to group search> |
transaction <group by fields> <group
by params>
| <my attribute definitions>
Example:
sourcetype=access_* uri=* uri_path=*
status=* clientip=* referer=*
useragent=* | transaction clientip
useragent | eval
landingpage=mvindex(uri_path,1) | eval
exitpage=mvindex(uri_path,-1)
Under the Hood: Object SearchString
Generation
Syntax:
<parent object search> | search <my
constraints> | <my attribute definitions>
Example:
sourcetype=access_* uri=* uri_path=* status=*
clientip=* referer=* useragent=* status=2* |
<my attribute definitions>
Usingthe SplunkSearch Language
| datamodel <modelname> <objectID> search
Example:
| datamodel WebIntelligence HTTP_Request search
Behindthescenes:
sourcetype=access_* OR sourcetype=iis* uri=* uri_path=* status=*
clientip=* referer=* useragent=*
Under the hood: Pivot Search String Generation
Example:
(sourcetype=access_* OR sourcetype=iis*) status=2*
uri=* uri_path=* status=* clientip=* referer=* useragent=*
| stats count AS "Count of HTTP_Sucess" by ”useragent"
| sort limit=0 "useragent" | fields - _span
| fields "useragent" "Count of HTTP_Success"
| fillnull "Count of HTTP_Success"
| fields "useragent" *
Usingthe SplunkSearch Language
| pivot <modelname> <objectID> [statsfns, rowsplit, colsplit, filters, …]
Example:
| pivot WebIntelligence HTTP_Request count(HTTP_Request) AS "Count of HTTP_Request" SPLITROW
status AS "status" SORT 0 status
Behindthescenes:
sourcetype=access_* OR sourcetype=iis* uri=* uri_path=* status=* clientip=* referer=* useragent=*
| stats count AS "Count of HTTP_Request" by "status"
| sort limit=0 "status" | fields - _span
| fields "status", "Count of HTTP_Request"
| fillnull "Count of HTTP_Request"
| fields "status" *
Warnings
• | datamodel and| pivot aregeneratingcommands
• Theymustbeatthebeginningofthesearchstring
• UseobjectIDsNOTuser-visibleobjectnames
Demo
Managing Data Models
Data Model on Disk
EachdatamodelisaseparateJSONfile
Livesin<myapp>/local/data/models
(or<myapp>/default/data/modelsforpre-
installedmodels)
Hasassociatedconfstanzas
andmetadata
Editing Data Model JSON
Atyourownrisk!
ModelseditedviatheUIarevalidated
Manuallyediteddatamodels:NOTSUPPORTED
Exception:installinganewmodelbyaddingthefileto<myapp>/<local
ORdefault>/data/modelsisprobablyokay
Deleting a Data Model
UsetheUIforappropriatecleanup
Potentialforbadstateifmanuallydeletingmodelondisk
InteractingWith a Data Model
UsedatamodelbuilderandpivotUI–safestoption!
UseRESTAPI–fordevelopers(seedocsfordetails)
Use|datamodeland|pivotSplunksearchcommands
Permissions
Datamodelshavepermissionsjustlike
otherSplunkobjects
EditpermissionsthroughtheUI
Data Model Acceleration
Run a pivot report
Poll: are there new
accelerated
models?
Turn on
acceleration via UI Setting written to conf file
Kick off collection
Acceleration
Kick off ad-hoc acceleration and run search
Run search using on-disk acceleration
Admin or power user
Backend magic
Non-technical user
No acceleration
Model-WideAcceleration
Pivotsearch:
| tstats count AS "Count of HTTP_Success" from datamodel="WebIntelligence" where
(nodename="HTTP_Request") (nodename="HTTP_Request.HTTP_Success") prestats=true | stats count AS
"Count of HTTP_Success”
Only accelerates first event-
based object and descendants
Does not accelerate search and
transaction-based objects
Ad-Hoc Object Acceleration
Kickoffaccelerationonpivotpage(re)loadfornon-acceleratedmodelsand
search/transactionobjects
Amortizecostofad-hocaccelerationoverrepeatedpivotingon
sameobject
Pivotsearch:
| tstats count AS "Count of HTTP_Success" from sid=1379116434.663 prestats=true | stats count
AS "Count of HTTP_Success”
AccelerationDisclaimers
Workswithsearch-headpooling–wecollectonindexers
Cannoteditacceleratedmodels
Thank You
Ad

More Related Content

What's hot (20)

Splunk Search Optimization
Splunk Search OptimizationSplunk Search Optimization
Splunk Search Optimization
Splunk
 
Splunk Overview
Splunk OverviewSplunk Overview
Splunk Overview
Splunk
 
Getting Data into Splunk
Getting Data into SplunkGetting Data into Splunk
Getting Data into Splunk
Splunk
 
Elk - An introduction
Elk - An introductionElk - An introduction
Elk - An introduction
Hossein Shemshadi
 
Elk
Elk Elk
Elk
Caleb Wang
 
Worst Splunk practices...and how to fix them
Worst Splunk practices...and how to fix themWorst Splunk practices...and how to fix them
Worst Splunk practices...and how to fix them
Splunk
 
Session 8 - Creating Data Processing Services | Train the Trainers Program
Session 8 - Creating Data Processing Services | Train the Trainers ProgramSession 8 - Creating Data Processing Services | Train the Trainers Program
Session 8 - Creating Data Processing Services | Train the Trainers Program
FIWARE
 
Data Onboarding
Data Onboarding Data Onboarding
Data Onboarding
Splunk
 
The Marriage of the Data Lake and the Data Warehouse and Why You Need Both
The Marriage of the Data Lake and the Data Warehouse and Why You Need BothThe Marriage of the Data Lake and the Data Warehouse and Why You Need Both
The Marriage of the Data Lake and the Data Warehouse and Why You Need Both
Adaryl "Bob" Wakefield, MBA
 
Creating a Context-Aware solution, Complex Event Processing with FIWARE Perseo
Creating a Context-Aware solution, Complex Event Processing with FIWARE PerseoCreating a Context-Aware solution, Complex Event Processing with FIWARE Perseo
Creating a Context-Aware solution, Complex Event Processing with FIWARE Perseo
Fernando Lopez Aguilar
 
Microsoft Power BI
Microsoft Power BIMicrosoft Power BI
Microsoft Power BI
Sushil kasar
 
Power of SPL - Search Processing Language
Power of SPL - Search Processing LanguagePower of SPL - Search Processing Language
Power of SPL - Search Processing Language
Splunk
 
Azure WAF
Azure WAFAzure WAF
Azure WAF
Cheah Eng Soon
 
[XConf Brasil 2020] Data mesh
[XConf Brasil 2020] Data mesh[XConf Brasil 2020] Data mesh
[XConf Brasil 2020] Data mesh
ThoughtWorks Brasil
 
