distribution model of software quality Assurance and management .
Reference is https://ieeexplore.ieee.org/document/4529863/
Ac fr ogdgcmxqfucumvb3rtaloaj_brftdqxmm9hvb6ttcdlh-kap3doq8rsu8vhkdcpgfpozovb...RaunakMalkani3
The document discusses the Rational Unified Process (RUP) and Rapid Application Development (RAD) methodologies. RUP follows five phases - Inception, Elaboration, Construction, Transition, and Production. It aims to reduce unexpected costs and prevent waste. RAD is used for urgent projects and emphasizes prototyping. It develops components in parallel like mini-projects then assembles them. Business modeling, data modeling, process modeling, application generation and testing are key activities in RAD.
This document defines software engineering productivity and how it is measured. Productivity is defined as the ratio of output to input, with output typically measured as lines of code or functions, and input as effort measured in costs, resources, and time. Productivity of a web application is difficult to measure due to the lack of a standard size measure that aggregates all aspects into a single value. The document proposes using an "adjusted size" measure that accounts for effort-related size factors. It also discusses how to increase productivity through efficient processes, effective teams, and simplifying products. A case study analysis of web project data found that team size, programming languages used, and experience impacted productivity.
Calibration and validation model (Simulation )Rajan Kandel
This document discusses calibration and validation of models. Calibration is an iterative process of comparing a model to the real system and adjusting model parameters to better match observed real data. Validation checks that the model's output matches real data and ensures the model is useful. Key aspects of calibration discussed include comparing model output to measured data at different time granularities, and additional data needs. Validation ensures the model assumptions and programming are sound. Steps in validation include building a model with face validity, validating assumptions, and comparing model input-output transformations to the real system.
This document provides an overview of calibration, validation, and uncertainty analysis for environmental and hydrological modeling. It defines key concepts like calibration, validation, and uncertainty analysis. For calibration, it discusses finding parameter sets that minimize error between model outputs and observations while avoiding overfitting. Validation assesses model performance on new data. Uncertainty analysis quantifies uncertainty in model predictions. It also discusses sources of error and challenges in applying Bayesian methods due to non-normal errors and computational complexity. Simpler methods like GLUE (Generalized Likelihood Uncertainty Estimation) are also covered.
This document describes a machine learning model for software defect prediction. It uses NASA software metrics data to train artificial neural networks and decision tree models to predict defect density values. The model performs regression to predict defect values for test data. Experimental results show that while both ANN and decision tree methods did not initially provide acceptable predictions compared to the data variance, further experiments could enhance defect prediction performance through a two-step modeling approach.
Computer aided design of electrical machineAsif Jamadar
This document discusses computer aided design of electrical machines. It introduces the topic and outlines some key advantages of CAD, such as performing millions of computations quickly, enabling the study of wide parameter variations to find optimal designs, and eliminating tedious calculations. It then describes two main methods of computer aided design - the analysis method and the synthesis method. The analysis method determines machine performance from initial parameters, while the synthesis method uses numerical techniques and iteration to modify variable values to meet desired performance characteristics and find an optimal design.
Measurement and metrics in model driven software developmentSelman Bozkır
The document discusses measurement and metrics in model-driven software development. It summarizes two research papers on this topic. The first paper proposes a model-driven measurement approach that specifies metrics as instances of a metric specification meta-model and generates measurement software from these specifications. The second paper discusses defining metrics for model transformations and embedding them in meta-models to measure improvement in model quality from transformations. Overall, the document outlines approaches for defining and applying metrics in model-driven development.
Android a fast clustering-based feature subset selection algorithm for high-...ecway
Final Year IEEE Projects, Final Year Projects, Academic Final Year Projects, Academic Final Year IEEE Projects, Academic Final Year IEEE Projects 2013, Academic Final Year IEEE Projects 2014, IEEE JAVA, .NET Projects, 2013 IEEE JAVA, .NET Projects, 2013 IEEE JAVA, .NET Projects in Chennai, 2013 IEEE JAVA, .NET Projects in Trichy, 2013 IEEE JAVA, .NET Projects in Karur, 2013 IEEE JAVA, .NET Projects in Erode, 2013 IEEE JAVA, .NET Projects in Madurai, 2013 IEEE JAVA, .NET Projects in Salem, 2013 IEEE JAVA, .NET Projects in Coimbatore, 2013 IEEE JAVA, .NET Projects in Tirupur, 2013 IEEE JAVA, .NET Projects in Bangalore, 2013 IEEE JAVA, .NET Projects in Hydrabad, 2013 IEEE JAVA, .NET Projects in Kerala, 2013 IEEE JAVA, .NET Projects in Namakkal, IEEE JAVA, .NET Image Processing, IEEE JAVA, .NET Face Recognition, IEEE JAVA, .NET Face Detection, IEEE JAVA, .NET Brain Tumour, IEEE JAVA, .NET Iris Recognition, IEEE JAVA, .NET Image Segmentation, Final Year JAVA, .NET Projects in Pondichery, Final Year JAVA, .NET Projects in Tamilnadu, Final Year JAVA, .NET Projects in Chennai, Final Year JAVA, .NET Projects in Trichy, Final Year JAVA, .NET Projects in Erode, Final Year JAVA, .NET Projects in Karur, Final Year JAVA, .NET Projects in Coimbatore, Final Year JAVA, .NET Projects in Tirunelveli, Final Year JAVA, .NET Projects in Madurai, Final Year JAVA, .NET Projects in Salem, Final Year JAVA, .NET Projects in Tirupur, Final Year JAVA, .NET Projects in Namakkal, Final Year JAVA, .NET Projects in Tanjore, Final Year JAVA, .NET Projects in Coimbatore, Final Year JAVA, .NET Projects in Bangalore, Final Year JAVA, .NET Projects