SlideShare a Scribd company logo
Machine-Interpretable
Dataset and Service Descriptions
for Heterogeneous Data Access & Retrieval
Anastasia Dimou, Ruben Verborgh,
Miel Vander Sande, Erik Mannens, Rik Van de Walle
Anastasia.Dimou@UGent.be @natadimou
Ghent University – iMinds – Multimedia Lab
http://RML.io
Semantic Web enabled applications
rely on data represented as
Linked Open Data
Linked Open Data
describe domain-level knowledge
that is understandable by
both humans and machines
Resource Description Framework (RDF)
is the prevalent data model
for describing Linked Open Data
predicatesubject object
Resource Description Framework (RDF)
ex:1 ex:MMLabex:works
“Anastasia Dimou”
ex:1 ex:MMLabex:works
“Anastasia Dimou”
ex:2 ex:MMLabex:works
“Ruben Verborgh”
ex:1 ex:MMLabex:works
“Anastasia Dimou”
ex:2 ex:MMLabex:works
“Ruben Verborgh”
ex:3 ex:MMLabex:works
“Miel Vander Sande”
ex:1 ex:MMLabex:works
“Anastasia Dimou”
ex:locatedex:MMLab ex:Ghent
ex:2 ex:MMLabex:works
“Ruben Verborgh”
ex:3 ex:MMLabex:works
“Miel Vander Sande”
ex:{id}
ex:{lab}
ex:located
ex:{lab} ex:{city}
sets of triples of a dataset have repetitive patterns
“{firstname}
{surname}”
ex:{id}
ex:{lab}
sets of triples of a dataset have repetitive patterns
“{firstname}
{surname}”
triple-oriented mapping languages
formalize patterns into rules to map data to RDF
ex:located
ex:{lab} ex:{city}
RDF Mapping Language (RML)
map any data to RDF
uniform, integrable, interoperable, extensible
extends the W3C-recommended R2RML
http://RML.io
A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. Van de Walle.
RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data.
In Proceedings of the 7th Workshop on Linked Data on the Web (LDOW2014), 2014.
RML describes
rules to map any structured data to RDF
RML supports any data independently of
which structure and format they have
where they originally reside
how they are accessed & retrieved
data access and retrieval
is manually performed
remains hard-coded
Mapping data
any data to RDF with RML
Specifying data
which data form a data input
how to reference data input extracts
Accessing & Retrieving data
data input from original source(s)
Mapping data
any data to RDF with RML
Specifying
which data form a data input
how to reference data input extracts
Accessing & Retrieving
data input from original source(s)
rr:constant
ex:located
rr:template
“http://ex.com/{lab}”
rr:template
“http://ex.com/{city}”
rr:template
“http://ex.com/{id}”
rr:template
“http://ex.com/{lab}”
rr:template “{firstname} {surname}”
rr:termType rr:Literal
RDF Mapping Language (RML)
@prefix rr: <http://www.w3.org/ns/r2rml#>
Predicate MapSubject
Map
Object
Map
<#TriplesMap>
RDF Mapping Language (RML)
rr:constant
ex:located
rr:template
“http://ex.com/{lab}”
rr:template
“http://ex.com/{city}”
rr:template
“http://ex.com/{lab}”
rr:template
“http://ex.com/{lab}”
<#ResearcherMap>
<#LabMap>
rr:template “{firstname} {surname}”
rr:termType rr:Literal
Mapping data
data to RDF with RML
Specifying data
which data form a data input
how to reference data input extracts
Accessing & Retrieving data
data input from original source(s)
Triples Map
RDF Mapping Language (RML)
Predicate
Object Map
Subject
Map
Predicate
Map
Object Map
Triples Map
RDF Mapping Language (RML)
Predicate
Object Map
Subject
Map
Predicate
Map
Object Map
Logical
Source
Support data in Heterogeneous Structures
tabular-structured
hierarchical-structured
(semi-)structured
… … …
Support data in Heterogeneous Structures and Formats
tabular-structured
tables in DBs or CSV files …
hierarchical-structured
JSON or XML …
(semi-)structured
HTML …
… … …
rr:template
“http://ex.com/{id}”
rr:template
“http://ex.com/{lab}”