FIWARE Training: JSON-LD and NGSI-LD
FIWARE Training: JSON-LD and NGSI-LDFIWARE Training: JSON-LD and NGSI-LD
FIWARE Training: JSON-LD and NGSI-LD
FIWARE
 
Logging with Elasticsearch, Logstash & Kibana
Logging with Elasticsearch, Logstash & KibanaLogging with Elasticsearch, Logstash & Kibana
Logging with Elasticsearch, Logstash & Kibana
Amazee Labs
 
Splunk Overview
Splunk OverviewSplunk Overview
Splunk Overview
Splunk
 
Session 4 - Bringing the pieces together - Detailed review of a reference ex...
Session 4 -  Bringing the pieces together - Detailed review of a reference ex...Session 4 -  Bringing the pieces together - Detailed review of a reference ex...
Session 4 - Bringing the pieces together - Detailed review of a reference ex...
FIWARE
 
Session 2 - NGSI-LD primer & Smart Data Models | Train the Trainers Program
Session 2 - NGSI-LD primer & Smart Data Models | Train the Trainers ProgramSession 2 - NGSI-LD primer & Smart Data Models | Train the Trainers Program
Session 2 - NGSI-LD primer & Smart Data Models | Train the Trainers Program
FIWARE
 
Power Platform Governance
Power Platform GovernancePower Platform Governance
Power Platform Governance
Daniel Laskewitz
 
Splunk Search Optimization
Splunk Search OptimizationSplunk Search Optimization
Splunk Search Optimization
Splunk
 
Splunk Overview
Splunk OverviewSplunk Overview
Splunk Overview
Splunk
 
Getting Data into Splunk
Getting Data into SplunkGetting Data into Splunk
Getting Data into Splunk
Splunk
 
Worst Splunk practices...and how to fix them
Worst Splunk practices...and how to fix themWorst Splunk practices...and how to fix them
Worst Splunk practices...and how to fix them
Splunk
 
Session 8 - Creating Data Processing Services | Train the Trainers Program
Session 8 - Creating Data Processing Services | Train the Trainers ProgramSession 8 - Creating Data Processing Services | Train the Trainers Program
Session 8 - Creating Data Processing Services | Train the Trainers Program
FIWARE
 
Data Onboarding
Data Onboarding Data Onboarding
Data Onboarding
Splunk
 
The Marriage of the Data Lake and the Data Warehouse and Why You Need Both
The Marriage of the Data Lake and the Data Warehouse and Why You Need BothThe Marriage of the Data Lake and the Data Warehouse and Why You Need Both
The Marriage of the Data Lake and the Data Warehouse and Why You Need Both
Adaryl "Bob" Wakefield, MBA
 
Creating a Context-Aware solution, Complex Event Processing with FIWARE Perseo
Creating a Context-Aware solution, Complex Event Processing with FIWARE PerseoCreating a Context-Aware solution, Complex Event Processing with FIWARE Perseo
Creating a Context-Aware solution, Complex Event Processing with FIWARE Perseo
Fernando Lopez Aguilar
 
Microsoft Power BI
Microsoft Power BIMicrosoft Power BI
Microsoft Power BI
Sushil kasar
 
Power of SPL - Search Processing Language
Power of SPL - Search Processing LanguagePower of SPL - Search Processing Language
Power of SPL - Search Processing Language
Splunk
 
FIWARE Training: JSON-LD and NGSI-LD
FIWARE Training: JSON-LD and NGSI-LDFIWARE Training: JSON-LD and NGSI-LD
FIWARE Training: JSON-LD and NGSI-LD
FIWARE
 
Logging with Elasticsearch, Logstash & Kibana
Logging with Elasticsearch, Logstash & KibanaLogging with Elasticsearch, Logstash & Kibana
Logging with Elasticsearch, Logstash & Kibana
Amazee Labs
 
Splunk Overview
Splunk OverviewSplunk Overview
Splunk Overview
Splunk
 
Session 4 - Bringing the pieces together - Detailed review of a reference ex...
Session 4 -  Bringing the pieces together - Detailed review of a reference ex...Session 4 -  Bringing the pieces together - Detailed review of a reference ex...
Session 4 - Bringing the pieces together - Detailed review of a reference ex...
FIWARE
 
Session 2 - NGSI-LD primer & Smart Data Models | Train the Trainers Program
Session 2 - NGSI-LD primer & Smart Data Models | Train the Trainers ProgramSession 2 - NGSI-LD primer & Smart Data Models | Train the Trainers Program
Session 2 - NGSI-LD primer & Smart Data Models | Train the Trainers Program
FIWARE
 

Viewers also liked (10)

Splunk Ninja: New Features, Pivot and Search Dojo
 Splunk Ninja: New Features, Pivot and Search Dojo Splunk Ninja: New Features, Pivot and Search Dojo
Splunk Ninja: New Features, Pivot and Search Dojo
Splunk
 
SplunkSummit 2015 - Security Ninjitsu
SplunkSummit 2015 - Security NinjitsuSplunkSummit 2015 - Security Ninjitsu
SplunkSummit 2015 - Security Ninjitsu
Splunk
 
Conf2014_SplunkSecurityNinjutsu
Conf2014_SplunkSecurityNinjutsuConf2014_SplunkSecurityNinjutsu
Conf2014_SplunkSecurityNinjutsu
Splunk
 
Splunk: How to Design, Build and Map IT Services
Splunk: How to Design, Build and Map IT ServicesSplunk: How to Design, Build and Map IT Services
Splunk: How to Design, Build and Map IT Services
Splunk
 
Running Splunk on AWS
Running Splunk on AWSRunning Splunk on AWS
Running Splunk on AWS
Alan Williams
 
What's New in Splunk Cloud and Enterprise 6.5
What's New in Splunk Cloud and Enterprise 6.5What's New in Splunk Cloud and Enterprise 6.5
What's New in Splunk Cloud and Enterprise 6.5
Splunk
 
Enrich a 360-degree Customer View with Splunk and Apache Hadoop
Enrich a 360-degree Customer View with Splunk and Apache HadoopEnrich a 360-degree Customer View with Splunk and Apache Hadoop
Enrich a 360-degree Customer View with Splunk and Apache Hadoop
Hortonworks
 
Making Pretty Charts in Splunk
Making Pretty Charts in SplunkMaking Pretty Charts in Splunk
Making Pretty Charts in Splunk
Splunk
 
Splunk for Security-Hands On
Splunk for Security-Hands OnSplunk for Security-Hands On
Splunk for Security-Hands On
Splunk
 
