SlideShare a Scribd company logo
Deep learning for object
detection
Wenjing Chen
*Created in March 2017, might be outdated the time you read.
Slide credit: CS231n
Outline
1. Introduction
2. Common methods
Region proposal based methods
R-CNN, Fast R-CNN, Faster R-CNN, R-FCN, Mask R-CNN
Single shot based methods
YOLO, YOLOv2, SSD
1. Comparison
Introduction
one image -> one label one image -> labels + bounding boxes
Region based methods - R-CNN
Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2014.
Region based methods - Fast R-CNN
Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE International Conference on Computer Vision. 2015.
Region based methods - Faster R-CNN
Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems.
2015.
Region based methods - Faster R-CNN
Region based methods - R-FCN
Li, Yi, Kaiming He, and Jian Sun. "R-fcn: Object detection via region-based fully convolutional networks." Advances in Neural Information Processing Systems.
2016.
Average
pooling
Region based methods - Mask R-CNN
He, Kaiming, et al. "Mask R-CNN." arXiv preprint arXiv:1703.06870 (2017).
Object instance segmentation:
 Extend Faster R-CNN by adding a
branch for predicting segmentation
masks on each RoI
 Running at 5 fps
 Without tricks, outperforms all existing,
single-model entries on every task in
all three tracks of the COCO suite of
challenges, including instance
segmentation, bounding-box object
detection, and person keypoint
detection !!!
Single shot based method - YOLO
Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
2016.
1. Resize input image to 448*448.
1. Run a single convolutional network.
Predicts B bounding boxes (4 coordinates + confidence) and
C class probabilities for S*S grids, encoded as an
S*S*(B*5+C) tensor.
1. Non-maximum suppression.
S*S*B bounding boxes per image and C class probabilities
for each box.
Single shot based method - YOLOv2
Redmon, Joseph, and Ali Farhadi. "YOLO9000: Better, Faster, Stronger." arXiv preprint arXiv:1612.08242 (2016).
YOLO problem:
1. Significant number of localization errors.
2. Low recall compared to region proposal based methods.
Improvements:
Single shot based method - SSD
Liu, Wei, et al. "SSD: Single shot multibox detector." European Conference on Computer Vision. Springer International Publishing, 2016.
Improvements:
1. Use a small convolutional filter to predict object categories and offsets in bounding box
locations
2. Use multiple layers for prediction at different scales.
Comparison
From YOLOv2 From SSD
R-FCN
83.6% mAP
5.8fps
R-FCN
PASCAL VOC 2012
http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4
Comparison
Speed
single shot > region based
Accuracy
region based > single shot
Complexity
YOLO < SSD ≤ Faster R-CNN < R-FCN < YOLOv2(?)
Ad

More Related Content

What's hot (20)

Yolo
YoloYolo
Yolo
Sourav Garai
 
Yolo
YoloYolo
Yolo
Bang Tsui Liou
 
Object Detection and Recognition
Object Detection and Recognition Object Detection and Recognition
Object Detection and Recognition
Intel Nervana
 
You only look once: Unified, real-time object detection (UPC Reading Group)
You only look once: Unified, real-time object detection (UPC Reading Group)You only look once: Unified, real-time object detection (UPC Reading Group)
You only look once: Unified, real-time object detection (UPC Reading Group)
Universitat Politècnica de Catalunya
 
You only look once
You only look onceYou only look once
You only look once
Gin Kyeng Lee
 
Tutorial on Object Detection (Faster R-CNN)
Tutorial on Object Detection (Faster R-CNN)Tutorial on Object Detection (Faster R-CNN)
Tutorial on Object Detection (Faster R-CNN)
Hwa Pyung Kim
 
Deep Learning for Computer Vision: Object Detection (UPC 2016)
Deep Learning for Computer Vision: Object Detection (UPC 2016)Deep Learning for Computer Vision: Object Detection (UPC 2016)
Deep Learning for Computer Vision: Object Detection (UPC 2016)
Universitat Politècnica de Catalunya
 
Real-time object detection coz YOLO!
Real-time object detection coz YOLO!Real-time object detection coz YOLO!
Real-time object detection coz YOLO!
J On The Beach
 
Introduction to object detection
Introduction to object detectionIntroduction to object detection
Introduction to object detection
Brodmann17
 
A Brief History of Object Detection / Tommi Kerola
A Brief History of Object Detection / Tommi KerolaA Brief History of Object Detection / Tommi Kerola
A Brief History of Object Detection / Tommi Kerola
Preferred Networks
 
