SlideShare a Scribd company logo
Burak Yucesoy | Citus Data | PGConf EU
Distributed
COUNT(DISTINCT) with
HyperLogLog on
PostgreSQL
Burak Yucesoy | Citus Data | PGConf EU
What is COUNT(DISTINCT)?
● Number of unique elements (cardinality) in given data
● Useful to find things like…
○ Number of unique users visited your web page
○ Number of unique products in your inventory
Burak Yucesoy | Citus Data | PGConf EU
What is distributed COUNT(DISTINCT)?
Worker
Node 1
logins_001
Coordinator
Worker
Node 2
logins_002
Worker
Node 3
logins_003
Burak Yucesoy | Citus Data | PGConf EU
Why do we need distributed COUNT(DISTINCT)?
● Your data is too big to fit in memory of single machine
● Naive approach for COUNT(DISTINCT) needs too much memory
Burak Yucesoy | Citus Data | PGConf EU
Why does distributed COUNT(DISTINCT) is difficult?
Worker
Node 1
logins_001
CoordinatorSELECT COUNT(*) FROM logins;
Worker
Node 2
logins_002
Worker
Node 3
logins_003
600
100 200 300SELECT COUNT(*) FROM ...;
Burak Yucesoy | Citus Data | PGConf EU
Why does distributed COUNT(DISTINCT) is difficult?
Worker
Node 1
logins_001
CoordinatorSELECT COUNT(DISTINCT username) FROM logins;
Worker
Node 2
logins_002
Worker
Node 3
logins_003
SELECT COUNT(DISTINCT user_id) FROM ...;
Burak Yucesoy | Citus Data | PGConf EU
Why does distributed COUNT(DISTINCT) is difficult?
Worker Node 1
logins_001
username | date
----------+-----------
Alice | 2017-01-02
Bob | 2017-01-03
Charlie | 2017-01-05
Eve | 2017-01-07
Worker Node 3
logins_003
username | date
----------+-----------
Frank | 2017-03-23
Eve | 2017-03-29
Charlie | 2017-03-02
Charlie | 2017-03-03
Worker Node 2
logins_002
username | date
----------+-----------
Bob | 2017-02-11
Bob | 2017-02-13
Dave | 2017-02-17
Alice | 2017-02-19
Burak Yucesoy | Citus Data | PGConf EU
Why does distributed COUNT(DISTINCT) is difficult?
Worker Node 1
logins_001
username | date
----------+-----------
Alice | 2017-01-02
Bob | 2017-01-03
Charlie | 2017-01-05
Eve | 2017-01-07
Worker Node 3
logins_003
username | date
----------+-----------
Dave | 2017-03-23
Eve | 2017-03-29
Charlie | 2017-03-02
Charlie | 2017-03-03
Worker Node 2
logins_002
username | date
----------+-----------
Bob | 2017-02-11
Bob | 2017-02-13
Dave | 2017-02-17
Alice | 2017-02-19
Burak Yucesoy | Citus Data | PGConf EU
Some Possible Approaches
● Pull all distinct data to one node and count there. (Doesn’t scale)
● Repartition data on the fly. (Scales but it’s very slow)
● Use HyperLogLog. (Scales and fast)
Burak Yucesoy | Citus Data | PGConf EU
HyperLogLog(HLL)
HLL is;
● Approximation algorithm
● Estimates cardinality of given data
● Mathematically proven error bounds
Burak Yucesoy | Citus Data | PGConf EU
Is it OK to approximate?
It depends…
Burak Yucesoy | Citus Data | PGConf EU
HLL
● Very fast
● Low memory footprint
● Can work with streaming data
● Can merge estimations of two separate datasets efficiently
Burak Yucesoy | Citus Data | PGConf EU
How does HLL work?
Steps;
1. Hash all elements
a. Ensures uniform data distribution
b. Can treat all data types same
2. Observing rare bit patterns
3. Stochastic averaging
Burak Yucesoy | Citus Data | PGConf EU
How does HLL work? - Observing rare bit patterns
hash
Alice 645403841
binary
0010...001
Number of leading zeros: 2
Maximum number of leading zeros: 2
Burak Yucesoy | Citus Data | PGConf EU
How does HLL work? - Observing rare bit patterns
hash
Bob 1492309842
binary
0101...010
Number of leading zeros: 1
Maximum number of leading zeros: 2
Burak Yucesoy | Citus Data | PGConf EU
How does HLL work? - Observing rare bit patterns
...
Maximum number of leading zeros: 7
Cardinality Estimation: 27
Burak Yucesoy | Citus Data | PGConf EU
How does HLL work? Stochastic Averaging
Measuring same thing repeatedly and taking average.
Burak Yucesoy | Citus Data | PGConf EU
Burak Yucesoy | Citus Data | PGConf EU
Burak Yucesoy | Citus Data | PGConf EU
How does HLL work? Stochastic Averaging
Data
Partition 1
Partition 3
Partition 2