QRadar, ArcSight and Splunk
QRadar, ArcSight and Splunk QRadar, ArcSight and Splunk
QRadar, ArcSight and Splunk
M sharifi
 
Splunk Ninja: New Features, Pivot and Search Dojo
 Splunk Ninja: New Features, Pivot and Search Dojo Splunk Ninja: New Features, Pivot and Search Dojo
Splunk Ninja: New Features, Pivot and Search Dojo
Splunk
 
SplunkSummit 2015 - Security Ninjitsu
SplunkSummit 2015 - Security NinjitsuSplunkSummit 2015 - Security Ninjitsu
SplunkSummit 2015 - Security Ninjitsu
Splunk
 
Conf2014_SplunkSecurityNinjutsu
Conf2014_SplunkSecurityNinjutsuConf2014_SplunkSecurityNinjutsu
Conf2014_SplunkSecurityNinjutsu
Splunk
 
Splunk: How to Design, Build and Map IT Services
Splunk: How to Design, Build and Map IT ServicesSplunk: How to Design, Build and Map IT Services
Splunk: How to Design, Build and Map IT Services
Splunk
 
Running Splunk on AWS
Running Splunk on AWSRunning Splunk on AWS
Running Splunk on AWS
Alan Williams
 
What's New in Splunk Cloud and Enterprise 6.5
What's New in Splunk Cloud and Enterprise 6.5What's New in Splunk Cloud and Enterprise 6.5
What's New in Splunk Cloud and Enterprise 6.5
Splunk
 
Enrich a 360-degree Customer View with Splunk and Apache Hadoop
Enrich a 360-degree Customer View with Splunk and Apache HadoopEnrich a 360-degree Customer View with Splunk and Apache Hadoop
Enrich a 360-degree Customer View with Splunk and Apache Hadoop
Hortonworks
 
Making Pretty Charts in Splunk
Making Pretty Charts in SplunkMaking Pretty Charts in Splunk
Making Pretty Charts in Splunk
Splunk
 
Splunk for Security-Hands On
Splunk for Security-Hands OnSplunk for Security-Hands On
Splunk for Security-Hands On
Splunk
 
QRadar, ArcSight and Splunk
QRadar, ArcSight and Splunk QRadar, ArcSight and Splunk
QRadar, ArcSight and Splunk
M sharifi
 
Ad

Similar to Data Models Breakout Session (20)

Data models pivot with splunk break out session
Data models pivot with splunk break out sessionData models pivot with splunk break out session
Data models pivot with splunk break out session
Georg Knon
 
Analytics with splunk - Advanced
Analytics with splunk - AdvancedAnalytics with splunk - Advanced
Analytics with splunk - Advanced
jenny_splunk
 
SplunkLive! Analytics with Splunk Enterprise
SplunkLive! Analytics with Splunk EnterpriseSplunkLive! Analytics with Splunk Enterprise
SplunkLive! Analytics with Splunk Enterprise
Splunk
 
SplunkLive! Analytics with Splunk Enterprise - Part 2
SplunkLive! Analytics with Splunk Enterprise - Part 2SplunkLive! Analytics with Splunk Enterprise - Part 2
SplunkLive! Analytics with Splunk Enterprise - Part 2
Splunk
 
SplunkLive! Zurich 2018: Integrating Metrics and Logs
SplunkLive! Zurich 2018: Integrating Metrics and LogsSplunkLive! Zurich 2018: Integrating Metrics and Logs
SplunkLive! Zurich 2018: Integrating Metrics and Logs
Splunk
 
Splunk Ninjas: New Features, Pivot, and Search Dojo
Splunk Ninjas: New Features, Pivot, and Search DojoSplunk Ninjas: New Features, Pivot, and Search Dojo
Splunk Ninjas: New Features, Pivot, and Search Dojo
Splunk
 
SplunkLive! Frankfurt 2018 - Data Onboarding Overview
SplunkLive! Frankfurt 2018 - Data Onboarding OverviewSplunkLive! Frankfurt 2018 - Data Onboarding Overview
SplunkLive! Frankfurt 2018 - Data Onboarding Overview
Splunk
 
SplunkLive! Munich 2018: Data Onboarding Overview
SplunkLive! Munich 2018: Data Onboarding OverviewSplunkLive! Munich 2018: Data Onboarding Overview
SplunkLive! Munich 2018: Data Onboarding Overview
Splunk
 
Business Analytics Paradigm Change
Business Analytics Paradigm ChangeBusiness Analytics Paradigm Change
Business Analytics Paradigm Change
Dmitry Anoshin
 
SplunkLive! Analytics with Splunk Enterprise - Part 1
SplunkLive! Analytics with Splunk Enterprise - Part 1SplunkLive! Analytics with Splunk Enterprise - Part 1
SplunkLive! Analytics with Splunk Enterprise - Part 1
Splunk
 
Lessons Learned Using Apache Spark for Self-Service Data Prep in SaaS World
Lessons Learned Using Apache Spark for Self-Service Data Prep in SaaS WorldLessons Learned Using Apache Spark for Self-Service Data Prep in SaaS World
Lessons Learned Using Apache Spark for Self-Service Data Prep in SaaS World
Databricks
 
"Lessons learned using Apache Spark for self-service data prep in SaaS world"
"Lessons learned using Apache Spark for self-service data prep in SaaS world""Lessons learned using Apache Spark for self-service data prep in SaaS world"
"Lessons learned using Apache Spark for self-service data prep in SaaS world"
Pavel Hardak
 
(ATS6-APP01) Unleashing the Power of Your Data with Discoverant
(ATS6-APP01) Unleashing the Power of Your Data with Discoverant(ATS6-APP01) Unleashing the Power of Your Data with Discoverant
(ATS6-APP01) Unleashing the Power of Your Data with Discoverant
BIOVIA
 
Splunk Business Analytics
Splunk Business AnalyticsSplunk Business Analytics
Splunk Business Analytics
CleverDATA
 
CMGT410 v19Project Charter TemplateCMGT410 v19Page 2 of 3P.docx
CMGT410 v19Project Charter TemplateCMGT410 v19Page 2 of 3P.docxCMGT410 v19Project Charter TemplateCMGT410 v19Page 2 of 3P.docx
CMGT410 v19Project Charter TemplateCMGT410 v19Page 2 of 3P.docx
mccormicknadine86
 
Mstr meetup
Mstr meetupMstr meetup
Mstr meetup
Bhavani Akunuri
 
Splunk Ninjas: New Features, Pivot, and Search Dojo
Splunk Ninjas: New Features, Pivot, and Search DojoSplunk Ninjas: New Features, Pivot, and Search Dojo
Splunk Ninjas: New Features, Pivot, and Search Dojo
Splunk
 