in Hydrabad, Final Year JAVA, .NET Projects in Kerala, Final Year JAVA, .NET IEEE Projects in Pondichery, Final Year JAVA, .NET IEEE Projects in Tamilnadu, Final Year JAVA, .NET IEEE Projects in Chennai, Final Year JAVA, .NET IEEE Projects in Trichy, Final Year JAVA, .NET IEEE Projects in Erode, Final Year JAVA, .NET IEEE Projects in Karur, Final Year JAVA, .NET IEEE Projects in Coimbatore, Final Year JAVA, .NET IEEE Projects in Tirunelveli, Final Year JAVA, .NET IEEE Projects in Madurai, Final Year JAVA, .NET IEEE Projects in Salem, Final Year JAVA, .NET IEEE Projects in Tirupur, Final Year JAVA, .NET IEEE Projects in Namakkal, Final Year JAVA, .NET IEEE Projects in Tanjore, Final Year JAVA, .NET IEEE Projects in Coimbatore, Final Year JAVA, .NET IEEE Projects in Bangalore, Final Year JAVA, .NET IEEE Projects in Hydrabad, Final Year JAVA, .NET IEEE Projects in Kerala, Final Year IEEE MATLAB Projects, Final Year Projects, Academic Final Year Projects, Academic Final Year IEEE MATLAB Projects, Academic Final Year IEEE MATLAB Projects 2013, Academic Final Year IEEE MATLAB Projects 2014, IEEE MATLAB Projects, 2013 IEEE MATLAB Projects, 2013 IEEE MATLAB Projects in Chennai, 2013 IEEE MATLAB Projects in Trichy, 2013 IEEE MATLAB Projects in Karur, 2013 IEEE MATLAB Projects in Erode, 2013 IEEE MATLAB Projects in Madurai, 2013 IEEE MATLAB
A DECISION SUPPORT SYSTEM FOR ESTIMATING COST OF SOFTWARE PROJECTS USING A HY...ijfcstjournal
One of the major challenges for software, nowadays, is software cost estimation. It refers to estimating the
cost of all activities including software development, design, supervision, maintenance and so on. Accurate
cost-estimation of software projects optimizes the internal and external processes, staff works, efforts and
the overheads to be coordinated with one another. In the management software projects, estimation must
be taken into account so that reduces costs, timing and possible risks to avoid project failure. In this paper,
a decision- support system using a combination of multi-layer artificial neural network and decision tree is
proposed to estimate the cost of software projects. In the model included into the proposed system,
normalizing factors, which is vital in evaluating efforts and costs estimation, is carried out using C4.5
decision tree. Moreover, testing and training factors are done by multi-layer artificial neural network and
the most optimal values are allocated to them. The experimental results and evaluations on Dataset
NASA60 show that the proposed system has less amount of the total average relative error compared with
COCOMO model.
This document discusses different methods for estimating software project costs, including their advantages and disadvantages. It identifies two main types of methods - algorithmic methods that use mathematical equations and non-algorithmic methods based on past data and experience. While algorithmic methods provide more accurate estimates, they require more effort. The document recommends using a combination of different estimation methods, comparing results, and regularly re-estimating costs at project milestones to improve accuracy. There is no single best method, as cost estimation depends on the specific project scenario.
The document describes the key ingredients of quantitative process performance models used in CMMI, including that they statistically or probabilistically predict interim and final project outcomes based on controllable factors tied to sub-processes, model the variation of those factors to understand the predicted range of outcomes, and enable "what-if" analysis and mid-course corrections to help ensure project success.
This document discusses different approaches and techniques for estimating software development and testing projects. It describes measuring projects at different levels, from overall project level down to individual task levels. It outlines common software estimation approaches like macro estimation using equations, comparisons, or analogies, and micro estimation using work breakdown. It provides examples of estimating the effort for individual project activities and a five step process for bottom-up estimating. Finally, it notes the tradeoff between project quality, scope, cost and time.
Matthew Taggart is a mechanical engineer seeking a position applying his skills. He has a Master's in Mechanical Engineering from Stevens Institute of Technology and a Bachelor's from Polytechnic Institute of NYU. His experience includes working as an energy intern analyzing clients' energy usage and recommending upgrades. He is proficient in SolidWorks, Creo, and MATLAB and has experience designing and fabricating a quadcopter for his senior project.
Cross validation is a method to estimate the true error of a model by building models from subsets of the training data and testing them on the remaining subsets. It provides a better estimate of how the model will generalize to new, unseen data compared to just using the error on the training data. Cross validation can also help evaluate which learning algorithm or parameters work best. Nested sub-processes in RapidMiner allow operators to contain additional processes that can be viewed by double clicking the operator icon.
A DECISION SUPPORT SYSTEM FOR ESTIMATING COST OF SOFTWARE PROJECTS USING A HY...ijfcstjournal
One of the major challenges for software, nowadays, is software cost estimation. It refers to estimating the
cost of all activities including software development, design, supervision, maintenance and so on. Accurate
cost-estimation of software projects optimizes the internal and external processes, staff works, efforts and
the overheads to be coordinated with one another. In the management software projects, estimation must
be taken into account so that reduces costs, timing and possible risks to avoid project failure. In this paper,
a decision- support system using a combination of multi-layer artificial neural network and decision tree is
proposed to estimate the cost of software projects. In the model included into the proposed system,
normalizing factors, which is vital in evaluating efforts and costs estimation, is carried out using C4.5
decision tree. Moreover, testing and training factors are done by multi-layer artificial neural network and
the most optimal values are allocated to them. The experimental results and evaluations on Dataset
NASA60 show that the proposed system has less amount of the total average relative error compared with
COCOMO model.