7
5
12
228.968...
Estimation
27
25
212
Burak Yucesoy | Citus Data | PGConf EU
How does HLL work? Stochastic Averaging
01000101...010
First m bits to decide
partition number
Remaining bits to
count leading zeros
Burak Yucesoy | Citus Data | PGConf EU
Error rate of HLL is damn good
● Typical Error Rate: 1.04 / sqrt(number of partitions)
● Memory need is number of partitions * log(log(max. value in hash space)) bit
● Can estimate cardinalities well beyond 109
with 1% error rate while using a
memory of only 6 kilobytes
● Memory vs accuracy tradeoff
Burak Yucesoy | Citus Data | PGConf EU
Why does HLL work?
It turns out, combination of lots of bad estimation is a
good estimation
Burak Yucesoy | Citus Data | PGConf EU
Some interesting examples
Alice
Alice
Alice
…
…
…
Alice
Partition 1
Partition 3
Partition 2
0
2
0
1.103...
Harmonic
Mean
20
22
20
hash
Alice 645403841
binary
00100110...001
... ... ...
Burak Yucesoy | Citus Data | PGConf EU
Some interesting examples
Charlie
Partition 1
Partition 8
Partition 2
29
0
0
1.142...
Harmonic
Mean
229
20
20
hash
Charlie 0
binary
00000000...000
... ... ...
Burak Yucesoy | Citus Data | PGConf EU
postgresql-hll
● https://github.com/aggregateknowledge/postgresql-hll
● https://github.com/citusdata/postgresql-hll
● Companies using postgresql-hll for their dashboard
● Neustar
● Cloudflare
Burak Yucesoy | Citus Data | PGConf EU
postgresql-hll uses a data structure, also called hll to keep maximum number of
leading zeros of each partition.
● Use hll_hash_bigint to hash elements.
○ There are some other functions for other common data types.
● Use hll_add_agg to aggregate hashed elements into hll data structure.
● Use hll_cardinality to materialize hll data structure to actual distinct count.
postgresql-hll in single node
Burak Yucesoy | Citus Data | PGConf EU
What Happens in
Distributed Scenario?
Burak Yucesoy | Citus Data | PGConf EU
How to merge COUNT(DISTINCT) with HLL
Shard 1
Shard 1
Partition 1
Shard 1
Partition 3
Shard 1
Partition 2
7
5
12
HLL(7, 5, 12)
Intermediate
Result
Burak Yucesoy | Citus Data | PGConf EU
How to merge COUNT(DISTINCT) with HLL
Shard 2
Shard 2
Partition 1
Shard 2
Partition 3
Shard 2
Partition 2
11
7
8
HLL(11, 7, 8)
Intermediate
Result
Burak Yucesoy | Citus Data | PGConf EU
How to merge COUNT(DISTINCT) with HLL
11
7
12
1053.255
211
27
212
HLL(11, 7, 8)
HLL(7, 5, 12)
HLL(11, 7, 12)
hll_union_agg
Burak Yucesoy | Citus Data | PGConf EU
How to merge COUNT(DISTINCT) with HLL
Shard 1
+
Shard 2
Shard 1
Partition 1(7)
+
Shard 2
Partition 1(11)
11
7
12
1053.255
Estimation
Shard 1
Partition 2(5)
+
Shard 2
Partition 2(7)
Shard 1
Partition 3(12)
+
Shard 2
Partition 4(8)
Burak Yucesoy | Citus Data | PGConf EU
1. Separate data into shards.
postgresql-hll in distributed environment
logins_001 logins_002 logins_003
Burak Yucesoy | Citus Data | PGConf EU
2. Put shards into separate nodes.
postgresql-hll in distributed environment
Worker
Node 1
Coordinator
Worker
Node 2
Worker
Node 3
logins_001 logins_002 logins_003
Burak Yucesoy | Citus Data | PGConf EU
3. For each shard, calculate hll (but do not materialize).
postgresql-hll in distributed environment
Shard 1
Shard 1
Partition 1
Shard 1
Partition 3
Shard 1
Partition 2
7
5
12
HLL(7, 5, 12)
Intermediate
Result
Burak Yucesoy | Citus Data | PGConf EU
4. Pull intermediate results to a single node.
postgresql-hll in distributed environment
Worker
Node 1
logins_001
Coordinator
Worker
Node 2
logins_002
Worker
Node 3
logins_003
HLL(6, 4, 11) HLL(10, 6, 7) HLL(7, 12, 5)
Burak Yucesoy | Citus Data | PGConf EU
5. Merge separate hll data structures and materialize them
postgresql-hll in distributed environment
11
13
12
10532.571...
211
213
212
HLL(11, 7, 8)
HLL(7, 5, 12)
HLL(11, 13, 12)
HLL(8, 13, 6)
Burak Yucesoy | Citus Data | PGConf EU
Or use Citus :)
postgresql-hll in distributed environment
Burak Yucesoy | Citus Data | PGConf EU
Burak Yucesoy
burak@citusdata.com
@byucesoy
Thank You
citusdata.com | @citusdata
Ad