Cognos framework manager
Cognos framework managerCognos framework manager
Cognos framework manager
maxonlinetr
 
Scaling AutoML-Driven Anomaly Detection With Luminaire
Scaling AutoML-Driven Anomaly Detection With LuminaireScaling AutoML-Driven Anomaly Detection With Luminaire
Scaling AutoML-Driven Anomaly Detection With Luminaire
Databricks
 
SplunkLive! Tampa: Splunk Ninjas: New Features, Pivot, and Search Dojo
SplunkLive! Tampa: Splunk Ninjas: New Features, Pivot, and Search Dojo SplunkLive! Tampa: Splunk Ninjas: New Features, Pivot, and Search Dojo
SplunkLive! Tampa: Splunk Ninjas: New Features, Pivot, and Search Dojo
Splunk
 
Data models pivot with splunk break out session
Data models pivot with splunk break out sessionData models pivot with splunk break out session
Data models pivot with splunk break out session
Georg Knon
 
Analytics with splunk - Advanced
Analytics with splunk - AdvancedAnalytics with splunk - Advanced
Analytics with splunk - Advanced
jenny_splunk
 
SplunkLive! Analytics with Splunk Enterprise
SplunkLive! Analytics with Splunk EnterpriseSplunkLive! Analytics with Splunk Enterprise
SplunkLive! Analytics with Splunk Enterprise
Splunk
 
SplunkLive! Analytics with Splunk Enterprise - Part 2
SplunkLive! Analytics with Splunk Enterprise - Part 2SplunkLive! Analytics with Splunk Enterprise - Part 2
SplunkLive! Analytics with Splunk Enterprise - Part 2
Splunk
 
SplunkLive! Zurich 2018: Integrating Metrics and Logs
SplunkLive! Zurich 2018: Integrating Metrics and LogsSplunkLive! Zurich 2018: Integrating Metrics and Logs
SplunkLive! Zurich 2018: Integrating Metrics and Logs
Splunk
 
Splunk Ninjas: New Features, Pivot, and Search Dojo
Splunk Ninjas: New Features, Pivot, and Search DojoSplunk Ninjas: New Features, Pivot, and Search Dojo
Splunk Ninjas: New Features, Pivot, and Search Dojo
Splunk
 
SplunkLive! Frankfurt 2018 - Data Onboarding Overview
SplunkLive! Frankfurt 2018 - Data Onboarding OverviewSplunkLive! Frankfurt 2018 - Data Onboarding Overview
SplunkLive! Frankfurt 2018 - Data Onboarding Overview
Splunk
 
SplunkLive! Munich 2018: Data Onboarding Overview
SplunkLive! Munich 2018: Data Onboarding OverviewSplunkLive! Munich 2018: Data Onboarding Overview
SplunkLive! Munich 2018: Data Onboarding Overview
Splunk
 
Business Analytics Paradigm Change
Business Analytics Paradigm ChangeBusiness Analytics Paradigm Change
Business Analytics Paradigm Change
Dmitry Anoshin
 
SplunkLive! Analytics with Splunk Enterprise - Part 1
SplunkLive! Analytics with Splunk Enterprise - Part 1SplunkLive! Analytics with Splunk Enterprise - Part 1
SplunkLive! Analytics with Splunk Enterprise - Part 1
Splunk
 
Lessons Learned Using Apache Spark for Self-Service Data Prep in SaaS World
Lessons Learned Using Apache Spark for Self-Service Data Prep in SaaS WorldLessons Learned Using Apache Spark for Self-Service Data Prep in SaaS World
Lessons Learned Using Apache Spark for Self-Service Data Prep in SaaS World
Databricks
 
"Lessons learned using Apache Spark for self-service data prep in SaaS world"
"Lessons learned using Apache Spark for self-service data prep in SaaS world""Lessons learned using Apache Spark for self-service data prep in SaaS world"
"Lessons learned using Apache Spark for self-service data prep in SaaS world"
Pavel Hardak
 
(ATS6-APP01) Unleashing the Power of Your Data with Discoverant
(ATS6-APP01) Unleashing the Power of Your Data with Discoverant(ATS6-APP01) Unleashing the Power of Your Data with Discoverant
(ATS6-APP01) Unleashing the Power of Your Data with Discoverant
BIOVIA
 
Splunk Business Analytics
Splunk Business AnalyticsSplunk Business Analytics
Splunk Business Analytics
CleverDATA
 
CMGT410 v19Project Charter TemplateCMGT410 v19Page 2 of 3P.docx
CMGT410 v19Project Charter TemplateCMGT410 v19Page 2 of 3P.docxCMGT410 v19Project Charter TemplateCMGT410 v19Page 2 of 3P.docx
CMGT410 v19Project Charter TemplateCMGT410 v19Page 2 of 3P.docx
mccormicknadine86
 
Splunk Ninjas: New Features, Pivot, and Search Dojo
Splunk Ninjas: New Features, Pivot, and Search DojoSplunk Ninjas: New Features, Pivot, and Search Dojo
Splunk Ninjas: New Features, Pivot, and Search Dojo
Splunk
 
Cognos framework manager
Cognos framework managerCognos framework manager
Cognos framework manager
maxonlinetr
 
Scaling AutoML-Driven Anomaly Detection With Luminaire
Scaling AutoML-Driven Anomaly Detection With LuminaireScaling AutoML-Driven Anomaly Detection With Luminaire
Scaling AutoML-Driven Anomaly Detection With Luminaire
Databricks
 
SplunkLive! Tampa: Splunk Ninjas: New Features, Pivot, and Search Dojo
SplunkLive! Tampa: Splunk Ninjas: New Features, Pivot, and Search Dojo SplunkLive! Tampa: Splunk Ninjas: New Features, Pivot, and Search Dojo
SplunkLive! Tampa: Splunk Ninjas: New Features, Pivot, and Search Dojo
Splunk
 
Ad

More from Splunk (20)

Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Building Resilience with Energy Management for the Public Sector
Building Resilience with Energy Management for the Public SectorBuilding Resilience with Energy Management for the Public Sector
Building Resilience with Energy Management for the Public Sector
Splunk
 
IT-Lagebild: Observability for Resilience (SVA)
IT-Lagebild: Observability for Resilience (SVA)IT-Lagebild: Observability for Resilience (SVA)
IT-Lagebild: Observability for Resilience (SVA)
Splunk
 
Nach dem SOC-Aufbau ist vor der Automatisierung (OFD Baden-Württemberg)
Nach dem SOC-Aufbau ist vor der Automatisierung (OFD Baden-Württemberg)Nach dem SOC-Aufbau ist vor der Automatisierung (OFD Baden-Württemberg)
Nach dem SOC-Aufbau ist vor der Automatisierung (OFD Baden-Württemberg)
Splunk
 