Software testing effort estimation with cobb douglas function- a practical ap...eSAT Journals
Abstract Effort estimation is one of the critical challenges in Software Testing Life Cycle (STLC). It is the basis for the project’s effort estimation, planning, scheduling and budget planning. This paper illustrates model with an objective to depict the accuracy and bias variation of an organization’s estimates of software testing effort through Cobb-Douglas function (CDF). Data variables selected for building the model were believed to be vital and have significant impact on the accuracy of estimates. Data gathered for the completed projects in the organization for about 13 releases. Statistically, all variables in this model were statistically significant at p<0.05><0.01 levels. The Cobb-Douglas function was selected and used for the software testing effort estimation. The results achieved with CDF were compared with the estimates provided by the area expert. The model’s estimation figures are more accurate than the expert judgment. CDF has one of the appropriate techniques for estimating effort for software testing. CDF model accuracy is 93.42%.
Software testing effort estimation with cobb douglas function a practical app...eSAT Publishing House
IJRET : International Journal of Research in Engineering and Technology is an international peer reviewed, online journal published by eSAT Publishing House for the enhancement of research in various disciplines of Engineering and Technology. The aim and scope of the journal is to provide an academic medium and an important reference for the advancement and dissemination of research results that support high-level learning, teaching and research in the fields of Engineering and Technology. We bring together Scientists, Academician, Field Engineers, Scholars and Students of related fields of Engineering and Technology.
This document provides an overview of software fault detection and prevention mechanisms. It discusses several fault detection mechanisms used in the software development lifecycle, including automated static analysis, graph mining, and classifiers. Automated static analysis tools can find standard problems but miss many faults that could lead to failures. Graph mining uses call graph analysis to identify issues in function calling frequencies or structures. Classifiers like NaiveBayes can be trained on normal code behavior to identify abnormal events. The document also discusses fault prevention benefits, related work, and concludes with the importance of fault detection and prevention for developing high quality, reliable software.
A Review on Software Fault Detection and Prevention Mechanism in Software Dev...iosrjce
IOSR Journal of Computer Engineering (IOSR-JCE) is a double blind peer reviewed International Journal that provides rapid publication (within a month) of articles in all areas of computer engineering and its applications. The journal welcomes publications of high quality papers on theoretical developments and practical applications in computer technology. Original research papers, state-of-the-art reviews, and high quality technical notes are invited for publications.
A new model for software costestimationijfcstjournal
Accurate and realistic estimation is always considered to be a great challenge in software industry.
Software Cost Estimation (SCE) is the standard application used to manage software projects. Determining
the amount of estimation in the initial stages of the project depends on planning other activities of the
project. In fact, the estimation is confronted with a number of uncertainties and barriers’, yet assessing the
previous projects is essential to solve this problem. Several models have been developed for the analysis of
software projects. But the classical reference method is the COCOMO model, there are other methods
which are also applied such as Function Point (FP), Line of Code(LOC); meanwhile, the expert`s opinions
matter in this regard. In recent years, the growth and the combination of meta-heuristic algorithms with
high accuracy have brought about a great achievement in software engineering. Meta-heuristic algorithms
which can analyze data from multiple dimensions and identify the optimum solution between them are
analytical tools for the analysis of data. In this paper, we have used the Harmony Search (HS)algorithm for
SCE. The proposed model which is a collection of 60 standard projects from Dataset NASA60 has been
assessed.The experimental results show that HS algorithm is a good way for determining the weight
similarity measures factors of software effort, and reducing the error of MRE.
A NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCHijfcstjournal
Accurate and realistic estimation is always considered to be a great challenge in software industry.
Software Cost Estimation (SCE) is the standard application used to manage software projects. Determining
the amount of estimation in the initial stages of the project depends on planning other activities of the
project. In fact, the estimation is confronted with a number of uncertainties and barriers’, yet assessing the
previous projects is essential to solve this problem. Several models have been developed for the analysis of
software projects. But the classical reference method is the COCOMO model, there are other methods
which are also applied such as Function Point (FP), Line of Code(LOC); meanwhile, the expert`s opinions
matter in this regard. In recent years, the growth and the combination of meta-heuristic algorithms with
high accuracy have brought about a great achievement in software engineering. Meta-heuristic algorithms
which can analyze data from multiple dimensions and identify the optimum solution between them are
analytical tools for the analysis of data. In this paper, we have used the Harmony Search (HS)algorithm for
SCE. The proposed model which is a collection of 60 standard projects from Dataset NASA60 has been
assessed.The experimental results show that HS algorithm is a good way for determining the weight
similarity measures factors of software effort, and reducing the error of MRE.
A survey of predicting software reliability using machine learning methodsIAESIJAI
In light of technical and technological progress, software has become an urgent need in every aspect of human life, including the medicine sector and industrial control. Therefore, it is imperative that the software always works flawlessly. The information technology sector has witnessed a rapid expansion in recent years, as software companies can no longer rely only on cost advantages to stay competitive in the market, but programmers must provide reliable and high-quality software, and in order to estimate and predict software reliability using machine learning and deep learning, it was introduced A brief overview of the important scientific contributions to the subject of software reliability, and the researchers' findings of highly efficient methods and techniques for predicting software reliability.
International Journal of Computational Engineering Research (IJCER) is dedicated to protecting personal information and will make every reasonable effort to handle collected information appropriately. All information collected, as well as related requests, will be handled as carefully and efficiently as possible in accordance with IJCER standards for integrity and objectivity.
