SlideShare a Scribd company logo
なぜ科学計算には
Pythonか?
@chezou / github:chezou
kawasaki.rb #008
http://wp.me/pvR30-r0
Pythonが科学計算に何
故良いか?
要約すると
エコシステムが充実&加速
Rで出来たことがpandas, statsmodelでかなり
できるようになった(著者は無くて困らない)
機械学習もscikit-learnで楽に
言語間のデータのやり取りの必要がなくなるメ
リットが大きい
統計屋さんの意見
Python遅いのでは?
http://julialang.org/benchmarks/
( rand_mat_(mul|stat)だけNumPy使用 )
多分これ
他にも
NumPy, SciPyの活発な開発
科学計算をしたい人≠ソフトウェアを開発したい人
→ 開発コミュニティの人を集めにくい
Python for R/MATLABなど移行用ドキュメントの充実
Pythonの言語自体の変化の少なさ(2.7.6 2010/7-)
Fortranとの親和性が(比較的)高い
Ad

More Related Content

What's hot (20)

3分でわかる多項分布とディリクレ分布
3分でわかる多項分布とディリクレ分布3分でわかる多項分布とディリクレ分布
3分でわかる多項分布とディリクレ分布
Junya Saito
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
カルマンフィルタ入門
カルマンフィルタ入門カルマンフィルタ入門
カルマンフィルタ入門
Yasunori Nihei
 
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learningゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
Preferred Networks
 
Redmineでメトリクスを見える化する方法
Redmineでメトリクスを見える化する方法Redmineでメトリクスを見える化する方法
Redmineでメトリクスを見える化する方法
Hidehisa Matsutani
 
Union find(素集合データ構造)
Union find(素集合データ構造)Union find(素集合データ構造)
Union find(素集合データ構造)
AtCoder Inc.
 
pymcとpystanでベイズ推定してみた話
pymcとpystanでベイズ推定してみた話pymcとpystanでベイズ推定してみた話
pymcとpystanでベイズ推定してみた話
Classi.corp
 
指数分布とポアソン分布のいけない関係
指数分布とポアソン分布のいけない関係指数分布とポアソン分布のいけない関係
指数分布とポアソン分布のいけない関係
Nagi Teramo
 
確率的推論と行動選択
確率的推論と行動選択確率的推論と行動選択
確率的推論と行動選択
Masahiro Suzuki
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
RyuichiKanoh
 
4 データ間の距離と類似度
4 データ間の距離と類似度4 データ間の距離と類似度
4 データ間の距離と類似度
Seiichi Uchida
 
プログラムを高速化する話
プログラムを高速化する話プログラムを高速化する話
プログラムを高速化する話
京大 マイコンクラブ
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
Takao Yamanaka
 
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
Kitsukawa Yuki
 
文献紹介:YOLO series:v1-v5, X, F, and YOWO
文献紹介:YOLO series:v1-v5, X, F, and YOWO文献紹介:YOLO series:v1-v5, X, F, and YOWO
文献紹介:YOLO series:v1-v5, X, F, and YOWO
Toru Tamaki
 
Automatic Mixed Precision の紹介
Automatic Mixed Precision の紹介Automatic Mixed Precision の紹介
Automatic Mixed Precision の紹介
Kuninobu SaSaki
 
確率ロボティクス第二回
確率ロボティクス第二回確率ロボティクス第二回
確率ロボティクス第二回
Ryuichi Ueda
 
金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル
Kei Nakagawa
 
論理回路シミュレータ Logisim の使い方
論理回路シミュレータ Logisim の使い方論理回路シミュレータ Logisim の使い方
論理回路シミュレータ Logisim の使い方
Takashi Kawanami
 
[DL輪読会]Learning an Embedding Space for Transferable Robot Skills
[DL輪読会]Learning an Embedding Space for Transferable Robot Skills[DL輪読会]Learning an Embedding Space for Transferable Robot Skills
[DL輪読会]Learning an Embedding Space for Transferable Robot Skills
Deep Learning JP
 