Monitoring einer Sicheren Inter-Netzwerk Architektur (SINA)
Monitoring einer Sicheren Inter-Netzwerk Architektur (SINA)Monitoring einer Sicheren Inter-Netzwerk Architektur (SINA)
Monitoring einer Sicheren Inter-Netzwerk Architektur (SINA)
Splunk
 
Praktische Erfahrungen mit dem Attack Analyser (gematik)
Praktische Erfahrungen mit dem Attack Analyser (gematik)Praktische Erfahrungen mit dem Attack Analyser (gematik)
Praktische Erfahrungen mit dem Attack Analyser (gematik)
Splunk
 
Cisco XDR & Splunk SIEM - stronger together (DATAGROUP Cyber Security)
Cisco XDR & Splunk SIEM - stronger together (DATAGROUP Cyber Security)Cisco XDR & Splunk SIEM - stronger together (DATAGROUP Cyber Security)
Cisco XDR & Splunk SIEM - stronger together (DATAGROUP Cyber Security)
Splunk
 
Security - Mit Sicherheit zum Erfolg (Telekom)
Security - Mit Sicherheit zum Erfolg (Telekom)Security - Mit Sicherheit zum Erfolg (Telekom)
Security - Mit Sicherheit zum Erfolg (Telekom)
Splunk
 
One Cisco - Splunk Public Sector Summit Germany April 2025
One Cisco - Splunk Public Sector Summit Germany April 2025One Cisco - Splunk Public Sector Summit Germany April 2025
One Cisco - Splunk Public Sector Summit Germany April 2025
Splunk
 
.conf Go 2023 - Data analysis as a routine
.conf Go 2023 - Data analysis as a routine.conf Go 2023 - Data analysis as a routine
.conf Go 2023 - Data analysis as a routine
Splunk
 
.conf Go 2023 - How KPN drives Customer Satisfaction on IPTV
.conf Go 2023 - How KPN drives Customer Satisfaction on IPTV.conf Go 2023 - How KPN drives Customer Satisfaction on IPTV
.conf Go 2023 - How KPN drives Customer Satisfaction on IPTV
Splunk
 
.conf Go 2023 - Navegando la normativa SOX (Telefónica)
.conf Go 2023 - Navegando la normativa SOX (Telefónica).conf Go 2023 - Navegando la normativa SOX (Telefónica)
.conf Go 2023 - Navegando la normativa SOX (Telefónica)
Splunk
 
.conf Go 2023 - Raiffeisen Bank International
.conf Go 2023 - Raiffeisen Bank International.conf Go 2023 - Raiffeisen Bank International
.conf Go 2023 - Raiffeisen Bank International
Splunk
 
.conf Go 2023 - På liv og død Om sikkerhetsarbeid i Norsk helsenett
.conf Go 2023 - På liv og død Om sikkerhetsarbeid i Norsk helsenett .conf Go 2023 - På liv og død Om sikkerhetsarbeid i Norsk helsenett
.conf Go 2023 - På liv og død Om sikkerhetsarbeid i Norsk helsenett
Splunk
 
.conf Go 2023 - Many roads lead to Rome - this was our journey (Julius Bär)
.conf Go 2023 - Many roads lead to Rome - this was our journey (Julius Bär).conf Go 2023 - Many roads lead to Rome - this was our journey (Julius Bär)
.conf Go 2023 - Many roads lead to Rome - this was our journey (Julius Bär)
Splunk
 
.conf Go 2023 - Das passende Rezept für die digitale (Security) Revolution zu...
.conf Go 2023 - Das passende Rezept für die digitale (Security) Revolution zu....conf Go 2023 - Das passende Rezept für die digitale (Security) Revolution zu...
.conf Go 2023 - Das passende Rezept für die digitale (Security) Revolution zu...
Splunk
 
.conf go 2023 - Cyber Resilienz – Herausforderungen und Ansatz für Energiever...
.conf go 2023 - Cyber Resilienz – Herausforderungen und Ansatz für Energiever....conf go 2023 - Cyber Resilienz – Herausforderungen und Ansatz für Energiever...
.conf go 2023 - Cyber Resilienz – Herausforderungen und Ansatz für Energiever...
Splunk
 
.conf go 2023 - De NOC a CSIRT (Cellnex)
.conf go 2023 - De NOC a CSIRT (Cellnex).conf go 2023 - De NOC a CSIRT (Cellnex)
.conf go 2023 - De NOC a CSIRT (Cellnex)
Splunk
 
conf go 2023 - El camino hacia la ciberseguridad (ABANCA)
conf go 2023 - El camino hacia la ciberseguridad (ABANCA)conf go 2023 - El camino hacia la ciberseguridad (ABANCA)
conf go 2023 - El camino hacia la ciberseguridad (ABANCA)
Splunk
 
Splunk - BMW connects business and IT with data driven operations SRE and O11y
Splunk - BMW connects business and IT with data driven operations SRE and O11ySplunk - BMW connects business and IT with data driven operations SRE and O11y
Splunk - BMW connects business and IT with data driven operations SRE and O11y
Splunk
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Building Resilience with Energy Management for the Public Sector
Building Resilience with Energy Management for the Public SectorBuilding Resilience with Energy Management for the Public Sector
Building Resilience with Energy Management for the Public Sector
Splunk
 
IT-Lagebild: Observability for Resilience (SVA)
IT-Lagebild: Observability for Resilience (SVA)IT-Lagebild: Observability for Resilience (SVA)
IT-Lagebild: Observability for Resilience (SVA)
Splunk
 
Nach dem SOC-Aufbau ist vor der Automatisierung (OFD Baden-Württemberg)
Nach dem SOC-Aufbau ist vor der Automatisierung (OFD Baden-Württemberg)Nach dem SOC-Aufbau ist vor der Automatisierung (OFD Baden-Württemberg)
Nach dem SOC-Aufbau ist vor der Automatisierung (OFD Baden-Württemberg)
Splunk
 
Monitoring einer Sicheren Inter-Netzwerk Architektur (SINA)
Monitoring einer Sicheren Inter-Netzwerk Architektur (SINA)Monitoring einer Sicheren Inter-Netzwerk Architektur (SINA)
Monitoring einer Sicheren Inter-Netzwerk Architektur (SINA)
Splunk
 
Praktische Erfahrungen mit dem Attack Analyser (gematik)
Praktische Erfahrungen mit dem Attack Analyser (gematik)Praktische Erfahrungen mit dem Attack Analyser (gematik)
Praktische Erfahrungen mit dem Attack Analyser (gematik)
Splunk
 