In the present paper, applicability and
capability of A.I techniques for effort estimation prediction has
been investigated. It is seen that neuro fuzzy models are very
robust, characterized by fast computation, capable of handling
the distorted data. Due to the presence of data non-linearity, it is
an efficient quantitative tool to predict effort estimation. The one
hidden layer network has been developed named as OHLANFIS
using MATLAB simulation environment.
Here the initial parameters of the OHLANFIS are
identified using the subtractive clustering method. Parameters of
the Gaussian membership function are optimally determined
using the hybrid learning algorithm. From the analysis it is seen
that the Effort Estimation prediction model developed using
OHLANFIS technique has been able to perform well over normal
ANFIS Model.
International Journal of Computational Engineering Research(IJCER) is an intentional online Journal in English monthly publishing journal. This Journal publish original research work that contributes significantly to further the scientific knowledge in engineering and Technology
This document discusses predicting defects in the system testing phase using a model based on a six sigma approach. The research aims to establish a defect prediction model to determine the number of defects to be found before testing begins. The model would help with resource planning, test coverage, and meeting deadlines. The research applies a define-measure-analyze-design-verify process to build the model using regression analysis on data from previous projects. Factors like requirements errors, design errors, and code errors are analyzed to determine their relationship to defects found during testing. The initial results found several significant factors that could be used to reliably predict defects.
Towards formulating dynamic model for predicting defects in system testing us...Journal Papers
This document discusses developing a dynamic model for predicting defects in system testing using metrics collected from prior phases. It begins with background on the waterfall and V-model software development processes. It then reviews previous research on software defect prediction, noting limited work has focused specifically on predicting defects in system testing. The proposed model would analyze metrics collected during requirements, design, coding, and testing phases to determine which metrics best predict defects found in system testing. A case study is discussed that would apply statistical analysis to historical metrics data to formulate a mathematical equation for defect prediction. The model would then be verified by applying it to new projects and comparing predicted defects to actual defects found during system testing. The goal is to select a prediction model that estimates defects
A simplified predictive framework for cost evaluation to fault assessment usi...IJECEIAES
Software engineering is an integral part of any software development scheme which frequently encounters bugs, errors, and faults. Predictive evaluation of software fault contributes towards mitigating this challenge to a large extent; however, there is no benchmarked framework being reported in this case yet. Therefore, this paper introduces a computational framework of the cost evaluation method to facilitate a better form of predictive assessment of software faults. Based on lines of code, the proposed scheme deploys adopts a machine-learning approach to address the perform predictive analysis of faults. The proposed scheme presents an analytical framework of the correlation-based cost model integrated with multiple standards machine learning (ML) models, e.g., linear regression, support vector regression, and artificial neural networks (ANN). These learning models are executed and trained to predict software faults with higher accuracy. The study considers assessing the outcomes based on error-based performance metrics in detail to determine how well each learning model performs and how accurate it is at learning. It also looked at the factors contributing to the training loss of neural networks. The validation result demonstrates that, compared to logistic regression and support vector regression, neural network achieves a significantly lower error score for software fault prediction.
Software testing defect prediction model a practical approacheSAT Journals
Abstract Software defects prediction aims to reduce software testing efforts by guiding the testers through the defect classification of software systems. Defect predictors are widely used in many organizations to predict software defects in order to save time, improve quality, testing and for better planning of the resources to meet the timelines. The application of statistical software testing defect prediction model in a real life setting is extremely difficult because it requires more number of data variables and metrics and also historical defect data to predict the next releases or new similar type of projects. This paper explains our statistical model, how it will accurately predict the defects for upcoming software releases or projects. We have used 20 past release data points of software project, 5 parameters and build a model by applying descriptive statistics, correlation and multiple linear regression models with 95% confidence intervals (CI). In this appropriate multiple linear regression model the R-square value was 0.91 and its Standard Error is 5.90%. The Software testing defect prediction model is now being used to predict defects at various testing projects and operational releases. We have found 90.76% precision between actual and predicted defects.
A DECISION SUPPORT SYSTEM FOR ESTIMATING COST OF SOFTWARE PROJECTS USING A HY...ijfcstjournal
One of the major challenges for software, nowadays, is software cost estimation. It refers to estimating the
cost of all activities including software development, design, supervision, maintenance and so on. Accurate
cost-estimation of software projects optimizes the internal and external processes, staff works, efforts and
the overheads to be coordinated with one another. In the management software projects, estimation must
be taken into account so that reduces costs, timing and possible risks to avoid project failure. In this paper,
a decision- support system using a combination of multi-layer artificial neural network and decision tree is
proposed to estimate the cost of software projects. In the model included into the proposed system,
normalizing factors, which is vital in evaluating efforts and costs estimation, is carried out using C4.5
decision tree. Moreover, testing and training factors are done by multi-layer artificial neural network and
the most optimal values are allocated to them. The experimental results and evaluations on Dataset
NASA60 show that the proposed system has less amount of the total average relative error compared with
COCOMO model.
This document discusses different methods for estimating software project costs, including their advantages and disadvantages. It identifies two main types of methods - algorithmic methods that use mathematical equations and non-algorithmic methods based on past data and experience. While algorithmic methods provide more accurate estimates, they require more effort. The document recommends using a combination of different estimation methods, comparing results, and regularly re-estimating costs at project milestones to improve accuracy. There is no single best method, as cost estimation depends on the specific project scenario.
The document describes the key ingredients of quantitative process performance models used in CMMI, including that they statistically or probabilistically predict interim and final project outcomes based on controllable factors tied to sub-processes, model the variation of those factors to understand the predicted range of outcomes, and enable "what-if" analysis and mid-course corrections to help ensure project success.