Yolov3
Yolov3Yolov3
Yolov3
VincentWu105
 
Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...
Universitat Politècnica de Catalunya
 
[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection
[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection
[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection
Taegyun Jeon
 
Yolo releases gianmaria
Yolo releases gianmariaYolo releases gianmaria
Yolo releases gianmaria
Deep Learning Italia
 
You only look once (YOLO) : unified real time object detection
You only look once (YOLO) : unified real time object detectionYou only look once (YOLO) : unified real time object detection
You only look once (YOLO) : unified real time object detection
Entrepreneur / Startup
 
Faster R-CNN
Faster R-CNNFaster R-CNN
Faster R-CNN
anna8885
 
Recent Progress on Object Detection_20170331
Recent Progress on Object Detection_20170331Recent Progress on Object Detection_20170331
Recent Progress on Object Detection_20170331
Jihong Kang
 
PR-207: YOLOv3: An Incremental Improvement
PR-207: YOLOv3: An Incremental ImprovementPR-207: YOLOv3: An Incremental Improvement
PR-207: YOLOv3: An Incremental Improvement
Jinwon Lee
 
Yolo
YoloYolo
Yolo
NEHA Kapoor
 
SSD: Single Shot MultiBox Detector (UPC Reading Group)
SSD: Single Shot MultiBox Detector (UPC Reading Group)SSD: Single Shot MultiBox Detector (UPC Reading Group)
SSD: Single Shot MultiBox Detector (UPC Reading Group)
Universitat Politècnica de Catalunya
 
Object Detection and Recognition
Object Detection and Recognition Object Detection and Recognition
Object Detection and Recognition
Intel Nervana
 
You only look once: Unified, real-time object detection (UPC Reading Group)
You only look once: Unified, real-time object detection (UPC Reading Group)You only look once: Unified, real-time object detection (UPC Reading Group)
You only look once: Unified, real-time object detection (UPC Reading Group)
Universitat Politècnica de Catalunya
 
Tutorial on Object Detection (Faster R-CNN)
Tutorial on Object Detection (Faster R-CNN)Tutorial on Object Detection (Faster R-CNN)
Tutorial on Object Detection (Faster R-CNN)
Hwa Pyung Kim
 
Real-time object detection coz YOLO!
Real-time object detection coz YOLO!Real-time object detection coz YOLO!
Real-time object detection coz YOLO!
J On The Beach
 
Introduction to object detection
Introduction to object detectionIntroduction to object detection
Introduction to object detection
Brodmann17
 
A Brief History of Object Detection / Tommi Kerola
A Brief History of Object Detection / Tommi KerolaA Brief History of Object Detection / Tommi Kerola
A Brief History of Object Detection / Tommi Kerola
Preferred Networks
 
Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...
Universitat Politècnica de Catalunya
 
[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection
[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection
[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection
Taegyun Jeon
 
You only look once (YOLO) : unified real time object detection
You only look once (YOLO) : unified real time object detectionYou only look once (YOLO) : unified real time object detection
You only look once (YOLO) : unified real time object detection
Entrepreneur / Startup
 
Faster R-CNN
Faster R-CNNFaster R-CNN
Faster R-CNN
anna8885
 
Recent Progress on Object Detection_20170331
Recent Progress on Object Detection_20170331Recent Progress on Object Detection_20170331
Recent Progress on Object Detection_20170331
Jihong Kang
 
PR-207: YOLOv3: An Incremental Improvement
PR-207: YOLOv3: An Incremental ImprovementPR-207: YOLOv3: An Incremental Improvement
PR-207: YOLOv3: An Incremental Improvement
Jinwon Lee
 

Similar to Deep learning for object detection (20)

Presentation2.pptx of sota seminar iit kanpur
Presentation2.pptx of sota seminar iit kanpurPresentation2.pptx of sota seminar iit kanpur
Presentation2.pptx of sota seminar iit kanpur
datastudydaily
 
object-detection.pptx
object-detection.pptxobject-detection.pptx
object-detection.pptx
MohamedAliHabib3
 
Object Detection An Overview
Object Detection An OverviewObject Detection An Overview
Object Detection An Overview
ijtsrd
 
[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...
[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...
[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...
NAVER Engineering
 
Modern convolutional object detectors
Modern convolutional object detectorsModern convolutional object detectors
Modern convolutional object detectors
Kwanghee Choi
 
Mobile Visual Search: Object Re-Identification Against Large Repositories
Mobile Visual Search: Object Re-Identification Against Large RepositoriesMobile Visual Search: Object Re-Identification Against Large Repositories
Mobile Visual Search: Object Re-Identification Against Large Repositories
United States Air Force Academy
 