Recommended

To find raise to five of any number
To find raise to five of any number
International Journal of Latest Research in Engineering and Technology
 
Tutorial of topological data analysis part 3(Mapper algorithm)
Tutorial of topological data analysis part 3(Mapper algorithm)
Ha Phuong
 
Lecture1a data types
Lecture1a data types
mbadhi barnabas
 
FPGA DESIGN FOR H.264/AVC ENCODER
FPGA DESIGN FOR H.264/AVC ENCODER
IJCSEA Journal
 
Graph Matching
Graph Matching
graphitech
 
presentation
presentation
jie ren
 
The DE-9IM Matrix in Details using ST_Relate: In Picture and SQL
The DE-9IM Matrix in Details using ST_Relate: In Picture and SQL
torp42
 
What is HyperLogLog and Why You Will Love It | PostgreSQL Conference Europe 2...
What is HyperLogLog and Why You Will Love It | PostgreSQL Conference Europe 2...
Citus Data
 
Kusto (Azure Data Explorer) Training for R&D - January 2019
Kusto (Azure Data Explorer) Training for R&D - January 2019
Tal Bar-Zvi
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Oblu Integration Guide
Oblu Integration Guide
oblu.io
 
1 out of 20 scenarios
1 out of 20 scenarios
Dario Buono
 
Data Monitoring with whylogs
Data Monitoring with whylogs
Alexey Grigorev
 
Proposal and Implementation of the Connected-Component Labeling of Binary Ima...
Proposal and Implementation of the Connected-Component Labeling of Binary Ima...
CSCJournals
 
IRJET- Design of 16 Bit Low Power Vedic Architecture using CSA & UTS
IRJET- Design of 16 Bit Low Power Vedic Architecture using CSA & UTS
IRJET Journal
 
Robert Haas Query Planning Gone Wrong Presentation @ Postgres Open
Robert Haas Query Planning Gone Wrong Presentation @ Postgres Open
PostgresOpen
 
DESIGN OF 8-BIT COMPARATORS
DESIGN OF 8-BIT COMPARATORS
IRJET Journal
 
Implementation of an arithmetic logic using area efficient carry lookahead adder
Implementation of an arithmetic logic using area efficient carry lookahead adder
VLSICS Design
 
GRAPHICAL STRUCTURES in our lives
GRAPHICAL STRUCTURES in our lives
xryuseix
 
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
iosrjce
 
IRJET - Design and Implementation of FFT using Compressor with XOR Gate Topology
IRJET - Design and Implementation of FFT using Compressor with XOR Gate Topology
IRJET Journal
 
IRJET- To Design 16 bit Synchronous Microprocessor using VHDL on FPGA
IRJET- To Design 16 bit Synchronous Microprocessor using VHDL on FPGA
IRJET Journal
 
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...
IRJET Journal
 
An efficient hardware logarithm generator with modified quasi-symmetrical app...
An efficient hardware logarithm generator with modified quasi-symmetrical app...
IJECEIAES
 
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
DataWorks Summit
 
IRJET- Implementation of Ternary ALU using Verilog
IRJET- Implementation of Ternary ALU using Verilog
IRJET Journal
 
BlaBlaCar Elastic Search Feedback
BlaBlaCar Elastic Search Feedback
sinfomicien
 
Paper id 37201520
Paper id 37201520
IJRAT
 
Architecting peta-byte-scale analytics by scaling out Postgres on Azure with ...
Architecting peta-byte-scale analytics by scaling out Postgres on Azure with ...
Citus Data
 
Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...
Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...
Citus Data
 

More Related Content

Similar to Distributed count(distinct) with hyper loglog on postgresql | PGConf EU 2017) | Burak Yucesoy (20)

Kusto (Azure Data Explorer) Training for R&D - January 2019
Kusto (Azure Data Explorer) Training for R&D - January 2019
Tal Bar-Zvi
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Oblu Integration Guide
Oblu Integration Guide
oblu.io
 
1 out of 20 scenarios
1 out of 20 scenarios
Dario Buono
 
Data Monitoring with whylogs
Data Monitoring with whylogs
Alexey Grigorev
 
Proposal and Implementation of the Connected-Component Labeling of Binary Ima...
Proposal and Implementation of the Connected-Component Labeling of Binary Ima...
CSCJournals
 
IRJET- Design of 16 Bit Low Power Vedic Architecture using CSA & UTS
IRJET- Design of 16 Bit Low Power Vedic Architecture using CSA & UTS
IRJET Journal
 
Robert Haas Query Planning Gone Wrong Presentation @ Postgres Open
Robert Haas Query Planning Gone Wrong Presentation @ Postgres Open
PostgresOpen
 
DESIGN OF 8-BIT COMPARATORS
DESIGN OF 8-BIT COMPARATORS
IRJET Journal
 
Implementation of an arithmetic logic using area efficient carry lookahead adder
Implementation of an arithmetic logic using area efficient carry lookahead adder
VLSICS Design
 
GRAPHICAL STRUCTURES in our lives
GRAPHICAL STRUCTURES in our lives
xryuseix
 
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
iosrjce
 
IRJET - Design and Implementation of FFT using Compressor with XOR Gate Topology
IRJET - Design and Implementation of FFT using Compressor with XOR Gate Topology
IRJET Journal
 
IRJET- To Design 16 bit Synchronous Microprocessor using VHDL on FPGA
IRJET- To Design 16 bit Synchronous Microprocessor using VHDL on FPGA
IRJET Journal
 
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...
IRJET Journal
 
An efficient hardware logarithm generator with modified quasi-symmetrical app...
An efficient hardware logarithm generator with modified quasi-symmetrical app...
IJECEIAES
 
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
DataWorks Summit
 
IRJET- Implementation of Ternary ALU using Verilog
IRJET- Implementation of Ternary ALU using Verilog
IRJET Journal
 
BlaBlaCar Elastic Search Feedback
BlaBlaCar Elastic Search Feedback
sinfomicien
 
Paper id 37201520
Paper id 37201520
IJRAT
 
Kusto (Azure Data Explorer) Training for R&D - January 2019
Kusto (Azure Data Explorer) Training for R&D - January 2019
Tal Bar-Zvi
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Oblu Integration Guide
Oblu Integration Guide
oblu.io
 