This document discusses different approaches and techniques for estimating software development and testing projects. It describes measuring projects at different levels, from overall project level down to individual task levels. It outlines common software estimation approaches like macro estimation using equations, comparisons, or analogies, and micro estimation using work breakdown. It provides examples of estimating the effort for individual project activities and a five step process for bottom-up estimating. Finally, it notes the tradeoff between project quality, scope, cost and time.
Matthew Taggart is a mechanical engineer seeking a position applying his skills. He has a Master's in Mechanical Engineering from Stevens Institute of Technology and a Bachelor's from Polytechnic Institute of NYU. His experience includes working as an energy intern analyzing clients' energy usage and recommending upgrades. He is proficient in SolidWorks, Creo, and MATLAB and has experience designing and fabricating a quadcopter for his senior project.
Cross validation is a method to estimate the true error of a model by building models from subsets of the training data and testing them on the remaining subsets. It provides a better estimate of how the model will generalize to new, unseen data compared to just using the error on the training data. Cross validation can also help evaluate which learning algorithm or parameters work best. Nested sub-processes in RapidMiner allow operators to contain additional processes that can be viewed by double clicking the operator icon.
A DECISION SUPPORT SYSTEM FOR ESTIMATING COST OF SOFTWARE PROJECTS USING A HY...ijfcstjournal
One of the major challenges for software, nowadays, is software cost estimation. It refers to estimating the
cost of all activities including software development, design, supervision, maintenance and so on. Accurate
cost-estimation of software projects optimizes the internal and external processes, staff works, efforts and
the overheads to be coordinated with one another. In the management software projects, estimation must
be taken into account so that reduces costs, timing and possible risks to avoid project failure. In this paper,
a decision- support system using a combination of multi-layer artificial neural network and decision tree is
proposed to estimate the cost of software projects. In the model included into the proposed system,
normalizing factors, which is vital in evaluating efforts and costs estimation, is carried out using C4.5
decision tree. Moreover, testing and training factors are done by multi-layer artificial neural network and
the most optimal values are allocated to them. The experimental results and evaluations on Dataset
NASA60 show that the proposed system has less amount of the total average relative error compared with
COCOMO model.
Software testing effort estimation with cobb douglas function- a practical ap...eSAT Journals
Abstract Effort estimation is one of the critical challenges in Software Testing Life Cycle (STLC). It is the basis for the project’s effort estimation, planning, scheduling and budget planning. This paper illustrates model with an objective to depict the accuracy and bias variation of an organization’s estimates of software testing effort through Cobb-Douglas function (CDF). Data variables selected for building the model were believed to be vital and have significant impact on the accuracy of estimates. Data gathered for the completed projects in the organization for about 13 releases. Statistically, all variables in this model were statistically significant at p<0.05><0.01 levels. The Cobb-Douglas function was selected and used for the software testing effort estimation. The results achieved with CDF were compared with the estimates provided by the area expert. The model’s estimation figures are more accurate than the expert judgment. CDF has one of the appropriate techniques for estimating effort for software testing. CDF model accuracy is 93.42%.
Software testing effort estimation with cobb douglas function a practical app...eSAT Publishing House
IJRET : International Journal of Research in Engineering and Technology is an international peer reviewed, online journal published by eSAT Publishing House for the enhancement of research in various disciplines of Engineering and Technology. The aim and scope of the journal is to provide an academic medium and an important reference for the advancement and dissemination of research results that support high-level learning, teaching and research in the fields of Engineering and Technology. We bring together Scientists, Academician, Field Engineers, Scholars and Students of related fields of Engineering and Technology.
This document provides an overview of software fault detection and prevention mechanisms. It discusses several fault detection mechanisms used in the software development lifecycle, including automated static analysis, graph mining, and classifiers. Automated static analysis tools can find standard problems but miss many faults that could lead to failures. Graph mining uses call graph analysis to identify issues in function calling frequencies or structures. Classifiers like NaiveBayes can be trained on normal code behavior to identify abnormal events. The document also discusses fault prevention benefits, related work, and concludes with the importance of fault detection and prevention for developing high quality, reliable software.
A Review on Software Fault Detection and Prevention Mechanism in Software Dev...iosrjce
IOSR Journal of Computer Engineering (IOSR-JCE) is a double blind peer reviewed International Journal that provides rapid publication (within a month) of articles in all areas of computer engineering and its applications. The journal welcomes publications of high quality papers on theoretical developments and practical applications in computer technology. Original research papers, state-of-the-art reviews, and high quality technical notes are invited for publications.
A new model for software costestimationijfcstjournal
Accurate and realistic estimation is always considered to be a great challenge in software industry.
Software Cost Estimation (SCE) is the standard application used to manage software projects. Determining
the amount of estimation in the initial stages of the project depends on planning other activities of the
project. In fact, the estimation is confronted with a number of uncertainties and barriers’, yet assessing the
previous projects is essential to solve this problem. Several models have been developed for the analysis of
software projects. But the classical reference method is the COCOMO model, there are other methods
which are also applied such as Function Point (FP), Line of Code(LOC); meanwhile, the expert`s opinions
matter in this regard. In recent years, the growth and the combination of meta-heuristic algorithms with
high accuracy have brought about a great achievement in software engineering. Meta-heuristic algorithms
which can analyze data from multiple dimensions and identify the optimum solution between them are
analytical tools for the analysis of data. In this paper, we have used the Harmony Search (HS)algorithm for
SCE. The proposed model which is a collection of 60 standard projects from Dataset NASA60 has been
assessed.The experimental results show that HS algorithm is a good way for determining the weight
similarity measures factors of software effort, and reducing the error of MRE.