最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に - 最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に -
Hiroshi Fukui
 
PR-110: An Analysis of Scale Invariance in Object Detection – SNIP
PR-110: An Analysis of Scale Invariance in Object Detection – SNIPPR-110: An Analysis of Scale Invariance in Object Detection – SNIP
PR-110: An Analysis of Scale Invariance in Object Detection – SNIP
jaewon lee
 
Deep learning based object detection
Deep learning based object detectionDeep learning based object detection
Deep learning based object detection
MonicaDommaraju
 
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
SimCLR: A Simple Framework for Contrastive Learning of Visual RepresentationsSimCLR: A Simple Framework for Contrastive Learning of Visual Representations
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
ynxm25hpxp
 
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
Edge AI and Vision Alliance
 
IRJET - Object Detection using Deep Learning with OpenCV and Python
IRJET - Object Detection using Deep Learning with OpenCV and PythonIRJET - Object Detection using Deep Learning with OpenCV and Python
IRJET - Object Detection using Deep Learning with OpenCV and Python
IRJET Journal
 
IRJET- Real-Time Object Detection using Deep Learning: A Survey
IRJET- Real-Time Object Detection using Deep Learning: A SurveyIRJET- Real-Time Object Detection using Deep Learning: A Survey
IRJET- Real-Time Object Detection using Deep Learning: A Survey
IRJET Journal
 
Classification of Object Detection Algorithms
Classification of Object Detection AlgorithmsClassification of Object Detection Algorithms
Classification of Object Detection Algorithms
VaishuRaj4
 
ppt - of a project will help you on your college projects
ppt - of a project will help you on your college projectsppt - of a project will help you on your college projects
ppt - of a project will help you on your college projects
vikaspandey0702
 
Object Detection Beyond Mask R-CNN and RetinaNet I
Object Detection Beyond Mask R-CNN and RetinaNet IObject Detection Beyond Mask R-CNN and RetinaNet I
Object Detection Beyond Mask R-CNN and RetinaNet I
Wanjin Yu
 
Object Detetcion using SSD-MobileNet
Object Detetcion using SSD-MobileNetObject Detetcion using SSD-MobileNet
Object Detetcion using SSD-MobileNet
IRJET Journal
 
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
Universitat Politècnica de Catalunya
 
Object Detection - Míriam Bellver - UPC Barcelona 2018
Object Detection - Míriam Bellver - UPC Barcelona 2018Object Detection - Míriam Bellver - UPC Barcelona 2018
Object Detection - Míriam Bellver - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
Review: You Only Look One-level Feature
Review: You Only Look One-level FeatureReview: You Only Look One-level Feature
Review: You Only Look One-level Feature
Dongmin Choi
 
Presentation2.pptx of sota seminar iit kanpur
Presentation2.pptx of sota seminar iit kanpurPresentation2.pptx of sota seminar iit kanpur
Presentation2.pptx of sota seminar iit kanpur
datastudydaily
 
Object Detection An Overview
Object Detection An OverviewObject Detection An Overview
Object Detection An Overview
ijtsrd
 
[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...
[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...
[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...
NAVER Engineering
 
Modern convolutional object detectors
Modern convolutional object detectorsModern convolutional object detectors
Modern convolutional object detectors
Kwanghee Choi
 
Mobile Visual Search: Object Re-Identification Against Large Repositories
Mobile Visual Search: Object Re-Identification Against Large RepositoriesMobile Visual Search: Object Re-Identification Against Large Repositories
Mobile Visual Search: Object Re-Identification Against Large Repositories
United States Air Force Academy
 
最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に - 最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に -
Hiroshi Fukui
 
PR-110: An Analysis of Scale Invariance in Object Detection – SNIP
PR-110: An Analysis of Scale Invariance in Object Detection – SNIPPR-110: An Analysis of Scale Invariance in Object Detection – SNIP
PR-110: An Analysis of Scale Invariance in Object Detection – SNIP
jaewon lee
 
Deep learning based object detection
Deep learning based object detectionDeep learning based object detection
Deep learning based object detection
MonicaDommaraju
 
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
SimCLR: A Simple Framework for Contrastive Learning of Visual RepresentationsSimCLR: A Simple Framework for Contrastive Learning of Visual Representations
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
ynxm25hpxp
 
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
Edge AI and Vision Alliance
 
IRJET - Object Detection using Deep Learning with OpenCV and Python
IRJET - Object Detection using Deep Learning with OpenCV and PythonIRJET - Object Detection using Deep Learning with OpenCV and Python
IRJET - Object Detection using Deep Learning with OpenCV and Python
IRJET Journal
 