<#ResearcherMap> rr:template “{firstname} {surname}”
rr:termType rr:Literal
id firstname surname lab
1 Anastasia Dimou MMLab
2 Ruben Verborgh MMLab
3 Miel Vander Sande MMLab
support tabular-structured data
rr:constant
ex:located
rr:template
“http://ex.com/
{/labs/lab/short}”
rr:template
“http://ex.com/
{/labs/lab/location/city}”
<#LabMap>
<labs>
<lab>
<short>MMLab</short>
<title>Multimedia Lab</title>
<location>
<city>Ghent</city>
</location>
</lab>
<lab> …. </lab>
…
</labs>
support hierarchical-structured data
rr:constant
ex:located
rr:template
“http://ex.com/
{/labs/lab/short}”
rr:template
“http://ex.com/
{/labs/lab/location/city}”
<#LabMap>
<labs>
<lab>
<short>MMLab</short>
<title>Multimedia Lab</title>
<location>
<city>Ghent</city>
</location>
</lab>
<lab> …. </lab>
…
</labs>
How to reference data extracts?
Triples Map
RDF Mapping Language (RML)
Predicate
Object Map
Subject
Map
Predicate
Map
Object Map
Logical
Source
Reference
Formulation
<labs>
<lab>
<short>MMLab</short>
<title>Multimedia Lab</title>
<location>
<city>Ghent</city>
</location>
</lab>
<lab> …. </lab>
…
</labs>
<#Lab
Logical
Source>
ql:XPath
rr:constant
ex:located
rr:template
“http://ex.com/
{/labs/lab/short}”
rr:template
“http://ex.com/
{/labs/lab/location/city}”
<#LabMap>
<labs>
<lab>
<short>MMLab</short>
<title>Multimedia Lab</title>
<location>
<city>Ghent</city>
</location>
</lab>
<lab> …. </lab>
…
</labs>
<#Lab
Logical
Source>
ql:XPath
rr:constant
ex:located
rr:template
“http://ex.com/
{/labs/lab/short}”
rr:template
“http://ex.com/
{/labs/lab/location/city}”
<#LabMap>
How to iterate over the data?
Triples Map
RDF Mapping Language (RML)
Predicate
Object Map
Subject
Map
Predicate
Map
Object Map
Logical
Source
Reference
Formulation
iterator
<labs>
<lab>
<short>MMLab</short>
<title>Multimedia Lab</title>
<location>
<city>Ghent</city>
</location>
</lab>
<lab> …. </lab>
…
</labs>
<#Lab
Logical
Source>
ql:XPath
“/labs/lab”
rr:constant
ex:located
rr:template
“http://ex.com/
{/labs/lab/short}”
rr:template
“http://ex.com/
{/labs/lab/location/city}”
<#LabMap>
Mapping data
data to RDF with RML
Specifying data
which data form a data source
how to reference data extracts
Accessing & Retrieving data
data from their original sources
Input
data
Input
data
Input
data
Output
RDF
Mapping
module
RML
Processor
Map
doc
Data
source
Access
interface
Input
data
Input
data
Input
data
Output
RDF
Mapping
module
RML
Processor
Map
doc
Data
source
Access
interface
Data
source
Access
interface
Retrieval
module
Source
description
Data
source
Access
interface
Input
data
Input
data
Input
data
Output
RDF
Mapping
module
RML
Processor
Map
doc
Data
source
Access
interface
Data
source
Access
interface
Retrieval
module
Source
description
Where does this data originally come from?
Support different Locations and Access Interfaces
Local File(s)
Database connectivity
Web source(s)
RDF source(s)
Dataset and Service Vocabularies
advertising in machine-interpretable fashion
how to access the underlying data
can also be used in combination with RML
to retrieve the data input to be mapped
from its original source
Support different Locations and Access Interfaces
Local File(s)
Database connectivity
D2RQ
Web source(s) (Web API/service)
DCAT, CSVW, Hydra, VOiD (Dataset)
RDF source(s)
VOiD (Endpoint), SPARQL-SD
Triples Map
RDF Mapping Language (RML)
Predicate
Object Map
Subject
Map
Predicate
Map
Object Map
Logical
Source
Reference
Formulation
iterator
Source
<labs>
<lab>
<short>MMLab</short>
<title>Multimedia Lab</title>
<location>
<city>Ghent</city>
</location>
</lab>
<lab> …. </lab>
…
</labs>
<#Lab
Logical
Source>
ql:XPath
rr:constant
ex:located
rr:template
“http://ex.com/
{/labs/lab/short}”