Cisco XDR & Splunk SIEM - stronger together (DATAGROUP Cyber Security)
Cisco XDR & Splunk SIEM - stronger together (DATAGROUP Cyber Security)Cisco XDR & Splunk SIEM - stronger together (DATAGROUP Cyber Security)
Cisco XDR & Splunk SIEM - stronger together (DATAGROUP Cyber Security)
Splunk
 
Security - Mit Sicherheit zum Erfolg (Telekom)
Security - Mit Sicherheit zum Erfolg (Telekom)Security - Mit Sicherheit zum Erfolg (Telekom)
Security - Mit Sicherheit zum Erfolg (Telekom)
Splunk
 
One Cisco - Splunk Public Sector Summit Germany April 2025
One Cisco - Splunk Public Sector Summit Germany April 2025One Cisco - Splunk Public Sector Summit Germany April 2025
One Cisco - Splunk Public Sector Summit Germany April 2025
Splunk
 
.conf Go 2023 - Data analysis as a routine
.conf Go 2023 - Data analysis as a routine.conf Go 2023 - Data analysis as a routine
.conf Go 2023 - Data analysis as a routine
Splunk
 
.conf Go 2023 - How KPN drives Customer Satisfaction on IPTV
.conf Go 2023 - How KPN drives Customer Satisfaction on IPTV.conf Go 2023 - How KPN drives Customer Satisfaction on IPTV
.conf Go 2023 - How KPN drives Customer Satisfaction on IPTV
Splunk
 
.conf Go 2023 - Navegando la normativa SOX (Telefónica)
.conf Go 2023 - Navegando la normativa SOX (Telefónica).conf Go 2023 - Navegando la normativa SOX (Telefónica)
.conf Go 2023 - Navegando la normativa SOX (Telefónica)
Splunk
 
.conf Go 2023 - Raiffeisen Bank International
.conf Go 2023 - Raiffeisen Bank International.conf Go 2023 - Raiffeisen Bank International
.conf Go 2023 - Raiffeisen Bank International
Splunk
 
.conf Go 2023 - På liv og død Om sikkerhetsarbeid i Norsk helsenett
.conf Go 2023 - På liv og død Om sikkerhetsarbeid i Norsk helsenett .conf Go 2023 - På liv og død Om sikkerhetsarbeid i Norsk helsenett
.conf Go 2023 - På liv og død Om sikkerhetsarbeid i Norsk helsenett
Splunk
 
.conf Go 2023 - Many roads lead to Rome - this was our journey (Julius Bär)
.conf Go 2023 - Many roads lead to Rome - this was our journey (Julius Bär).conf Go 2023 - Many roads lead to Rome - this was our journey (Julius Bär)
.conf Go 2023 - Many roads lead to Rome - this was our journey (Julius Bär)
Splunk
 
.conf Go 2023 - Das passende Rezept für die digitale (Security) Revolution zu...
.conf Go 2023 - Das passende Rezept für die digitale (Security) Revolution zu....conf Go 2023 - Das passende Rezept für die digitale (Security) Revolution zu...
.conf Go 2023 - Das passende Rezept für die digitale (Security) Revolution zu...
Splunk
 
.conf go 2023 - Cyber Resilienz – Herausforderungen und Ansatz für Energiever...
.conf go 2023 - Cyber Resilienz – Herausforderungen und Ansatz für Energiever....conf go 2023 - Cyber Resilienz – Herausforderungen und Ansatz für Energiever...
.conf go 2023 - Cyber Resilienz – Herausforderungen und Ansatz für Energiever...
Splunk
 
.conf go 2023 - De NOC a CSIRT (Cellnex)
.conf go 2023 - De NOC a CSIRT (Cellnex).conf go 2023 - De NOC a CSIRT (Cellnex)
.conf go 2023 - De NOC a CSIRT (Cellnex)
Splunk
 
conf go 2023 - El camino hacia la ciberseguridad (ABANCA)
conf go 2023 - El camino hacia la ciberseguridad (ABANCA)conf go 2023 - El camino hacia la ciberseguridad (ABANCA)
conf go 2023 - El camino hacia la ciberseguridad (ABANCA)
Splunk
 
Splunk - BMW connects business and IT with data driven operations SRE and O11y
Splunk - BMW connects business and IT with data driven operations SRE and O11ySplunk - BMW connects business and IT with data driven operations SRE and O11y
Splunk - BMW connects business and IT with data driven operations SRE and O11y
Splunk
 

Recently uploaded (20)

Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.
gregtap1
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
"PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System""PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System"
Jainul Musani
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Asthma presentación en inglés abril 2025 pdf
Asthma presentación en inglés abril 2025 pdfAsthma presentación en inglés abril 2025 pdf
Asthma presentación en inglés abril 2025 pdf
VanessaRaudez
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko
Fwdays
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.
gregtap1
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
"PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System""PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System"
Jainul Musani
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Asthma presentación en inglés abril 2025 pdf
Asthma presentación en inglés abril 2025 pdfAsthma presentación en inglés abril 2025 pdf
Asthma presentación en inglés abril 2025 pdf
VanessaRaudez
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko
Fwdays
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 