A NEW MODEL FOR SOFTWARE COSTESTIMATION USING HARMONY SEARCHijfcstjournal
Accurate and realistic estimation is always considered to be a great challenge in software industry.
Software Cost Estimation (SCE) is the standard application used to manage software projects. Determining
the amount of estimation in the initial stages of the project depends on planning other activities of the
project. In fact, the estimation is confronted with a number of uncertainties and barriers’, yet assessing the
previous projects is essential to solve this problem. Several models have been developed for the analysis of
software projects. But the classical reference method is the COCOMO model, there are other methods
which are also applied such as Function Point (FP), Line of Code(LOC); meanwhile, the expert`s opinions
matter in this regard. In recent years, the growth and the combination of meta-heuristic algorithms with
high accuracy have brought about a great achievement in software engineering. Meta-heuristic algorithms
which can analyze data from multiple dimensions and identify the optimum solution between them are
analytical tools for the analysis of data. In this paper, we have used the Harmony Search (HS)algorithm for
SCE. The proposed model which is a collection of 60 standard projects from Dataset NASA60 has been
assessed.The experimental results show that HS algorithm is a good way for determining the weight
similarity measures factors of software effort, and reducing the error of MRE.
A survey of predicting software reliability using machine learning methodsIAESIJAI
In light of technical and technological progress, software has become an urgent need in every aspect of human life, including the medicine sector and industrial control. Therefore, it is imperative that the software always works flawlessly. The information technology sector has witnessed a rapid expansion in recent years, as software companies can no longer rely only on cost advantages to stay competitive in the market, but programmers must provide reliable and high-quality software, and in order to estimate and predict software reliability using machine learning and deep learning, it was introduced A brief overview of the important scientific contributions to the subject of software reliability, and the researchers' findings of highly efficient methods and techniques for predicting software reliability.
International Journal of Computational Engineering Research (IJCER) is dedicated to protecting personal information and will make every reasonable effort to handle collected information appropriately. All information collected, as well as related requests, will be handled as carefully and efficiently as possible in accordance with IJCER standards for integrity and objectivity.
In the present paper, applicability and
capability of A.I techniques for effort estimation prediction has
been investigated. It is seen that neuro fuzzy models are very
robust, characterized by fast computation, capable of handling
the distorted data. Due to the presence of data non-linearity, it is
an efficient quantitative tool to predict effort estimation. The one
hidden layer network has been developed named as OHLANFIS
using MATLAB simulation environment.
Here the initial parameters of the OHLANFIS are
identified using the subtractive clustering method. Parameters of
the Gaussian membership function are optimally determined
using the hybrid learning algorithm. From the analysis it is seen
that the Effort Estimation prediction model developed using
OHLANFIS technique has been able to perform well over normal
ANFIS Model.
International Journal of Computational Engineering Research(IJCER) is an intentional online Journal in English monthly publishing journal. This Journal publish original research work that contributes significantly to further the scientific knowledge in engineering and Technology
This document discusses predicting defects in the system testing phase using a model based on a six sigma approach. The research aims to establish a defect prediction model to determine the number of defects to be found before testing begins. The model would help with resource planning, test coverage, and meeting deadlines. The research applies a define-measure-analyze-design-verify process to build the model using regression analysis on data from previous projects. Factors like requirements errors, design errors, and code errors are analyzed to determine their relationship to defects found during testing. The initial results found several significant factors that could be used to reliably predict defects.
Towards formulating dynamic model for predicting defects in system testing us...Journal Papers
This document discusses developing a dynamic model for predicting defects in system testing using metrics collected from prior phases. It begins with background on the waterfall and V-model software development processes. It then reviews previous research on software defect prediction, noting limited work has focused specifically on predicting defects in system testing. The proposed model would analyze metrics collected during requirements, design, coding, and testing phases to determine which metrics best predict defects found in system testing. A case study is discussed that would apply statistical analysis to historical metrics data to formulate a mathematical equation for defect prediction. The model would then be verified by applying it to new projects and comparing predicted defects to actual defects found during system testing. The goal is to select a prediction model that estimates defects
A simplified predictive framework for cost evaluation to fault assessment usi...IJECEIAES
Software engineering is an integral part of any software development scheme which frequently encounters bugs, errors, and faults. Predictive evaluation of software fault contributes towards mitigating this challenge to a large extent; however, there is no benchmarked framework being reported in this case yet. Therefore, this paper introduces a computational framework of the cost evaluation method to facilitate a better form of predictive assessment of software faults. Based on lines of code, the proposed scheme deploys adopts a machine-learning approach to address the perform predictive analysis of faults. The proposed scheme presents an analytical framework of the correlation-based cost model integrated with multiple standards machine learning (ML) models, e.g., linear regression, support vector regression, and artificial neural networks (ANN). These learning models are executed and trained to predict software faults with higher accuracy. The study considers assessing the outcomes based on error-based performance metrics in detail to determine how well each learning model performs and how accurate it is at learning. It also looked at the factors contributing to the training loss of neural networks. The validation result demonstrates that, compared to logistic regression and support vector regression, neural network achieves a significantly lower error score for software fault prediction.
Software testing defect prediction model a practical approacheSAT Journals
Abstract Software defects prediction aims to reduce software testing efforts by guiding the testers through the defect classification of software systems. Defect predictors are widely used in many organizations to predict software defects in order to save time, improve quality, testing and for better planning of the resources to meet the timelines. The application of statistical software testing defect prediction model in a real life setting is extremely difficult because it requires more number of data variables and metrics and also historical defect data to predict the next releases or new similar type of projects. This paper explains our statistical model, how it will accurately predict the defects for upcoming software releases or projects. We have used 20 past release data points of software project, 5 parameters and build a model by applying descriptive statistics, correlation and multiple linear regression models with 95% confidence intervals (CI). In this appropriate multiple linear regression model the R-square value was 0.91 and its Standard Error is 5.90%. The Software testing defect prediction model is now being used to predict defects at various testing projects and operational releases. We have found 90.76% precision between actual and predicted defects.