rr:template
“http://ex.com/
{/labs/lab/location/city}”
<#LabMap>
“/labs/lab”
_:Source
Where does this data originally come from?
file.xml
XML
data
Output
RDF
Mapping
module
RML
Processor
Map
doc
Retrieval
module
Support Local File(s)
<labs>
<lab>
<short>MMLab</short>
<title>Multimedia Lab</title>
<location>
<city>Ghent</city>
</location>
</lab>
<lab> …. </lab>
…
</labs>
<#Lab
Logical
Source>
ql:XPath
rr:constant
ex:located
rr:template
“http://ex.com/
{/labs/lab/short}”
rr:template
“http://ex.com/
{/labs/lab/location/city}”
<#LabMap>
“/labs/lab”
“file.xml”
Support Local File(s)
file.xml
WEBAPI
DCAT
XML
data
Output
RDF
Mapping
module
RML
Processor
Map
doc
Retrieval
module
Source
description
Support file(s) published on the Web
<labs>
<lab>
<short>MMLab</short>
<title>Multimedia Lab</title>
<location>
<city>Ghent</city>
</location>
</lab>
<lab> …. </lab>
…
</labs>
<#Lab
Logical
Source>
ql:XPath
dcat:
distribution
a dcat:
Distribution
“/labs/lab”
_:Source
Support dataset on the Web (DCAT)
_:Source
dcat:Dataset
<http://ex.com/
file.xml>
dcat:
downloadUrl
file.xml
WEBAPI
DCAT
XML
data
JSON
data
Output
RDF
Mapping
module
RML
Processor
Map
doc
Data
repo
WEBAPI
Hydra
Retrieval
module
Source
description
Support data derived from a Web API
<labs>
<lab>
<short>MMLab</short>
<title>Multimedia Lab</title>
<location>
<city>Ghent</city>
</location>
</lab>
<lab> …. </lab>
…
</labs>
<#Lab
Logical
Source>
ql:XPath
hydra:
template
“http://ex.com/lab?
name={labName}”
“/labs/lab”
_:Source
Support data from a Web API (Hydra)
_:Source
hydra:
IriTemplate
file.xml
WEBAPI
DCAT
XML
data
JSON
data
tabular
data
Output
RDF
Mapping
module
RML
Processor
Map
doc
Data
repo
WEBAPI
Hydra
Data
base
JDBC
D2RQ
Retrieval
module
Source
description
rr:template
“http://ex.com/{id}”
rr:template
“http://ex.com/{lab}”
<#ResearcherMap> rr:template “{firstname} {surname}”
rr:termType rr:Literal
id firstname surname lab
1 Anastasia Dimou MMLab
2 Ruben Verborgh MMLab
3 Miel Vander
Sande
MMLab
Support tabular-structured data
<#DB
Logical
Source>
rr:SQL2008
“…”
_:Source
“SELECT …”
rr:template
“http://ex.com/{id}”
rr:template
“http://ex.com/{lab}”
<#ResearcherMap> rr:template “{firstname} {surname}”
rr:termType rr:Literal
Support tabular-structured data
<#DB
Logical
Source>
rr:SQL2008
“…”
_:Source
“SELECT …”
“…”
_:Source
d2rq:Database
“…”
“…”
“…”
file.xml
WEBAPI
DCAT
XML
data
JSON
data
tabular
data
Output
RDF
Mapping
module
RML
Processor
Map
doc
Data
repo
WEBAPI
Hydra
Data
base
JDBC
D2RQ
Retrieval
module
Source
description
Triple
store
SPARQL
ex:located
ex:{lab}
dbpedia:
{city}
ex:located
ex:{lab} ex:{city}
object defined in existing RDF source(s)
<#Lab
Logical
Source>
ql:XPath
rr:constant
ex:located
rr:template
“http://ex.com/
{/labs/lab/short}”
rml:reference “{/…/city}”
rr:termType rr:IRI
<#LabMap>
“/labs/lab”
_:Source
<#Dbpedia
Logical
Source>
ql:XPath
“/…/result”
DBpedia
<#DBpediaMap>
ex:located
ex:{lab}
dbpedia:
{city}
“SELECT …”
<#Lab
Logical
Source>
ql:XPath
rr:constant
ex:located
rr:template
“http://ex.com/
{/labs/lab/short}”
rml:reference “{/…/city}”
rr:termType rr:IRI
<#LabMap>
“/labs/lab”
_:Source
<#Dbpedia
Logical
Source>
ql:XPath
“/…/result”
DBpedia
<#DBpediaMap>
ex:located
ex:{lab}
dbpedia:
{city}
“SELECT …”
RML Editor (http://RML.io/RMLeditor)
Mapping data
any data to RDF with RML
Specifying data
which data form a data input
how to reference data input extracts
Accessing & Retrieving data
data input from original source(s)
Data access, retrieval and mapping descriptions
are machine-interpretable
Granular robust solution based on RML
which further automates and facilitates
the generation of RDF representations
RML.io
Questions?
Anastasia Dimou
@natadimou
Ad