Data Models Breakout Session

  • 2. During the course of this presentation, we may make forward-looking statements regarding future events or the expected performance of the company. We caution you that such statements reflect our current expectations and estimates based on factors currently known to us and that actual events or results could differ materially. For important factors that may cause actual results to differ from those contained in our forward- looking statements, please review our filings with the SEC. The forward-looking statements made in this presentation are being made as of the time and date of its live presentation. If reviewed after its live presentation, this presentation may not contain current or accurate information. We do not assume any obligation to update any forward-looking statements we may make. In addition, any information about our roadmap outlines our general product direction and is subject to change at any time without notice. It is for informational purposes only and shall not, be incorporated into any contract or other commitment. Splunk undertakes no obligation either to develop the features or functionality described or to include any such feature or functionality in a future release. Splunk, Splunk>, Splunk Storm, Listen to Your Data, SPL and The Engine for Machine Data are trademarks and registered trademarks of Splunk Inc. in the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. ©2013 Splunk Inc. All rights reserved. Legal Notices 2
  • 3. AnalyticsBig Picture Build complex reports without the search language Provides more meaningful representation of underlying raw machine data Acceleration technology delivers up to 1000x faster analytics over Splunk 5 3 Pivot Data Model Analytics Store
  • 4. Operational IntelligenceAcrossthe Enterprise IT professional Create and share data models Accelerate data models and custom searches with the analytics store Create reports with pivot Developer Analyst Leverage data models to abstract data Leverage pivot in custom apps Create reports using pivot based on data models created by IT Pivot Data Model Raw Data Analytics Store [10/11/12 18:57:04 UTC] 000000b0
  • 5. Pivot is a query builder.
  • 12. sourcetype=access_combined source = "/home/ssorkin/banner_access.log.2013.6.gz" | eval unique=(uid + useragent) | stats dc(unique) by os_name | rename dc(unique) as "Unique Visitors" os_name as "Operating System" search and filter | munge | report | clean-up Splunk Search Language
  • 13. Hurdles • Simplesearcheseasy…Multi-stagemunging/reportingishard! • Needtounderstanddata’sstructuretoconstructsearch • Non-technicalusersmaynothavedatasourcedomainknowledge • Splunkadminsdonothaveend-usersearchcontext index=main source=*/banner_access* uri_path=/js/*/*/login/* guid=* useragent!=*KTXN* useragent!=*GomezAgent* clientip!=206.80.3.67 clientip!=198.144.207.62 clientip!=97.65.63.66 clientip!=175.45.37.78 clientip!=209.119.210.194 clientip!=212.36.37.138 clientip!=204.156.84.0/24 clientip!=216.221.226.0/24 clientip!=207.87.200.162 | rex field=uri_path "/js/(?<t>[^/]*)/(?<v>[^/]*)/login/(?<l>[^/]*)” | eval license = case(l LIKE "prod%" AND t="pro", "enterprise", l LIKE "trial%" AND t="pro", "trial", t="free", "free”) | rex field=v "^(?<vers>d.d)” | bin span=1d _time as day | stats values(vers) as vers min(day) as min_day min(eval(if(vers=="5.0", _time, null()))) as min_day_50 dc(day) as days values(license) as license by guid | eval type = if(match(vers,"4.*"), "upgrade", "not upgrade") + "/" + if(days > 1, "repeat", "not repeat")| search license=enterprise | eval _time = min_day_50| timechart count by type| streamstats sum(*) as *
  • 14. Data Model Goals • Makeiteasytoshare/reusedomainknowledge • Admins/powerusersbuilddatamodels • Non-technicalusersinteractwithdataviapivotUI
  • 16. What is a Data Model? Adatamodelisasearch-timemappingofdataontoahierarchicalstructure Encapsulatetheknowledgeneededtobuildasearch Pivotreportsarebuildontopofdatamodels Data-independent Screenshot here
  • 17. A Data Model is a Collection of Objects Screenshot here
  • 18. Objects Have Constraints and Attributes Screenshot here
  • 19. Child Objects Inherit Constraints and Attributes Screenshot here
  • 20. Child Objects Inherit Constraints and Attributes
  • 22. Three Root ObjectTypes Event – MapstoSplunkevents – Requiresconstraints andattributes
  • 23. Three Root ObjectTypes Event – MapstoSplunkevents – Requiresconstraints andattributes Search – MapstoarbitrarySplunksearch(may includegenerating,transformingand reportingsearchcommands) – Requiressearchstringattributes • Transaction – MapstogroupsofSplunkeventsor groupsofSplunksearchresults – Requiresobjectstogroup,fields/ conditionstogroupby,andattributes
  • 24. Three Root ObjectTypes Event – MapstoSplunkevents – Requiresconstraints andattributes Search – MapstoarbitrarySplunksearch(may includegenerating,transformingand reportingsearchcommands) Requiressearchstringattributes Transaction – MapstogroupsofSplunkeventsor groupsofSplunksearchresults – Requiresobjectstogroup,fields/ conditionstogroupby,andattributes
  • 27. Best Practices Use event objects as often as possible – Benefit from data model acceleration Resist the urge to use search objects instead of event objects!! – Event based searches can be optimized better Minimize object hierarchy depth when possible – Constraint based filtering is less efficientdeeper down the tree Event object with deepest tree (and most matching results) first – Model-wide acceleration only for first event object and its descendants
  • 29. From Data Models to Reports
  • 30. Usingthe UI Subhead Count of http_success events, split by useragent events fields
  • 31. Under the Hood: Object SearchString Generation Syntax: <constraints search> | <my attribute definitions> Example: sourcetype=access_* OR sourcetype=iis* uri=* uri_path=* status=* clientip=* referer=* useragent=*
  • 32. Under the Hood: Object SearchString Generation Syntax: <base search> | <my attribute definitions> Example: _time=* host=* source=* sourcetype=* uri=* status<600 clientip=* referer=* useragent=* (sourcetype=access_* OR source=*.log) | eval userid=clientip | stats first(_time) as earliest, last(_time) as latest, list(uri_path) as uri_list by userid | earliest=* latest=* uri_list=*
  • 33. Under the Hood: Object SearchString Generation Syntax: <objects to group search> | transaction <group by fields> <group by params> | <my attribute definitions> Example: sourcetype=access_* uri=* uri_path=* status=* clientip=* referer=* useragent=* | transaction clientip useragent | eval landingpage=mvindex(uri_path,1) | eval exitpage=mvindex(uri_path,-1)
  • 34. Under the Hood: Object SearchString Generation Syntax: <parent object search> | search <my constraints> | <my attribute definitions> Example: sourcetype=access_* uri=* uri_path=* status=* clientip=* referer=* useragent=* status=2* | <my attribute definitions>
  • 35. Usingthe SplunkSearch Language | datamodel <modelname> <objectID> search Example: | datamodel WebIntelligence HTTP_Request search Behindthescenes: sourcetype=access_* OR sourcetype=iis* uri=* uri_path=* status=* clientip=* referer=* useragent=*
  • 36. Under the hood: Pivot Search String Generation Example: (sourcetype=access_* OR sourcetype=iis*) status=2* uri=* uri_path=* status=* clientip=* referer=* useragent=* | stats count AS "Count of HTTP_Sucess" by ”useragent" | sort limit=0 "useragent" | fields - _span | fields "useragent" "Count of HTTP_Success" | fillnull "Count of HTTP_Success" | fields "useragent" *
  • 37. Usingthe SplunkSearch Language | pivot <modelname> <objectID> [statsfns, rowsplit, colsplit, filters, …] Example: | pivot WebIntelligence HTTP_Request count(HTTP_Request) AS "Count of HTTP_Request" SPLITROW status AS "status" SORT 0 status Behindthescenes: sourcetype=access_* OR sourcetype=iis* uri=* uri_path=* status=* clientip=* referer=* useragent=* | stats count AS "Count of HTTP_Request" by "status" | sort limit=0 "status" | fields - _span | fields "status", "Count of HTTP_Request" | fillnull "Count of HTTP_Request" | fields "status" *
  • 38. Warnings • | datamodel and| pivot aregeneratingcommands • Theymustbeatthebeginningofthesearchstring • UseobjectIDsNOTuser-visibleobjectnames
  • 39. Demo
  • 41. Data Model on Disk EachdatamodelisaseparateJSONfile Livesin<myapp>/local/data/models (or<myapp>/default/data/modelsforpre- installedmodels) Hasassociatedconfstanzas andmetadata
  • 42. Editing Data Model JSON Atyourownrisk! ModelseditedviatheUIarevalidated Manuallyediteddatamodels:NOTSUPPORTED Exception:installinganewmodelbyaddingthefileto<myapp>/<local ORdefault>/data/modelsisprobablyokay
  • 43. Deleting a Data Model UsetheUIforappropriatecleanup Potentialforbadstateifmanuallydeletingmodelondisk
  • 44. InteractingWith a Data Model UsedatamodelbuilderandpivotUI–safestoption! UseRESTAPI–fordevelopers(seedocsfordetails) Use|datamodeland|pivotSplunksearchcommands
  • 46. Data Model Acceleration Run a pivot report Poll: are there new accelerated models? Turn on acceleration via UI Setting written to conf file Kick off collection Acceleration Kick off ad-hoc acceleration and run search Run search using on-disk acceleration Admin or power user Backend magic Non-technical user No acceleration
  • 47. Model-WideAcceleration Pivotsearch: | tstats count AS "Count of HTTP_Success" from datamodel="WebIntelligence" where (nodename="HTTP_Request") (nodename="HTTP_Request.HTTP_Success") prestats=true | stats count AS "Count of HTTP_Success” Only accelerates first event- based object and descendants Does not accelerate search and transaction-based objects