3分でわかる多項分布とディリクレ分布
3分でわかる多項分布とディリクレ分布3分でわかる多項分布とディリクレ分布
3分でわかる多項分布とディリクレ分布
Junya Saito
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
カルマンフィルタ入門
カルマンフィルタ入門カルマンフィルタ入門
カルマンフィルタ入門
Yasunori Nihei
 
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learningゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
Preferred Networks
 
Redmineでメトリクスを見える化する方法
Redmineでメトリクスを見える化する方法Redmineでメトリクスを見える化する方法
Redmineでメトリクスを見える化する方法
Hidehisa Matsutani
 
Union find(素集合データ構造)
Union find(素集合データ構造)Union find(素集合データ構造)
Union find(素集合データ構造)
AtCoder Inc.
 
pymcとpystanでベイズ推定してみた話
pymcとpystanでベイズ推定してみた話pymcとpystanでベイズ推定してみた話
pymcとpystanでベイズ推定してみた話
Classi.corp
 
指数分布とポアソン分布のいけない関係
指数分布とポアソン分布のいけない関係指数分布とポアソン分布のいけない関係
指数分布とポアソン分布のいけない関係
Nagi Teramo
 
確率的推論と行動選択
確率的推論と行動選択確率的推論と行動選択
確率的推論と行動選択
Masahiro Suzuki
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
RyuichiKanoh
 
4 データ間の距離と類似度
4 データ間の距離と類似度4 データ間の距離と類似度
4 データ間の距離と類似度
Seiichi Uchida
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
Takao Yamanaka
 
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
Kitsukawa Yuki
 
文献紹介:YOLO series:v1-v5, X, F, and YOWO
文献紹介:YOLO series:v1-v5, X, F, and YOWO文献紹介:YOLO series:v1-v5, X, F, and YOWO
文献紹介:YOLO series:v1-v5, X, F, and YOWO
Toru Tamaki
 
Automatic Mixed Precision の紹介
Automatic Mixed Precision の紹介Automatic Mixed Precision の紹介
Automatic Mixed Precision の紹介
Kuninobu SaSaki
 
確率ロボティクス第二回
確率ロボティクス第二回確率ロボティクス第二回
確率ロボティクス第二回
Ryuichi Ueda
 
金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル
Kei Nakagawa
 
論理回路シミュレータ Logisim の使い方
論理回路シミュレータ Logisim の使い方論理回路シミュレータ Logisim の使い方
論理回路シミュレータ Logisim の使い方
Takashi Kawanami
 
[DL輪読会]Learning an Embedding Space for Transferable Robot Skills
[DL輪読会]Learning an Embedding Space for Transferable Robot Skills[DL輪読会]Learning an Embedding Space for Transferable Robot Skills
[DL輪読会]Learning an Embedding Space for Transferable Robot Skills
Deep Learning JP
 

More from Aki Ariga (20)

Challenges for machine learning systems toward continuous improvement
Challenges for machine learning systems toward continuous improvementChallenges for machine learning systems toward continuous improvement
Challenges for machine learning systems toward continuous improvement
Aki Ariga
 
Managing Machine Learning workflows on Treasure Data
Managing Machine Learning workflows on Treasure DataManaging Machine Learning workflows on Treasure Data
Managing Machine Learning workflows on Treasure Data
Aki Ariga
 
仕事ではじめる機械学習
仕事ではじめる機械学習仕事ではじめる機械学習
仕事ではじめる機械学習
Aki Ariga
 
主人が外資系IT企業に転職して4ヶ月が過ぎました
主人が外資系IT企業に転職して4ヶ月が過ぎました主人が外資系IT企業に転職して4ヶ月が過ぎました
主人が外資系IT企業に転職して4ヶ月が過ぎました
Aki Ariga
 
R&D at Foodtech company - #CookpadTechConf 2016
R&D at Foodtech company - #CookpadTechConf 2016R&D at Foodtech company - #CookpadTechConf 2016
R&D at Foodtech company - #CookpadTechConf 2016
Aki Ariga
 