Recommended

A Generic Language for Integrated RDF Mappings of Heterogeneous Data
A Generic Language for Integrated RDF Mappings of Heterogeneous Data
andimou
 
Assessing and Refining Mappings to RDF to Improve Dataset Quality
Assessing and Refining Mappings to RDF to Improve Dataset Quality
andimou
 
DBpedia Mappings Quality Assessment
DBpedia Mappings Quality Assessment
andimou
 
Mapping Hierarchical Sources into RDF using the RML Mapping Language
Mapping Hierarchical Sources into RDF using the RML Mapping Language
andimou
 
Mappings Validation
Mappings Validation
andimou
 
Introduction to data analysis using R
Introduction to data analysis using R
Victoria López
 
Unit 3
Unit 3
Piyush Rochwani
 
Achieving time effective federated information from scalable rdf data using s...
Achieving time effective federated information from scalable rdf data using s...
తేజ దండిభట్ల
 
Mapping, Interlinking and Exposing MusicBrainz as Linked Data
Mapping, Interlinking and Exposing MusicBrainz as Linked Data
Peter Haase
 
A Survey of Entity Ranking over RDF Graphs
A Survey of Entity Ranking over RDF Graphs
Intelligent Search Systems and Semantic Technologies lab at ITIS KFU
 
Timbuctoo 2 EASY
Timbuctoo 2 EASY
henkvandenberg16
 
Scalable Data Analysis in R -- Lee Edlefsen
Scalable Data Analysis in R -- Lee Edlefsen
Revolution Analytics
 
SWT Lecture Session 2 - RDF
SWT Lecture Session 2 - RDF
Mariano Rodriguez-Muro
 
A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and ...
A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and ...
Marko Rodriguez
 
DB and IR Integration
DB and IR Integration
Marco A Torres
 
DB-IR-ranking
DB-IR-ranking
FELIX75
 
The Network Data Structure in Computing
The Network Data Structure in Computing
Marko Rodriguez
 
Linked (Open) Data
Linked (Open) Data
Bernhard Haslhofer
 
Tracing Networks: Ontology Software in a Nutshell
Tracing Networks: Ontology Software in a Nutshell
enoch1982
 
RDF data model
RDF data model
Jose Emilio Labra Gayo
 
HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation
HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation
Muhammad Saleem
 
Computing with Directed Labeled Graphs
Computing with Directed Labeled Graphs
Marko Rodriguez
 
Efficient RDF Interchange (ERI) Format for RDF Data Streams
Efficient RDF Interchange (ERI) Format for RDF Data Streams
WU (Vienna University of Economics and Business)
 
FedX - Optimization Techniques for Federated Query Processing on Linked Data
FedX - Optimization Techniques for Federated Query Processing on Linked Data
aschwarte
 
Efficient source selection for sparql endpoint federation
Efficient source selection for sparql endpoint federation
Muhammad Saleem
 
Visualising the Australian open data and research data landscape
Visualising the Australian open data and research data landscape
Jonathan Yu
 
Federated Query Formulation and Processing Through BioFed
Federated Query Formulation and Processing Through BioFed
Muhammad Saleem
 
Introduction To RDF and RDFS
Introduction To RDF and RDFS
Nilesh Wagmare
 
The Rules - SGS
The Rules - SGS
Tania Kasongo
 
Ultimate Platform Hotness Smackdown (Twitter, Facebook, iPhone, Native Web / ...
Ultimate Platform Hotness Smackdown (Twitter, Facebook, iPhone, Native Web / ...
Dave McClure
 

More Related Content

What's hot (20)

Mapping, Interlinking and Exposing MusicBrainz as Linked Data
Mapping, Interlinking and Exposing MusicBrainz as Linked Data
Peter Haase
 
A Survey of Entity Ranking over RDF Graphs
A Survey of Entity Ranking over RDF Graphs
Intelligent Search Systems and Semantic Technologies lab at ITIS KFU
 
Timbuctoo 2 EASY
Timbuctoo 2 EASY
henkvandenberg16
 
Scalable Data Analysis in R -- Lee Edlefsen
Scalable Data Analysis in R -- Lee Edlefsen
Revolution Analytics
 
SWT Lecture Session 2 - RDF
SWT Lecture Session 2 - RDF
Mariano Rodriguez-Muro
 
A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and ...
A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and ...
Marko Rodriguez
 
DB and IR Integration
DB and IR Integration
Marco A Torres
 
DB-IR-ranking
DB-IR-ranking
FELIX75
 
The Network Data Structure in Computing
The Network Data Structure in Computing
Marko Rodriguez
 
Linked (Open) Data
Linked (Open) Data
Bernhard Haslhofer
 
Tracing Networks: Ontology Software in a Nutshell
Tracing Networks: Ontology Software in a Nutshell
enoch1982
 
RDF data model
RDF data model
Jose Emilio Labra Gayo
 
HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation
HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation
Muhammad Saleem
 
Computing with Directed Labeled Graphs
Computing with Directed Labeled Graphs
Marko Rodriguez
 
Efficient RDF Interchange (ERI) Format for RDF Data Streams
Efficient RDF Interchange (ERI) Format for RDF Data Streams
WU (Vienna University of Economics and Business)
 
FedX - Optimization Techniques for Federated Query Processing on Linked Data
FedX - Optimization Techniques for Federated Query Processing on Linked Data
aschwarte
 
Efficient source selection for sparql endpoint federation
Efficient source selection for sparql endpoint federation
Muhammad Saleem
 