1 out of 20 scenarios
1 out of 20 scenarios
Dario Buono
 
Data Monitoring with whylogs
Data Monitoring with whylogs
Alexey Grigorev
 
Proposal and Implementation of the Connected-Component Labeling of Binary Ima...
Proposal and Implementation of the Connected-Component Labeling of Binary Ima...
CSCJournals
 
IRJET- Design of 16 Bit Low Power Vedic Architecture using CSA & UTS
IRJET- Design of 16 Bit Low Power Vedic Architecture using CSA & UTS
IRJET Journal
 
Robert Haas Query Planning Gone Wrong Presentation @ Postgres Open
Robert Haas Query Planning Gone Wrong Presentation @ Postgres Open
PostgresOpen
 
DESIGN OF 8-BIT COMPARATORS
DESIGN OF 8-BIT COMPARATORS
IRJET Journal
 
Implementation of an arithmetic logic using area efficient carry lookahead adder
Implementation of an arithmetic logic using area efficient carry lookahead adder
VLSICS Design
 
GRAPHICAL STRUCTURES in our lives
GRAPHICAL STRUCTURES in our lives
xryuseix
 
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
iosrjce
 
IRJET - Design and Implementation of FFT using Compressor with XOR Gate Topology
IRJET - Design and Implementation of FFT using Compressor with XOR Gate Topology
IRJET Journal
 
IRJET- To Design 16 bit Synchronous Microprocessor using VHDL on FPGA
IRJET- To Design 16 bit Synchronous Microprocessor using VHDL on FPGA
IRJET Journal
 
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...
IRJET- VLSI Architecture for Reversible Radix-2 FFT Algorithm using Programma...
IRJET Journal
 
An efficient hardware logarithm generator with modified quasi-symmetrical app...
An efficient hardware logarithm generator with modified quasi-symmetrical app...
IJECEIAES
 
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
DataWorks Summit
 
IRJET- Implementation of Ternary ALU using Verilog
IRJET- Implementation of Ternary ALU using Verilog
IRJET Journal
 
BlaBlaCar Elastic Search Feedback
BlaBlaCar Elastic Search Feedback
sinfomicien
 
Paper id 37201520
Paper id 37201520
IJRAT
 

More from Citus Data (20)

Architecting peta-byte-scale analytics by scaling out Postgres on Azure with ...
Architecting peta-byte-scale analytics by scaling out Postgres on Azure with ...
Citus Data
 
Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...
Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...
Citus Data
 
JSONB Tricks: Operators, Indexes, and When (Not) to Use It | PostgresOpen 201...
JSONB Tricks: Operators, Indexes, and When (Not) to Use It | PostgresOpen 201...
Citus Data
 
Tutorial: Implementing your first Postgres extension | PGConf EU 2019 | Burak...
Tutorial: Implementing your first Postgres extension | PGConf EU 2019 | Burak...
Citus Data
 
Whats wrong with postgres | PGConf EU 2019 | Craig Kerstiens
Whats wrong with postgres | PGConf EU 2019 | Craig Kerstiens
Citus Data
 
When it all goes wrong | PGConf EU 2019 | Will Leinweber
When it all goes wrong | PGConf EU 2019 | Will Leinweber
Citus Data
 
Amazing SQL your ORM can (or can't) do | PGConf EU 2019 | Louise Grandjonc
Amazing SQL your ORM can (or can't) do | PGConf EU 2019 | Louise Grandjonc
Citus Data
 
What Microsoft is doing with Postgres & the Citus Data acquisition | PGConf E...
What Microsoft is doing with Postgres & the Citus Data acquisition | PGConf E...
Citus Data
 
Deep Postgres Extensions in Rust | PGCon 2019 | Jeff Davis
Deep Postgres Extensions in Rust | PGCon 2019 | Jeff Davis
Citus Data
 
Why Postgres Why This Database Why Now | SF Bay Area Postgres Meetup | Claire...
Why Postgres Why This Database Why Now | SF Bay Area Postgres Meetup | Claire...
Citus Data
 
A story on Postgres index types | PostgresLondon 2019 | Louise Grandjonc
A story on Postgres index types | PostgresLondon 2019 | Louise Grandjonc
Citus Data
 
Why developers need marketing now more than ever | GlueCon 2019 | Claire Gior...
Why developers need marketing now more than ever | GlueCon 2019 | Claire Gior...
Citus Data
 
The Art of PostgreSQL | PostgreSQL Ukraine | Dimitri Fontaine
The Art of PostgreSQL | PostgreSQL Ukraine | Dimitri Fontaine
Citus Data
 
Optimizing your app by understanding your Postgres | RailsConf 2019 | Samay S...
Optimizing your app by understanding your Postgres | RailsConf 2019 | Samay S...
Citus Data
 
When it all goes wrong (with Postgres) | RailsConf 2019 | Will Leinweber
When it all goes wrong (with Postgres) | RailsConf 2019 | Will Leinweber
Citus Data
 
The Art of PostgreSQL | PostgreSQL Ukraine Meetup | Dimitri Fontaine
The Art of PostgreSQL | PostgreSQL Ukraine Meetup | Dimitri Fontaine
Citus Data
 
Using Postgres and Citus for Lightning Fast Analytics, also ft. Rollups | Liv...
Using Postgres and Citus for Lightning Fast Analytics, also ft. Rollups | Liv...
Citus Data
 