Why I started Machine Learning Casual Talks? #MLCT
Why I started Machine Learning Casual Talks? #MLCTWhy I started Machine Learning Casual Talks? #MLCT
Why I started Machine Learning Casual Talks? #MLCT
Aki Ariga
 
クックパッドサマーインターン2015 機械学習・自然言語処理 実習課題
クックパッドサマーインターン2015 機械学習・自然言語処理 実習課題クックパッドサマーインターン2015 機械学習・自然言語処理 実習課題
クックパッドサマーインターン2015 機械学習・自然言語処理 実習課題
Aki Ariga
 
Rubyistがgemの前にPypiデビューするのは間違っているだろうか
Rubyistがgemの前にPypiデビューするのは間違っているだろうかRubyistがgemの前にPypiデビューするのは間違っているだろうか
Rubyistがgemの前にPypiデビューするのは間違っているだろうか
Aki Ariga
 
Machine Learning Casual Talks Intro #MLCT
Machine Learning Casual Talks Intro #MLCTMachine Learning Casual Talks Intro #MLCT
Machine Learning Casual Talks Intro #MLCT
Aki Ariga
 
Make Julia more popular in Japan!!1 #JuliaTokyo
Make Julia more popular in Japan!!1 #JuliaTokyoMake Julia more popular in Japan!!1 #JuliaTokyo
Make Julia more popular in Japan!!1 #JuliaTokyo
Aki Ariga
 
Refrection of kawasaki.rb
Refrection of kawasaki.rbRefrection of kawasaki.rb
Refrection of kawasaki.rb
Aki Ariga
 
Introduction and benchmarking of MeCab.jl #JapanR
Introduction and benchmarking of MeCab.jl  #JapanRIntroduction and benchmarking of MeCab.jl  #JapanR
Introduction and benchmarking of MeCab.jl #JapanR
Aki Ariga
 
Recommendation for iruby #tqrk08
Recommendation for iruby #tqrk08Recommendation for iruby #tqrk08
Recommendation for iruby #tqrk08
Aki Ariga
 
The book that changed me
The book that changed meThe book that changed me
The book that changed me
Aki Ariga
 
Introduction of Mecab.jl #JuliaTokyo
Introduction of Mecab.jl #JuliaTokyoIntroduction of Mecab.jl #JuliaTokyo
Introduction of Mecab.jl #JuliaTokyo
Aki Ariga
 
Introduction to Kanagawa Ruby Kaigi01 #kana01
Introduction to Kanagawa Ruby Kaigi01 #kana01Introduction to Kanagawa Ruby Kaigi01 #kana01
Introduction to Kanagawa Ruby Kaigi01 #kana01
Aki Ariga
 
Julia 100 exercises #JuliaTokyo
Julia 100 exercises #JuliaTokyoJulia 100 exercises #JuliaTokyo
Julia 100 exercises #JuliaTokyo
Aki Ariga
 
Machine Learning Casual Talks opening talk
Machine Learning Casual Talks opening talkMachine Learning Casual Talks opening talk
Machine Learning Casual Talks opening talk
Aki Ariga
 
Gong anyware
Gong anywareGong anyware
Gong anyware
Aki Ariga
 
gsub with ActiveSupport::SafeBuffer
gsub with ActiveSupport::SafeBuffergsub with ActiveSupport::SafeBuffer
gsub with ActiveSupport::SafeBuffer
Aki Ariga
 
Challenges for machine learning systems toward continuous improvement
Challenges for machine learning systems toward continuous improvementChallenges for machine learning systems toward continuous improvement
Challenges for machine learning systems toward continuous improvement
Aki Ariga
 
Managing Machine Learning workflows on Treasure Data
Managing Machine Learning workflows on Treasure DataManaging Machine Learning workflows on Treasure Data
Managing Machine Learning workflows on Treasure Data
Aki Ariga
 