Visualising the Australian open data and research data landscape
Visualising the Australian open data and research data landscape
Jonathan Yu
 
Federated Query Formulation and Processing Through BioFed
Federated Query Formulation and Processing Through BioFed
Muhammad Saleem
 
Introduction To RDF and RDFS
Introduction To RDF and RDFS
Nilesh Wagmare
 
Mapping, Interlinking and Exposing MusicBrainz as Linked Data
Mapping, Interlinking and Exposing MusicBrainz as Linked Data
Peter Haase
 
Scalable Data Analysis in R -- Lee Edlefsen
Scalable Data Analysis in R -- Lee Edlefsen
Revolution Analytics
 
A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and ...
A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and ...
Marko Rodriguez
 
DB-IR-ranking
DB-IR-ranking
FELIX75
 
The Network Data Structure in Computing
The Network Data Structure in Computing
Marko Rodriguez
 
Tracing Networks: Ontology Software in a Nutshell
Tracing Networks: Ontology Software in a Nutshell
enoch1982
 
HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation
HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation
Muhammad Saleem
 
Computing with Directed Labeled Graphs
Computing with Directed Labeled Graphs
Marko Rodriguez
 
FedX - Optimization Techniques for Federated Query Processing on Linked Data
FedX - Optimization Techniques for Federated Query Processing on Linked Data
aschwarte
 
Efficient source selection for sparql endpoint federation
Efficient source selection for sparql endpoint federation
Muhammad Saleem
 
Visualising the Australian open data and research data landscape
Visualising the Australian open data and research data landscape
Jonathan Yu
 
Federated Query Formulation and Processing Through BioFed
Federated Query Formulation and Processing Through BioFed
Muhammad Saleem
 
Introduction To RDF and RDFS
Introduction To RDF and RDFS
Nilesh Wagmare
 

Viewers also liked (20)

The Rules - SGS
The Rules - SGS
Tania Kasongo
 
Ultimate Platform Hotness Smackdown (Twitter, Facebook, iPhone, Native Web / ...
Ultimate Platform Hotness Smackdown (Twitter, Facebook, iPhone, Native Web / ...
Dave McClure
 
William Gross Sues Pimco for Hundreds of Millions
William Gross Sues Pimco for Hundreds of Millions
Tric Park
 
teaching methods
teaching methods
estefycoronel
 
Latin Dansları
Latin Dansları
Busrawien28
 
Interactive big data analytics
Interactive big data analytics
Viet-Trung TRAN
 
Challenging our Notions of Learning: Understanding How Web 2.0 Technology Wor...
Challenging our Notions of Learning: Understanding How Web 2.0 Technology Wor...
Paul Brown
 
Guia De Estudio Digestivo
Guia De Estudio Digestivo
Luciana Yohai
 
xoxooo tkmmm
xoxooo tkmmm
ceny2
 
Balanceo de una ecuación química
Balanceo de una ecuación química
dopamina mexico
 
Moving to the Right Side of Safety
Moving to the Right Side of Safety
SAMTRAC International
 
The State of Facilities at Eastern Region Institutions JUNE16
The State of Facilities at Eastern Region Institutions JUNE16
Sightlines
 
Tachyon memory centric, fault tolerance storage for cluster framworks
Tachyon memory centric, fault tolerance storage for cluster framworks
Viet-Trung TRAN
 
Charitable Giving and Happiness
Charitable Giving and Happiness
Faircom New York
 
How to increase traffic to your WordPress website.
How to increase traffic to your WordPress website.
Liquis Design
 
Social media strategies for libraries poster
Social media strategies for libraries poster
Nataly Blas
 
Practica 2 quimica organica -espol
Practica 2 quimica organica -espol
Lissy Rodriguez
 
Jvm mbeans jmxtran
Jvm mbeans jmxtran
adm_exoplatform
 
God Is Forgiving
God Is Forgiving
William Harris
 
Torque
Torque
caitlinforan
 
Ultimate Platform Hotness Smackdown (Twitter, Facebook, iPhone, Native Web / ...
Ultimate Platform Hotness Smackdown (Twitter, Facebook, iPhone, Native Web / ...
Dave McClure
 
William Gross Sues Pimco for Hundreds of Millions
William Gross Sues Pimco for Hundreds of Millions
Tric Park
 
Interactive big data analytics
Interactive big data analytics
Viet-Trung TRAN
 
Challenging our Notions of Learning: Understanding How Web 2.0 Technology Wor...
Challenging our Notions of Learning: Understanding How Web 2.0 Technology Wor...
Paul Brown
 
Guia De Estudio Digestivo
Guia De Estudio Digestivo
Luciana Yohai
 
xoxooo tkmmm
xoxooo tkmmm
ceny2
 
Balanceo de una ecuación química
Balanceo de una ecuación química
dopamina mexico
 
