The document provides an introduction to Markov Chain Monte Carlo (MCMC) methods. It discusses using MCMC to sample from distributions when direct sampling is difficult. Specifically, it introduces Gibbs sampling and the Metropolis-Hastings algorithm. Gibbs sampling updates variables one at a time based on their conditional distributions. Metropolis-Hastings proposes candidate samples and accepts or rejects them to converge to the target distribution. The document provides examples and outlines the algorithms to construct Markov chains that sample distributions of interest.