IRJET- Real-Time Object Detection using Deep Learning: A Survey
IRJET- Real-Time Object Detection using Deep Learning: A SurveyIRJET- Real-Time Object Detection using Deep Learning: A Survey
IRJET- Real-Time Object Detection using Deep Learning: A Survey
IRJET Journal
 
Classification of Object Detection Algorithms
Classification of Object Detection AlgorithmsClassification of Object Detection Algorithms
Classification of Object Detection Algorithms
VaishuRaj4
 
ppt - of a project will help you on your college projects
ppt - of a project will help you on your college projectsppt - of a project will help you on your college projects
ppt - of a project will help you on your college projects
vikaspandey0702
 
Object Detection Beyond Mask R-CNN and RetinaNet I
Object Detection Beyond Mask R-CNN and RetinaNet IObject Detection Beyond Mask R-CNN and RetinaNet I
Object Detection Beyond Mask R-CNN and RetinaNet I
Wanjin Yu
 
Object Detetcion using SSD-MobileNet
Object Detetcion using SSD-MobileNetObject Detetcion using SSD-MobileNet
Object Detetcion using SSD-MobileNet
IRJET Journal
 
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
Universitat Politècnica de Catalunya
 
Review: You Only Look One-level Feature
Review: You Only Look One-level FeatureReview: You Only Look One-level Feature
Review: You Only Look One-level Feature
Dongmin Choi
 
Ad

Recently uploaded (20)

Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Ad

Deep learning for object detection

  • 1. Deep learning for object detection Wenjing Chen *Created in March 2017, might be outdated the time you read. Slide credit: CS231n
  • 2. Outline 1. Introduction 2. Common methods Region proposal based methods R-CNN, Fast R-CNN, Faster R-CNN, R-FCN, Mask R-CNN Single shot based methods YOLO, YOLOv2, SSD 1. Comparison
  • 3. Introduction one image -> one label one image -> labels + bounding boxes
  • 4. Region based methods - R-CNN Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
  • 5. Region based methods - Fast R-CNN Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE International Conference on Computer Vision. 2015.
  • 6. Region based methods - Faster R-CNN Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015.
  • 7. Region based methods - Faster R-CNN
  • 8. Region based methods - R-FCN Li, Yi, Kaiming He, and Jian Sun. "R-fcn: Object detection via region-based fully convolutional networks." Advances in Neural Information Processing Systems. 2016. Average pooling
  • 9. Region based methods - Mask R-CNN He, Kaiming, et al. "Mask R-CNN." arXiv preprint arXiv:1703.06870 (2017). Object instance segmentation:  Extend Faster R-CNN by adding a branch for predicting segmentation masks on each RoI  Running at 5 fps  Without tricks, outperforms all existing, single-model entries on every task in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection !!!
  • 10. Single shot based method - YOLO Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016. 1. Resize input image to 448*448. 1. Run a single convolutional network. Predicts B bounding boxes (4 coordinates + confidence) and C class probabilities for S*S grids, encoded as an S*S*(B*5+C) tensor. 1. Non-maximum suppression. S*S*B bounding boxes per image and C class probabilities for each box.
  • 11. Single shot based method - YOLOv2 Redmon, Joseph, and Ali Farhadi. "YOLO9000: Better, Faster, Stronger." arXiv preprint arXiv:1612.08242 (2016). YOLO problem: 1. Significant number of localization errors. 2. Low recall compared to region proposal based methods. Improvements:
  • 12. Single shot based method - SSD Liu, Wei, et al. "SSD: Single shot multibox detector." European Conference on Computer Vision. Springer International Publishing, 2016. Improvements: 1. Use a small convolutional filter to predict object categories and offsets in bounding box locations 2. Use multiple layers for prediction at different scales.
  • 13. Comparison From YOLOv2 From SSD R-FCN 83.6% mAP 5.8fps R-FCN
  • 15. Comparison Speed single shot > region based Accuracy region based > single shot Complexity YOLO < SSD ≤ Faster R-CNN < R-FCN < YOLOv2(?)

Editor's Notes

  • #12: Batch normalization. 2% more in mAP. High resolution classifier. 4% more in mAP. Convolutional with anchor boxes. 69.5 mAP 81% recall to 69.2 mAP 88% recall. Dimension clusters. Better anchor boxes priors. 60.9% to 67.2% in Avg IOU. Direct location prediction. Solve model instability. Fine-Grained features. 1% more in mAP. Multi-scale training.