The State of Facilities at Eastern Region Institutions JUNE16
The State of Facilities at Eastern Region Institutions JUNE16
Sightlines
 
Tachyon memory centric, fault tolerance storage for cluster framworks
Tachyon memory centric, fault tolerance storage for cluster framworks
Viet-Trung TRAN
 
Charitable Giving and Happiness
Charitable Giving and Happiness
Faircom New York
 
How to increase traffic to your WordPress website.
How to increase traffic to your WordPress website.
Liquis Design
 
Social media strategies for libraries poster
Social media strategies for libraries poster
Nataly Blas
 
Practica 2 quimica organica -espol
Practica 2 quimica organica -espol
Lissy Rodriguez
 
Ad

Similar to Machine-Interpretable Dataset and Service Descriptions for Heterogeneous Data Access and Retrieval (20)

Do it on your own - From 3 to 5 Star Linked Open Data with RMLio
Do it on your own - From 3 to 5 Star Linked Open Data with RMLio
Open Knowledge Belgium
 
Translation of Relational and Non-Relational Databases into RDF with xR2RML
Translation of Relational and Non-Relational Databases into RDF with xR2RML
Franck Michel
 
Relational Database to RDF (RDB2RDF)
Relational Database to RDF (RDB2RDF)
EUCLID project
 
Incremental Export of Relational Database Contents into RDF Graphs
Incremental Export of Relational Database Contents into RDF Graphs
Nikolaos Konstantinou
 
Publishing "5 star" data: the case for RDF
Publishing "5 star" data: the case for RDF
PeterWinstanley1
 
RDB2RDF Tutorial (R2RML and Direct Mapping) at ISWC 2013
RDB2RDF Tutorial (R2RML and Direct Mapping) at ISWC 2013
Juan Sequeda
 
SWT Lecture Session 10 R2RML Part 1
SWT Lecture Session 10 R2RML Part 1
Mariano Rodriguez-Muro
 
Transient and persistent RDF views over relational databases in the context o...
Transient and persistent RDF views over relational databases in the context o...
Nikolaos Konstantinou
 
"RDFa - what, why and how?" by Mike Hewett and Shamod Lacoul
"RDFa - what, why and how?" by Mike Hewett and Shamod Lacoul
Shamod Lacoul
 
Cognitive data
Cognitive data
Sören Auer
 
Introduction to RDF & SPARQL
Introduction to RDF & SPARQL
Open Data Support
 
Linked data demystified:Practical efforts to transform CONTENTDM metadata int...
Linked data demystified:Practical efforts to transform CONTENTDM metadata int...
Cory Lampert
 
A Hands On Overview Of The Semantic Web
A Hands On Overview Of The Semantic Web
Shamod Lacoul
 
RDF-Gen: Generating RDF from streaming and archival data
RDF-Gen: Generating RDF from streaming and archival data
Giorgos Santipantakis
 
Semantic Web and Related Work at W3C
Semantic Web and Related Work at W3C
Ivan Herman
 
Integrating Heterogeneous Data Sources in the Web of Data
Integrating Heterogeneous Data Sources in the Web of Data
Franck Michel
 
Culture Geeks Feb talk: Adventures in Linked Data Land
Culture Geeks Feb talk: Adventures in Linked Data Land
val.cartei
 
Linked Data Tutorial
Linked Data Tutorial
Sören Auer
 
Adventures in Linked Data Land (presentation by Richard Light)
Adventures in Linked Data Land (presentation by Richard Light)
jottevanger
 
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
Josef Petrák
 
Do it on your own - From 3 to 5 Star Linked Open Data with RMLio
Do it on your own - From 3 to 5 Star Linked Open Data with RMLio
Open Knowledge Belgium
 
Translation of Relational and Non-Relational Databases into RDF with xR2RML
Translation of Relational and Non-Relational Databases into RDF with xR2RML
Franck Michel
 
Relational Database to RDF (RDB2RDF)
Relational Database to RDF (RDB2RDF)
EUCLID project
 
Incremental Export of Relational Database Contents into RDF Graphs
Incremental Export of Relational Database Contents into RDF Graphs
Nikolaos Konstantinou
 
Publishing "5 star" data: the case for RDF
Publishing "5 star" data: the case for RDF
PeterWinstanley1
 
RDB2RDF Tutorial (R2RML and Direct Mapping) at ISWC 2013
RDB2RDF Tutorial (R2RML and Direct Mapping) at ISWC 2013
Juan Sequeda
 
Transient and persistent RDF views over relational databases in the context o...
Transient and persistent RDF views over relational databases in the context o...
Nikolaos Konstantinou
 
"RDFa - what, why and how?" by Mike Hewett and Shamod Lacoul
"RDFa - what, why and how?" by Mike Hewett and Shamod Lacoul
Shamod Lacoul
 