仕事ではじめる機械学習
仕事ではじめる機械学習仕事ではじめる機械学習
仕事ではじめる機械学習
Aki Ariga
 
主人が外資系IT企業に転職して4ヶ月が過ぎました
主人が外資系IT企業に転職して4ヶ月が過ぎました主人が外資系IT企業に転職して4ヶ月が過ぎました
主人が外資系IT企業に転職して4ヶ月が過ぎました
Aki Ariga
 
R&D at Foodtech company - #CookpadTechConf 2016
R&D at Foodtech company - #CookpadTechConf 2016R&D at Foodtech company - #CookpadTechConf 2016
R&D at Foodtech company - #CookpadTechConf 2016
Aki Ariga
 
Why I started Machine Learning Casual Talks? #MLCT
Why I started Machine Learning Casual Talks? #MLCTWhy I started Machine Learning Casual Talks? #MLCT
Why I started Machine Learning Casual Talks? #MLCT
Aki Ariga
 
クックパッドサマーインターン2015 機械学習・自然言語処理 実習課題
クックパッドサマーインターン2015 機械学習・自然言語処理 実習課題クックパッドサマーインターン2015 機械学習・自然言語処理 実習課題
クックパッドサマーインターン2015 機械学習・自然言語処理 実習課題
Aki Ariga
 
Rubyistがgemの前にPypiデビューするのは間違っているだろうか
Rubyistがgemの前にPypiデビューするのは間違っているだろうかRubyistがgemの前にPypiデビューするのは間違っているだろうか
Rubyistがgemの前にPypiデビューするのは間違っているだろうか
Aki Ariga
 
Machine Learning Casual Talks Intro #MLCT
Machine Learning Casual Talks Intro #MLCTMachine Learning Casual Talks Intro #MLCT
Machine Learning Casual Talks Intro #MLCT
Aki Ariga
 
Make Julia more popular in Japan!!1 #JuliaTokyo
Make Julia more popular in Japan!!1 #JuliaTokyoMake Julia more popular in Japan!!1 #JuliaTokyo
Make Julia more popular in Japan!!1 #JuliaTokyo
Aki Ariga
 
Refrection of kawasaki.rb
Refrection of kawasaki.rbRefrection of kawasaki.rb
Refrection of kawasaki.rb
Aki Ariga
 
Introduction and benchmarking of MeCab.jl #JapanR
Introduction and benchmarking of MeCab.jl  #JapanRIntroduction and benchmarking of MeCab.jl  #JapanR
Introduction and benchmarking of MeCab.jl #JapanR
Aki Ariga
 
Recommendation for iruby #tqrk08
Recommendation for iruby #tqrk08Recommendation for iruby #tqrk08
Recommendation for iruby #tqrk08
Aki Ariga
 
The book that changed me
The book that changed meThe book that changed me
The book that changed me
Aki Ariga
 
Introduction of Mecab.jl #JuliaTokyo
Introduction of Mecab.jl #JuliaTokyoIntroduction of Mecab.jl #JuliaTokyo
Introduction of Mecab.jl #JuliaTokyo
Aki Ariga
 
Introduction to Kanagawa Ruby Kaigi01 #kana01
Introduction to Kanagawa Ruby Kaigi01 #kana01Introduction to Kanagawa Ruby Kaigi01 #kana01
Introduction to Kanagawa Ruby Kaigi01 #kana01
Aki Ariga
 
Julia 100 exercises #JuliaTokyo
Julia 100 exercises #JuliaTokyoJulia 100 exercises #JuliaTokyo
Julia 100 exercises #JuliaTokyo
Aki Ariga
 
Machine Learning Casual Talks opening talk
Machine Learning Casual Talks opening talkMachine Learning Casual Talks opening talk
Machine Learning Casual Talks opening talk
Aki Ariga
 
Gong anyware
Gong anywareGong anyware
Gong anyware
Aki Ariga
 
gsub with ActiveSupport::SafeBuffer
gsub with ActiveSupport::SafeBuffergsub with ActiveSupport::SafeBuffer
gsub with ActiveSupport::SafeBuffer
Aki Ariga
 
Ad