How to write SQL queries | pgDay Paris 2019 | Dimitri Fontaine
How to write SQL queries | pgDay Paris 2019 | Dimitri Fontaine
Citus Data
 
When it all Goes Wrong |Nordic PGDay 2019 | Will Leinweber
When it all Goes Wrong |Nordic PGDay 2019 | Will Leinweber
Citus Data
 
Why PostgreSQL Why This Database Why Now | Nordic PGDay 2019 | Claire Giordano
Why PostgreSQL Why This Database Why Now | Nordic PGDay 2019 | Claire Giordano
Citus Data
 
Architecting peta-byte-scale analytics by scaling out Postgres on Azure with ...
Architecting peta-byte-scale analytics by scaling out Postgres on Azure with ...
Citus Data
 
Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...
Data Modeling, Normalization, and De-Normalization | PostgresOpen 2019 | Dimi...
Citus Data
 
JSONB Tricks: Operators, Indexes, and When (Not) to Use It | PostgresOpen 201...
JSONB Tricks: Operators, Indexes, and When (Not) to Use It | PostgresOpen 201...
Citus Data
 
Tutorial: Implementing your first Postgres extension | PGConf EU 2019 | Burak...
Tutorial: Implementing your first Postgres extension | PGConf EU 2019 | Burak...
Citus Data
 
Whats wrong with postgres | PGConf EU 2019 | Craig Kerstiens
Whats wrong with postgres | PGConf EU 2019 | Craig Kerstiens
Citus Data
 
When it all goes wrong | PGConf EU 2019 | Will Leinweber
When it all goes wrong | PGConf EU 2019 | Will Leinweber
Citus Data
 
Amazing SQL your ORM can (or can't) do | PGConf EU 2019 | Louise Grandjonc
Amazing SQL your ORM can (or can't) do | PGConf EU 2019 | Louise Grandjonc
Citus Data
 
What Microsoft is doing with Postgres & the Citus Data acquisition | PGConf E...
What Microsoft is doing with Postgres & the Citus Data acquisition | PGConf E...
Citus Data
 
Deep Postgres Extensions in Rust | PGCon 2019 | Jeff Davis
Deep Postgres Extensions in Rust | PGCon 2019 | Jeff Davis
Citus Data
 
Why Postgres Why This Database Why Now | SF Bay Area Postgres Meetup | Claire...
Why Postgres Why This Database Why Now | SF Bay Area Postgres Meetup | Claire...
Citus Data
 
A story on Postgres index types | PostgresLondon 2019 | Louise Grandjonc
A story on Postgres index types | PostgresLondon 2019 | Louise Grandjonc
Citus Data
 
Why developers need marketing now more than ever | GlueCon 2019 | Claire Gior...
Why developers need marketing now more than ever | GlueCon 2019 | Claire Gior...
Citus Data
 
The Art of PostgreSQL | PostgreSQL Ukraine | Dimitri Fontaine
The Art of PostgreSQL | PostgreSQL Ukraine | Dimitri Fontaine
Citus Data
 
Optimizing your app by understanding your Postgres | RailsConf 2019 | Samay S...
Optimizing your app by understanding your Postgres | RailsConf 2019 | Samay S...
Citus Data
 
When it all goes wrong (with Postgres) | RailsConf 2019 | Will Leinweber
When it all goes wrong (with Postgres) | RailsConf 2019 | Will Leinweber
Citus Data
 
The Art of PostgreSQL | PostgreSQL Ukraine Meetup | Dimitri Fontaine
The Art of PostgreSQL | PostgreSQL Ukraine Meetup | Dimitri Fontaine
Citus Data
 
Using Postgres and Citus for Lightning Fast Analytics, also ft. Rollups | Liv...
Using Postgres and Citus for Lightning Fast Analytics, also ft. Rollups | Liv...
Citus Data
 
How to write SQL queries | pgDay Paris 2019 | Dimitri Fontaine
How to write SQL queries | pgDay Paris 2019 | Dimitri Fontaine
Citus Data
 
When it all Goes Wrong |Nordic PGDay 2019 | Will Leinweber
When it all Goes Wrong |Nordic PGDay 2019 | Will Leinweber
Citus Data
 
Why PostgreSQL Why This Database Why Now | Nordic PGDay 2019 | Claire Giordano
Why PostgreSQL Why This Database Why Now | Nordic PGDay 2019 | Claire Giordano
Citus Data
 
Ad

Recently uploaded (20)

Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...
Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...
NTT DATA Technology & Innovation
 
Tech-ASan: Two-stage check for Address Sanitizer - Yixuan Cao.pdf
Tech-ASan: Two-stage check for Address Sanitizer - Yixuan Cao.pdf
caoyixuan2019
 
War_And_Cyber_3_Years_Of_Struggle_And_Lessons_For_Global_Security.pdf
War_And_Cyber_3_Years_Of_Struggle_And_Lessons_For_Global_Security.pdf
biswajitbanerjee38
 
ENERGY CONSUMPTION CALCULATION IN ENERGY-EFFICIENT AIR CONDITIONER.pdf
ENERGY CONSUMPTION CALCULATION IN ENERGY-EFFICIENT AIR CONDITIONER.pdf
Muhammad Rizwan Akram
 
FIDO Seminar: Evolving Landscape of Post-Quantum Cryptography.pptx
FIDO Seminar: Evolving Landscape of Post-Quantum Cryptography.pptx
FIDO Alliance
 