Introduction to RDF & SPARQL
Introduction to RDF & SPARQL
Open Data Support
 
Linked data demystified:Practical efforts to transform CONTENTDM metadata int...
Linked data demystified:Practical efforts to transform CONTENTDM metadata int...
Cory Lampert
 
A Hands On Overview Of The Semantic Web
A Hands On Overview Of The Semantic Web
Shamod Lacoul
 
RDF-Gen: Generating RDF from streaming and archival data
RDF-Gen: Generating RDF from streaming and archival data
Giorgos Santipantakis
 
Semantic Web and Related Work at W3C
Semantic Web and Related Work at W3C
Ivan Herman
 
Integrating Heterogeneous Data Sources in the Web of Data
Integrating Heterogeneous Data Sources in the Web of Data
Franck Michel
 
Culture Geeks Feb talk: Adventures in Linked Data Land
Culture Geeks Feb talk: Adventures in Linked Data Land
val.cartei
 
Linked Data Tutorial
Linked Data Tutorial
Sören Auer
 
Adventures in Linked Data Land (presentation by Richard Light)
Adventures in Linked Data Land (presentation by Richard Light)
jottevanger
 
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
Josef Petrák
 
Ad

More from andimou (7)

What Factors Influence the Design of a Linked Data Generation Algorithm?
What Factors Influence the Design of a Linked Data Generation Algorithm?
andimou
 
High quality Linked Data generation for librarians
High quality Linked Data generation for librarians
andimou
 
iLastic: Linked Data Generation Workflow and User Interface for iMinds Schola...
iLastic: Linked Data Generation Workflow and User Interface for iMinds Schola...
andimou
 
Towards an Interface for User-Friendly Linked Data Generation Administration
Towards an Interface for User-Friendly Linked Data Generation Administration
andimou
 
Test-driven Assessment of [R2]RML Mappings to Improve Dataset Quality
Test-driven Assessment of [R2]RML Mappings to Improve Dataset Quality
andimou
 
Extraction and Semantic Annotation of Workshop Proceedings in HTML using RML
Extraction and Semantic Annotation of Workshop Proceedings in HTML using RML
andimou
 
Visualizing the information of a Linked Open Data enabled Research Informatio...
Visualizing the information of a Linked Open Data enabled Research Informatio...
andimou
 
What Factors Influence the Design of a Linked Data Generation Algorithm?
What Factors Influence the Design of a Linked Data Generation Algorithm?
andimou
 
High quality Linked Data generation for librarians
High quality Linked Data generation for librarians
andimou
 
iLastic: Linked Data Generation Workflow and User Interface for iMinds Schola...
iLastic: Linked Data Generation Workflow and User Interface for iMinds Schola...
andimou
 
Towards an Interface for User-Friendly Linked Data Generation Administration
Towards an Interface for User-Friendly Linked Data Generation Administration
andimou
 
Test-driven Assessment of [R2]RML Mappings to Improve Dataset Quality
Test-driven Assessment of [R2]RML Mappings to Improve Dataset Quality
andimou
 
Extraction and Semantic Annotation of Workshop Proceedings in HTML using RML
Extraction and Semantic Annotation of Workshop Proceedings in HTML using RML
andimou
 
Visualizing the information of a Linked Open Data enabled Research Informatio...
Visualizing the information of a Linked Open Data enabled Research Informatio...
andimou
 

Recently uploaded (20)

You are not excused! How to avoid security blind spots on the way to production
You are not excused! How to avoid security blind spots on the way to production
Michele Leroux Bustamante
 
Curietech AI in action - Accelerate MuleSoft development
Curietech AI in action - Accelerate MuleSoft development
shyamraj55
 
Python Conference Singapore - 19 Jun 2025
Python Conference Singapore - 19 Jun 2025
ninefyi
 
AI vs Human Writing: Can You Tell the Difference?
AI vs Human Writing: Can You Tell the Difference?
Shashi Sathyanarayana, Ph.D
 
AI Agents and FME: A How-to Guide on Generating Synthetic Metadata
AI Agents and FME: A How-to Guide on Generating Synthetic Metadata
Safe Software
 
"How to survive Black Friday: preparing e-commerce for a peak season", Yurii ...
"How to survive Black Friday: preparing e-commerce for a peak season", Yurii ...
Fwdays
 
OWASP Barcelona 2025 Threat Model Library
OWASP Barcelona 2025 Threat Model Library
PetraVukmirovic
 
Quantum AI: Where Impossible Becomes Probable
Quantum AI: Where Impossible Becomes Probable
Saikat Basu
 
The Future of Product Management in AI ERA.pdf
The Future of Product Management in AI ERA.pdf
Alyona Owens
 
"Database isolation: how we deal with hundreds of direct connections to the d...
"Database isolation: how we deal with hundreds of direct connections to the d...
Fwdays
 