Editor's Notes

  • #2: Welcome to SplunkLive [City]. Thank you for taking the time to attend today’s event.
  • #4: Splunk 6 takes large-scale machine data analytics to the next level by introducing three breakthrough innovations: Pivot – opens up the power of Splunk search to non-technical users with an easy-to-use drag and drop interface to explore, manipulate and visualize data Data Model – defines meaningful relationships in underlying machine data and making the data more useful to broader base of non-technical users Analytics Store – patent pending technology that accelerates data models by delivering extremely high performance data retrieval for analytical operations, up to 1000x faster than Splunk 5 Let’s dig into each of these new features in more detail.
  • #5: How does the Analytics Store, Data Model and Pivot benefit users across the enterprise? Lets start with the IT Professional – this includes the Splunk Administrator or an advanced Splunk user that is familiar with SPL. Using Splunk 6 they can: Create data models Share data models with other users – delivering a consistent view of the data Accelerate data models using the Analytics Store Create reports using Pivot (although being power users, they may prefer using SPL directly!) Next we have the enterprise developer. Using Splunk 6 they can: Leverage data models built by IT, making searches more portable (using common Data Models ensures predictability of results) Leverage the Pivot interface in custom enterprise apps Finally, there are additional users that can now benefit – for example, the business or data analyst. Using Splunk 6 they can: Create reports, dashboards, charts and other visualizations using the Pivot interface and based on data models that provide an abstracted view of the raw data. Splunk 6 is not meant to replace existing BI and Business Analytics tools, but it does provide new visibility, insights and intelligence from operational data that can be used by business analysts to augment these tools. Data from Splunk software can also be leveraged directly using the Splunk API and SDKs and integrated into existing business analytics tools. For example, the recently announced Pentaho Business Analytics for Splunk® Enterprise (http://apps.splunk.com/app/1554), enables business users to utilize Pentaho to rapidly visualize and gain additional insights from Splunk’s machine data platform using existing in-house skills.
  • #7: How can you leverage Splunk?
  • #8: How can you leverage Splunk?
  • #13: How can you leverage Splunk?
  • #14: - The Splunk search language is very expressive. - Can perform a wide variety of tasks ranging from filtering to data munging and reporting - There are various search commands for complex transformations and statistics (e.g. correlation, prediction etc)
  • #15: What does the search do? Basically, first it normalizes the individual accesses, which should be representable as a model object. Next it aggregates by guid to create an "instance" object, which should be representable in a DM. It calculates a field on that instance object, "type". Then it builds a timechart. of those, using a special "_time" value. Low overhead to start but learning curve quickly gets steep Obtaining website usage metrics should not require understanding Apache vs IIS format Admins won’t know apriori what questions are being asked of the data…so they can’t provide canned dashboards for all scenarios Backup search for example:  eventtype=pageview | eval stage_2=if(searchmatch("uri=/download*"), _time, null()) | eval stage_1=if(searchmatch("uri=/product*"), _time, null()) | eval stage_3=if(searchmatch("uri=*download_track*"), _time, null()) | stats min(stage_*) as stage_*  by cookie | search stage_1=* | where isnull(stage_2) OR stage_2 >= stage_1 | where isnull(stage_3) OR stage_3 >= stage_2 | eval stage = case(isnull(stage_2), "stage_1", isnull(stage_3), "stage_2", 1==1, "stage_3") | stats count by stage | reverse | accum count as cumulative_count |  reverse | streamstats current=f max(cumulative_count) as stage_1_count last(cumulative_count) as prev_count
  • #19: What are the important “things” in your data? E.g. WebIntelligence might have HTTPAccess HTTPSuccess User Session How are they related? There’s more than one “right” way to define your objects
  • #20: Constraints filter down to a set of a data Attributes are the fields and knowledge associated with the object Both are inherited!
  • #21: A child object is a type of its parent object: e.g. An HTTP_Success object is a type of HTTP_Access Adding a child object is essentially a way of adding a filter on the parents A parent-child relationship makes it easy to do queries like “What percentage of my HTTP_Access events are HTTP_Success events?”
  • #23: How can you leverage Splunk?
  • #24: Constraints are essentially the search broken down into a hierarchy, attributes are the associated fields and knowledge
  • #25: Arbitrary searches that include transforming commands to define the dataset that they represent Fix example here? TODO
  • #26: Enable the creation of objects that represent transactions Use fields that have already been added to the model via event or search objects
  • #27: This is how we capture knowledge
  • #28: Required: Only events that contain this field will be returned in Pivot Optional: The field doesn't have to appear in every event Hidden: The field will not be displayed to Pivot users when they select the object in Pivot Use this for fields that are only being used to define another attribute, such as an eval expression Hidden & Required: Only events that contain this field will be returned, and the field will be hidden from use in Pivot
  • #30: Be careful about lookup permissions – must be available in the context where you want to use them
  • #32: How can you leverage Splunk?
  • #43: How can you leverage Splunk?
  • #49: Divanny will help make this slide MUCH prettier
  • #50: This could be more slides, more details
  • #52: This could be more slides, more details
  • #53: How can you leverage Splunk?