Practical Guidelines to Improve Defect Prediction Model – A Reviewinventionjournals
Defect prediction models are used to pinpoint risky software modules and understand past pitfalls that lead to defective modules. The predictions and insights that are derived from defect prediction models may not be accurate and reliable if researchers do not consider the impact of experimental components (e.g., datasets, metrics, and classifiers) of defect prediction modeling. Therefore, a lack of awareness and practical guidelines from previous research can lead to invalid predictions and unreliable insights. Through case studies of systems that span both proprietary and open-source domains, find that (1) noise in defect datasets; (2) parameter settings of classification techniques; and (3) model validation techniques have a large impact on the predictions and insights of defect prediction models, suggesting that researchers should carefully select experimental components in order to produce more accurate and reliable defect prediction models.
This document summarizes Martin Pinzger's research on predicting buggy methods using software repository mining. The key points are:
1. Pinzger and colleagues conducted experiments on 21 Java projects to predict buggy methods using source code and change metrics. Change metrics like authors and method histories performed best with up to 96% accuracy.
2. Predicting buggy methods at a finer granularity than files can save manual inspection and testing effort. Accuracy decreases as fewer methods are predicted but change metrics maintain higher precision.
3. Case studies on two classes show that method-level prediction achieves over 82% precision compared to only 17-42% at the file level. This demonstrates the benefit of finer-
Proceedings of the 2015 Industrial and Systems Engineering Res.docxwkyra78
Proceedings of the 2015 Industrial and Systems Engineering Research Conference
S. Cetinkaya and J. K. Ryan, eds.
Use of Symbolic Regression for Lean Six Sigma Projects
Daniel Moreno-Sanchez, MSc.
Jacobo Tijerina-Aguilera, MSc.
Universidad de Monterrey
San Pedro Garza Garcia, NL 66238, Mexico
Arlethe Yari Aguilar-Villarreal, MEng.
Universidad Autonoma de Nuevo Leon
San Nicolas de los Garza, NL 66451, Mexico
Abstract
Lean Six Sigma projects and the quality engineering profession have to deal with an extensive selection of tools
most of them requiring specialized training. The increased availability of standard statistical software motivates the
use of advanced data science techniques to identify relationships between potential causes and project metrics. In
these circumstances, Symbolic Regression has received increased attention from researchers and practitioners to
uncover the intrinsic relationships hidden within complex data without requiring specialized training for its
implementation. The objective of this paper is to evaluate the advantages and drawbacks of using computer assisted
Symbolic Regression within the Analyze phase of a Lean Six Sigma project. An application of this approach in a
service industry project is also presented.
Keywords
Symbolic Regression, Data Science, Lean Six Sigma
1. Introduction
Lean Six Sigma (LSS) has become a well-known hybrid methodology for quality and productivity improvement in
organizations. Its wide adoption in several industries has shaped Process Innovation and Operational Excellence
initiatives, enabling LSS to become a main topic in quality practitioner sites of interest [1], recognized Six Sigma
(SS) certification body of knowledge contents [2], and professional society conferences [3].
However LSS projects and the quality engineering profession have to deal with an extensive selection of tools most
of them requiring specialized training. To assist LSS practitioners it is common to categorize tools based on the
traditional DMAIC model which stands for Define, Measure, Analyze, Improve, and Control phases. Table 1
presents an overview of the main tools that are commonly used in each phase of a LSS project, allowing team
members to progressively develop an understanding between realizing each phase’s intent and how the selected
tools can contribute to that purpose.
This paper focuses on the Analyze phase where tools for statistical model building are most likely to be selected.
The increased availability of standard statistical software motivates the use of advanced data science techniques to
identify relationships between potential causes and project metrics. In these circumstances Symbolic Regression
(SR) has received increased attention from researchers and practitioners even though SR is still in an early stage of
commercial availability.
The objective of this paper is to evaluate the advantages and drawbacks o ...
Determination of Software Release Instant of Three-Tier Client Server Softwar...Waqas Tariq
Quality of any software system mainly depends on how much time testing take place, what kind of testing methodologies are used, how complex the software is, the amount of efforts put by software developers and the type of testing environment subject to the cost and time constraint. More time developers spend on testing more errors can be removed leading to better reliable software but then testing cost will also increase. On the contrary, if testing time is too short, software cost could be reduced provided the customers take risk of buying unreliable software. However, this will increase the cost during operational phase since it is more expensive to fix an error during operational phase than during testing phase. Therefore it is essentially important to decide when to stop testing and release the software to customers based on cost and reliability assessment. In this paper we present a mechanism of when to stop testing process and release the software to end-user by developing a software cost model with risk factor. Based on the proposed method we specifically address the issues of how to decide that we should stop testing and release the software based on three-tier client server architecture which would facilitates software developers to ensure on-time delivery of a software product meeting the criteria of achieving predefined level of reliability and minimizing the cost. A numerical example has been cited to illustrate the experimental results showing significant improvements over the conventional statistical models based on NHPP.