FIDO Seminar: Perspectives on Passkeys & Consumer Adoption.pptx
FIDO Seminar: Perspectives on Passkeys & Consumer Adoption.pptx
FIDO Alliance
 
Artificial Intelligence in the Nonprofit Boardroom.pdf
Artificial Intelligence in the Nonprofit Boardroom.pdf
OnBoard
 
FIDO Seminar: Authentication for a Billion Consumers - Amazon.pptx
FIDO Seminar: Authentication for a Billion Consumers - Amazon.pptx
FIDO Alliance
 
AudGram Review: Build Visually Appealing, AI-Enhanced Audiograms to Engage Yo...
AudGram Review: Build Visually Appealing, AI-Enhanced Audiograms to Engage Yo...
SOFTTECHHUB
 
Supporting the NextGen 911 Digital Transformation with FME
Supporting the NextGen 911 Digital Transformation with FME
Safe Software
 
AI VIDEO MAGAZINE - June 2025 - r/aivideo
AI VIDEO MAGAZINE - June 2025 - r/aivideo
1pcity Studios, Inc
 
Bridging the divide: A conversation on tariffs today in the book industry - T...
Bridging the divide: A conversation on tariffs today in the book industry - T...
BookNet Canada
 
Reducing Conflicts and Increasing Safety Along the Cycling Networks of East-F...
Reducing Conflicts and Increasing Safety Along the Cycling Networks of East-F...
Safe Software
 
Raman Bhaumik - Passionate Tech Enthusiast
Raman Bhaumik - Passionate Tech Enthusiast
Raman Bhaumik
 
Security Tips for Enterprise Azure Solutions
Security Tips for Enterprise Azure Solutions
Michele Leroux Bustamante
 
Creating Inclusive Digital Learning with AI: A Smarter, Fairer Future
Creating Inclusive Digital Learning with AI: A Smarter, Fairer Future
Impelsys Inc.
 
Down the Rabbit Hole – Solving 5 Training Roadblocks
Down the Rabbit Hole – Solving 5 Training Roadblocks
Rustici Software
 
Crypto Super 500 - 14th Report - June2025.pdf
Crypto Super 500 - 14th Report - June2025.pdf
Stephen Perrenod
 
Murdledescargadarkweb.pdfvolumen1 100 elementary
Murdledescargadarkweb.pdfvolumen1 100 elementary
JorgeSemperteguiMont
 
SAP Modernization Strategies for a Successful S/4HANA Journey.pdf
SAP Modernization Strategies for a Successful S/4HANA Journey.pdf
Precisely
 
Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...
Can We Use Rust to Develop Extensions for PostgreSQL? (POSETTE: An Event for ...
NTT DATA Technology & Innovation
 
Tech-ASan: Two-stage check for Address Sanitizer - Yixuan Cao.pdf
Tech-ASan: Two-stage check for Address Sanitizer - Yixuan Cao.pdf
caoyixuan2019
 
War_And_Cyber_3_Years_Of_Struggle_And_Lessons_For_Global_Security.pdf
War_And_Cyber_3_Years_Of_Struggle_And_Lessons_For_Global_Security.pdf
biswajitbanerjee38
 
ENERGY CONSUMPTION CALCULATION IN ENERGY-EFFICIENT AIR CONDITIONER.pdf
ENERGY CONSUMPTION CALCULATION IN ENERGY-EFFICIENT AIR CONDITIONER.pdf
Muhammad Rizwan Akram
 
FIDO Seminar: Evolving Landscape of Post-Quantum Cryptography.pptx
FIDO Seminar: Evolving Landscape of Post-Quantum Cryptography.pptx
FIDO Alliance
 
FIDO Seminar: Perspectives on Passkeys & Consumer Adoption.pptx
FIDO Seminar: Perspectives on Passkeys & Consumer Adoption.pptx
FIDO Alliance
 
Artificial Intelligence in the Nonprofit Boardroom.pdf
Artificial Intelligence in the Nonprofit Boardroom.pdf
OnBoard
 
FIDO Seminar: Authentication for a Billion Consumers - Amazon.pptx
FIDO Seminar: Authentication for a Billion Consumers - Amazon.pptx
FIDO Alliance
 
AudGram Review: Build Visually Appealing, AI-Enhanced Audiograms to Engage Yo...
AudGram Review: Build Visually Appealing, AI-Enhanced Audiograms to Engage Yo...
SOFTTECHHUB
 
Supporting the NextGen 911 Digital Transformation with FME
Supporting the NextGen 911 Digital Transformation with FME
Safe Software
 
AI VIDEO MAGAZINE - June 2025 - r/aivideo
AI VIDEO MAGAZINE - June 2025 - r/aivideo
1pcity Studios, Inc
 
Bridging the divide: A conversation on tariffs today in the book industry - T...
Bridging the divide: A conversation on tariffs today in the book industry - T...
BookNet Canada
 
Reducing Conflicts and Increasing Safety Along the Cycling Networks of East-F...
Reducing Conflicts and Increasing Safety Along the Cycling Networks of East-F...
Safe Software
 
Raman Bhaumik - Passionate Tech Enthusiast
Raman Bhaumik - Passionate Tech Enthusiast
Raman Bhaumik
 
Security Tips for Enterprise Azure Solutions
Security Tips for Enterprise Azure Solutions
Michele Leroux Bustamante
 
Creating Inclusive Digital Learning with AI: A Smarter, Fairer Future
Creating Inclusive Digital Learning with AI: A Smarter, Fairer Future
Impelsys Inc.
 