Salesforce Summer '25 Release Frenchgathering.pptx.pdf
Salesforce Summer '25 Release Frenchgathering.pptx.pdf
yosra Saidani
 
10 Key Challenges for AI within the EU Data Protection Framework.pdf
10 Key Challenges for AI within the EU Data Protection Framework.pdf
Priyanka Aash
 
WebdriverIO & JavaScript: The Perfect Duo for Web Automation
WebdriverIO & JavaScript: The Perfect Duo for Web Automation
digitaljignect
 
Techniques for Automatic Device Identification and Network Assignment.pdf
Techniques for Automatic Device Identification and Network Assignment.pdf
Priyanka Aash
 
Smarter Aviation Data Management: Lessons from Swedavia Airports and Sweco
Smarter Aviation Data Management: Lessons from Swedavia Airports and Sweco
Safe Software
 
Cluster-Based Multi-Objective Metamorphic Test Case Pair Selection for Deep N...
Cluster-Based Multi-Objective Metamorphic Test Case Pair Selection for Deep N...
janeliewang985
 
Mastering AI Workflows with FME by Mark Döring
Mastering AI Workflows with FME by Mark Döring
Safe Software
 
Security Tips for Enterprise Azure Solutions
Security Tips for Enterprise Azure Solutions
Michele Leroux Bustamante
 
"Scaling in space and time with Temporal", Andriy Lupa.pdf
"Scaling in space and time with Temporal", Andriy Lupa.pdf
Fwdays
 
Securing Account Lifecycles in the Age of Deepfakes.pptx
Securing Account Lifecycles in the Age of Deepfakes.pptx
FIDO Alliance
 
You are not excused! How to avoid security blind spots on the way to production
You are not excused! How to avoid security blind spots on the way to production
Michele Leroux Bustamante
 
Curietech AI in action - Accelerate MuleSoft development
Curietech AI in action - Accelerate MuleSoft development
shyamraj55
 
Python Conference Singapore - 19 Jun 2025
Python Conference Singapore - 19 Jun 2025
ninefyi
 
AI vs Human Writing: Can You Tell the Difference?
AI vs Human Writing: Can You Tell the Difference?
Shashi Sathyanarayana, Ph.D
 
AI Agents and FME: A How-to Guide on Generating Synthetic Metadata
AI Agents and FME: A How-to Guide on Generating Synthetic Metadata
Safe Software
 
"How to survive Black Friday: preparing e-commerce for a peak season", Yurii ...
"How to survive Black Friday: preparing e-commerce for a peak season", Yurii ...
Fwdays
 
OWASP Barcelona 2025 Threat Model Library
OWASP Barcelona 2025 Threat Model Library
PetraVukmirovic
 
Quantum AI: Where Impossible Becomes Probable
Quantum AI: Where Impossible Becomes Probable
Saikat Basu
 
The Future of Product Management in AI ERA.pdf
The Future of Product Management in AI ERA.pdf
Alyona Owens
 
"Database isolation: how we deal with hundreds of direct connections to the d...
"Database isolation: how we deal with hundreds of direct connections to the d...
Fwdays
 
Salesforce Summer '25 Release Frenchgathering.pptx.pdf
Salesforce Summer '25 Release Frenchgathering.pptx.pdf
yosra Saidani
 
10 Key Challenges for AI within the EU Data Protection Framework.pdf
10 Key Challenges for AI within the EU Data Protection Framework.pdf
Priyanka Aash
 
WebdriverIO & JavaScript: The Perfect Duo for Web Automation
WebdriverIO & JavaScript: The Perfect Duo for Web Automation
digitaljignect
 
Techniques for Automatic Device Identification and Network Assignment.pdf
Techniques for Automatic Device Identification and Network Assignment.pdf
Priyanka Aash
 
Smarter Aviation Data Management: Lessons from Swedavia Airports and Sweco
Smarter Aviation Data Management: Lessons from Swedavia Airports and Sweco
Safe Software
 
Cluster-Based Multi-Objective Metamorphic Test Case Pair Selection for Deep N...
Cluster-Based Multi-Objective Metamorphic Test Case Pair Selection for Deep N...
janeliewang985
 
Mastering AI Workflows with FME by Mark Döring
Mastering AI Workflows with FME by Mark Döring
Safe Software
 
Security Tips for Enterprise Azure Solutions
Security Tips for Enterprise Azure Solutions
Michele Leroux Bustamante
 
"Scaling in space and time with Temporal", Andriy Lupa.pdf
"Scaling in space and time with Temporal", Andriy Lupa.pdf
Fwdays
 
Securing Account Lifecycles in the Age of Deepfakes.pptx
Securing Account Lifecycles in the Age of Deepfakes.pptx
FIDO Alliance
 

Machine-Interpretable Dataset and Service Descriptions for Heterogeneous Data Access and Retrieval