Concept of Problem Solving, Introduction to Algorithms, Characteristics of Algorithms, Introduction to Data Structure, Data Structure Classification (Linear and Non-linear, Static and Dynamic, Persistent and Ephemeral data structures), Time complexity and Space complexity, Asymptotic Notation - The Big-O, Omega and Theta notation, Algorithmic upper bounds, lower bounds, Best, Worst and Average case analysis of an Algorithm, Abstract Data Types (ADT)
The role of the lexical analyzer
Specification of tokens
Finite state machines
From a regular expressions to an NFA
Convert NFA to DFA
Transforming grammars and regular expressions
Transforming automata to grammars
Language for specifying lexical analyzers
Lidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptxRishavKumar530754
LiDAR-Based System for Autonomous Cars
Autonomous Driving with LiDAR Tech
LiDAR Integration in Self-Driving Cars
Self-Driving Vehicles Using LiDAR
LiDAR Mapping for Driverless Cars
Sorting Order and Stability in Sorting.
Concept of Internal and External Sorting.
Bubble Sort,
Insertion Sort,
Selection Sort,
Quick Sort and
Merge Sort,
Radix Sort, and
Shell Sort,
External Sorting, Time complexity analysis of Sorting Algorithms.
The Fluke 925 is a vane anemometer, a handheld device designed to measure wind speed, air flow (volume), and temperature. It features a separate sensor and display unit, allowing greater flexibility and ease of use in tight or hard-to-reach spaces. The Fluke 925 is particularly suitable for HVAC (heating, ventilation, and air conditioning) maintenance in both residential and commercial buildings, offering a durable and cost-effective solution for routine airflow diagnostics.
☁️ GDG Cloud Munich: Build With AI Workshop - Introduction to Vertex AI! ☁️
Join us for an exciting #BuildWithAi workshop on the 28th of April, 2025 at the Google Office in Munich!
Dive into the world of AI with our "Introduction to Vertex AI" session, presented by Google Cloud expert Randy Gupta.
Analysis of reinforced concrete deep beam is based on simplified approximate method due to the complexity of the exact analysis. The complexity is due to a number of parameters affecting its response. To evaluate some of this parameters, finite element study of the structural behavior of the reinforced self-compacting concrete deep beam was carried out using Abaqus finite element modeling tool. The model was validated against experimental data from the literature. The parametric effects of varied concrete compressive strength, vertical web reinforcement ratio and horizontal web reinforcement ratio on the beam were tested on eight (8) different specimens under four points loads. The results of the validation work showed good agreement with the experimental studies. The parametric study revealed that the concrete compressive strength most significantly influenced the specimens’ response with the average of 41.1% and 49 % increment in the diagonal cracking and ultimate load respectively due to doubling of concrete compressive strength. Although the increase in horizontal web reinforcement ratio from 0.31 % to 0.63 % lead to average of 6.24 % increment on the diagonal cracking load, it does not influence the ultimate strength and the load-deflection response of the beams. Similar variation in vertical web reinforcement ratio leads to an average of 2.4 % and 15 % increment in cracking and ultimate load respectively with no appreciable effect on the load-deflection response.
International Journal of Distributed and Parallel systems (IJDPS)samueljackson3773
The growth of Internet and other web technologies requires the development of new
algorithms and architectures for parallel and distributed computing. International journal of
Distributed and parallel systems is a bimonthly open access peer-reviewed journal aims to
publish high quality scientific papers arising from original research and development from
the international community in the areas of parallel and distributed systems. IJDPS serves
as a platform for engineers and researchers to present new ideas and system technology,
with an interactive and friendly, but strongly professional atmosphere.
its all about Artificial Intelligence(Ai) and Machine Learning and not on advanced level you can study before the exam or can check for some information on Ai for project
A value added predictive defect type distribution model
1. Prediction of Defect based on Project Characteristics
in Software
UMESHCHANDRAYADAV
ROLL NO.1783910909
III year CSE
Department of Computer Science & Engineering
RAJKIYA ENGINEERING COLLEGE ,KANNAUJ
2. Abstract
A defect is an error in coding or logic.
In software project management
1. Size
2. Effort
3. Quality
In present time does not have a complete defect prediction for a software
product although much work has been performed to predict software
quality.
The number of defects cannot be sufficient information to provide the basis
for planning quality assurance activities and assessing them during
execution.
3. Introduction
In this paper predicting the distribution of defects and their types based on
project characteristics and the model for prediction using the curve-
fitting method ,regression analysis and Weibull probability density
function in maximum likelihood estimation (MLE).
Mostly in software engineering community has been to develop useful
models that can the software development life-cycle and accurately
predict the cost, schedule and quality of developing a software product.
This approach can support to plan suitable quality assurance activities
and prevent possible defects.
It can also help us to reduce the efforts of performing reworks and the cost
of producing high quality software.
4. Approach of the Proposed Model
In this paper aimed to predict the distribution of inprocess defects, their types
to be detected in the software project.
1) Analysis of literature
2) Behavioral analysis
3) Data gathering
4) Statistical modeling
5) Regression analysis
6) Model validation
7) Gathering of more data for
refining the model in the future.
6. • Defect Data
It’s obtained at all phases in the
development life cycle
(requirement analysis, design,
coding, and testing)
8. • Model Construction
Statistical Modelling
Using the actual project data, curve fitting is performed to extract the
parameters of the Weibull distribution function for each project.
Regression Analysis
We identify the relationship between historical project characteristics
and the parameters of defect distribution from the statistical modelling.
9. • Proposed Model
K is total defect density
i is phase sequence
j is type of defect
α and β are shape parameter
11. • Results of Defect Type Distributions
PRED(30) from 50% to 94% in requirement analysis phase,
PRED(30) from 56% to 94% in the design phase,
PRED(30) from 44% to 97% in the coding phase,
PRED(30) from 33% to 94% in the testing phase.
Thus overall PRED(30) of 75% on
average for all phases and
all defect types.
12. • Final Output
The distributions of actual defect data, estimated data by MLE, and predicted
data by the proposed model for a project in order to
compare the results