Down the Rabbit Hole – Solving 5 Training Roadblocks
Down the Rabbit Hole – Solving 5 Training Roadblocks
Rustici Software
 
Crypto Super 500 - 14th Report - June2025.pdf
Crypto Super 500 - 14th Report - June2025.pdf
Stephen Perrenod
 
Murdledescargadarkweb.pdfvolumen1 100 elementary
Murdledescargadarkweb.pdfvolumen1 100 elementary
JorgeSemperteguiMont
 
SAP Modernization Strategies for a Successful S/4HANA Journey.pdf
SAP Modernization Strategies for a Successful S/4HANA Journey.pdf
Precisely
 
Ad

Distributed count(distinct) with hyper loglog on postgresql | PGConf EU 2017) | Burak Yucesoy

  • 1. Burak Yucesoy | Citus Data | PGConf EU Distributed COUNT(DISTINCT) with HyperLogLog on PostgreSQL
  • 2. Burak Yucesoy | Citus Data | PGConf EU What is COUNT(DISTINCT)? ● Number of unique elements (cardinality) in given data ● Useful to find things like… ○ Number of unique users visited your web page ○ Number of unique products in your inventory
  • 3. Burak Yucesoy | Citus Data | PGConf EU What is distributed COUNT(DISTINCT)? Worker Node 1 logins_001 Coordinator Worker Node 2 logins_002 Worker Node 3 logins_003
  • 4. Burak Yucesoy | Citus Data | PGConf EU Why do we need distributed COUNT(DISTINCT)? ● Your data is too big to fit in memory of single machine ● Naive approach for COUNT(DISTINCT) needs too much memory
  • 5. Burak Yucesoy | Citus Data | PGConf EU Why does distributed COUNT(DISTINCT) is difficult? Worker Node 1 logins_001 CoordinatorSELECT COUNT(*) FROM logins; Worker Node 2 logins_002 Worker Node 3 logins_003 600 100 200 300SELECT COUNT(*) FROM ...;
  • 6. Burak Yucesoy | Citus Data | PGConf EU Why does distributed COUNT(DISTINCT) is difficult? Worker Node 1 logins_001 CoordinatorSELECT COUNT(DISTINCT username) FROM logins; Worker Node 2 logins_002 Worker Node 3 logins_003 SELECT COUNT(DISTINCT user_id) FROM ...;
  • 7. Burak Yucesoy | Citus Data | PGConf EU Why does distributed COUNT(DISTINCT) is difficult? Worker Node 1 logins_001 username | date ----------+----------- Alice | 2017-01-02 Bob | 2017-01-03 Charlie | 2017-01-05 Eve | 2017-01-07 Worker Node 3 logins_003 username | date ----------+----------- Frank | 2017-03-23 Eve | 2017-03-29 Charlie | 2017-03-02 Charlie | 2017-03-03 Worker Node 2 logins_002 username | date ----------+----------- Bob | 2017-02-11 Bob | 2017-02-13 Dave | 2017-02-17 Alice | 2017-02-19
  • 8. Burak Yucesoy | Citus Data | PGConf EU Why does distributed COUNT(DISTINCT) is difficult? Worker Node 1 logins_001 username | date ----------+----------- Alice | 2017-01-02 Bob | 2017-01-03 Charlie | 2017-01-05 Eve | 2017-01-07 Worker Node 3 logins_003 username | date ----------+----------- Dave | 2017-03-23 Eve | 2017-03-29 Charlie | 2017-03-02 Charlie | 2017-03-03 Worker Node 2 logins_002 username | date ----------+----------- Bob | 2017-02-11 Bob | 2017-02-13 Dave | 2017-02-17 Alice | 2017-02-19
  • 9. Burak Yucesoy | Citus Data | PGConf EU Some Possible Approaches ● Pull all distinct data to one node and count there. (Doesn’t scale) ● Repartition data on the fly. (Scales but it’s very slow) ● Use HyperLogLog. (Scales and fast)
  • 10. Burak Yucesoy | Citus Data | PGConf EU HyperLogLog(HLL) HLL is; ● Approximation algorithm ● Estimates cardinality of given data ● Mathematically proven error bounds
  • 11. Burak Yucesoy | Citus Data | PGConf EU Is it OK to approximate? It depends…
  • 12. Burak Yucesoy | Citus Data | PGConf EU HLL ● Very fast ● Low memory footprint ● Can work with streaming data ● Can merge estimations of two separate datasets efficiently
  • 13. Burak Yucesoy | Citus Data | PGConf EU How does HLL work? Steps; 1. Hash all elements a. Ensures uniform data distribution b. Can treat all data types same 2. Observing rare bit patterns 3. Stochastic averaging
  • 14. Burak Yucesoy | Citus Data | PGConf EU How does HLL work? - Observing rare bit patterns hash Alice 645403841 binary 0010...001 Number of leading zeros: 2 Maximum number of leading zeros: 2
  • 15. Burak Yucesoy | Citus Data | PGConf EU How does HLL work? - Observing rare bit patterns hash Bob 1492309842 binary 0101...010 Number of leading zeros: 1 Maximum number of leading zeros: 2
  • 16. Burak Yucesoy | Citus Data | PGConf EU How does HLL work? - Observing rare bit patterns ... Maximum number of leading zeros: 7 Cardinality Estimation: 27
  • 17. Burak Yucesoy | Citus Data | PGConf EU How does HLL work? Stochastic Averaging Measuring same thing repeatedly and taking average.
  • 18. Burak Yucesoy | Citus Data | PGConf EU
  • 19. Burak Yucesoy | Citus Data | PGConf EU
  • 20. Burak Yucesoy | Citus Data | PGConf EU How does HLL work? Stochastic Averaging Data Partition 1 Partition 3 Partition 2 7 5 12 228.968... Estimation 27 25 212
  • 21. Burak Yucesoy | Citus Data | PGConf EU How does HLL work? Stochastic Averaging 01000101...010 First m bits to decide partition number Remaining bits to count leading zeros
  • 22. Burak Yucesoy | Citus Data | PGConf EU Error rate of HLL is damn good ● Typical Error Rate: 1.04 / sqrt(number of partitions) ● Memory need is number of partitions * log(log(max. value in hash space)) bit ● Can estimate cardinalities well beyond 109 with 1% error rate while using a memory of only 6 kilobytes ● Memory vs accuracy tradeoff
  • 23. Burak Yucesoy | Citus Data | PGConf EU Why does HLL work? It turns out, combination of lots of bad estimation is a good estimation
  • 24. Burak Yucesoy | Citus Data | PGConf EU Some interesting examples Alice Alice Alice … … … Alice Partition 1 Partition 3 Partition 2 0 2 0 1.103... Harmonic Mean 20 22 20 hash Alice 645403841 binary 00100110...001 ... ... ...
  • 25. Burak Yucesoy | Citus Data | PGConf EU Some interesting examples Charlie Partition 1 Partition 8 Partition 2 29 0 0 1.142... Harmonic Mean 229 20 20 hash Charlie 0 binary 00000000...000 ... ... ...
  • 26. Burak Yucesoy | Citus Data | PGConf EU postgresql-hll ● https://github.com/aggregateknowledge/postgresql-hll ● https://github.com/citusdata/postgresql-hll ● Companies using postgresql-hll for their dashboard ● Neustar ● Cloudflare
  • 27. Burak Yucesoy | Citus Data | PGConf EU postgresql-hll uses a data structure, also called hll to keep maximum number of leading zeros of each partition. ● Use hll_hash_bigint to hash elements. ○ There are some other functions for other common data types. ● Use hll_add_agg to aggregate hashed elements into hll data structure. ● Use hll_cardinality to materialize hll data structure to actual distinct count. postgresql-hll in single node
  • 28. Burak Yucesoy | Citus Data | PGConf EU What Happens in Distributed Scenario?
  • 29. Burak Yucesoy | Citus Data | PGConf EU How to merge COUNT(DISTINCT) with HLL Shard 1 Shard 1 Partition 1 Shard 1 Partition 3 Shard 1 Partition 2 7 5 12 HLL(7, 5, 12) Intermediate Result
  • 30. Burak Yucesoy | Citus Data | PGConf EU How to merge COUNT(DISTINCT) with HLL Shard 2 Shard 2 Partition 1 Shard 2 Partition 3 Shard 2 Partition 2 11 7 8 HLL(11, 7, 8) Intermediate Result
  • 31. Burak Yucesoy | Citus Data | PGConf EU How to merge COUNT(DISTINCT) with HLL 11 7 12 1053.255 211 27 212 HLL(11, 7, 8) HLL(7, 5, 12) HLL(11, 7, 12) hll_union_agg
  • 32. Burak Yucesoy | Citus Data | PGConf EU How to merge COUNT(DISTINCT) with HLL Shard 1 + Shard 2 Shard 1 Partition 1(7) + Shard 2 Partition 1(11) 11 7 12 1053.255 Estimation Shard 1 Partition 2(5) + Shard 2 Partition 2(7) Shard 1 Partition 3(12) + Shard 2 Partition 4(8)
  • 33. Burak Yucesoy | Citus Data | PGConf EU 1. Separate data into shards. postgresql-hll in distributed environment logins_001 logins_002 logins_003
  • 34. Burak Yucesoy | Citus Data | PGConf EU 2. Put shards into separate nodes. postgresql-hll in distributed environment Worker Node 1 Coordinator Worker Node 2 Worker Node 3 logins_001 logins_002 logins_003
  • 35. Burak Yucesoy | Citus Data | PGConf EU 3. For each shard, calculate hll (but do not materialize). postgresql-hll in distributed environment Shard 1 Shard 1 Partition 1 Shard 1 Partition 3 Shard 1 Partition 2 7 5 12 HLL(7, 5, 12) Intermediate Result
  • 36. Burak Yucesoy | Citus Data | PGConf EU 4. Pull intermediate results to a single node. postgresql-hll in distributed environment Worker Node 1 logins_001 Coordinator Worker Node 2 logins_002 Worker Node 3 logins_003 HLL(6, 4, 11) HLL(10, 6, 7) HLL(7, 12, 5)
  • 37. Burak Yucesoy | Citus Data | PGConf EU 5. Merge separate hll data structures and materialize them postgresql-hll in distributed environment 11 13 12 10532.571... 211 213 212 HLL(11, 7, 8) HLL(7, 5, 12) HLL(11, 13, 12) HLL(8, 13, 6)
  • 38. Burak Yucesoy | Citus Data | PGConf EU Or use Citus :) postgresql-hll in distributed environment
  • 39. Burak Yucesoy | Citus Data | PGConf EU Burak Yucesoy [email protected] @byucesoy Thank You citusdata.com | @citusdata