SlideShare a Scribd company logo
MLOps for production-level machine learning
whoami
● Solutions Architect @ cnvrg.io
● = built by data scientists, for data scientists to help teams:
○ Get from data to models to production in the most efficient and fast way
○ Bridge science and engineering
○ Automate MLOps
def agenda(30 mins):
● Introduction to MLOps
● What can MLOps do?
● A world without MLOps
● Elements of an MLOps solution
● MLOps with cnvrg.io
MLOps.intro()
● Is it a practice? A job? A platform?
● Collaboration & communication between data science & engineering
professionals
● Stabilizes pipeline for entire ML lifecycle
● Create a real Machine Learning Cycle
● Ease friction at every point of the pipeline Research
Data ExplorationDeployment
Training
if not MLops:
+ Not all data scientists come from a DevOps background and are not
always following best practices
+ Enterprise ML development is slow & hard to standardize/scale
+ So many Tools & Frameworks
= Many delays in process
= Friction between teams
= Wasted resources
= Tough to iterate on models
= No standardization in industry
if MLOps == True:
● Deploy faster, easier and more often
● Centralize model tracking, versioning and monitoring
● Integrate different technologies together
● Reduce friction between science and engineering
○ Enhance collaboration
● Move towards standardization in the field
● Support continual learning with MLOps (CI/CD)
○ Webinar on CI/CD for Machine Learning
MLOps.elements()
1. Data management
2. Collaboration & communication
3. Model tracking, version and management
4. One-click experiment execution and model deployment
5. Unifies team no matter what language, framework, or provider
6. Features to assist every role in the team
a. Data Scientist
b. Engineer
c. Business Managers
7. Continual learning - the automatic deployment and retraining of models
IN production
MLOps.now()
● Many half-baked solutions
● Very early open-source technologies
● Requires deep know how to even implement
cnvrg.demo()
webinar.summary()
● Data Science is a quickly advancing field
● The lifecycle is inefficient within most firms
● MLOps is a still developing field that should be quickly adopted
● As a community we need to invest in standardizing MLOps
● You can incorporate MLOps with open source tools or full platform
solutions
Thanks!
https://cnvrg.io
info@cnvrg.io
+972506600186
Next webinar!
Ad

More Related Content

What's hot (20)

From Data Science to MLOps
From Data Science to MLOpsFrom Data Science to MLOps
From Data Science to MLOps
Carl W. Handlin
 
MLOps.pptx
MLOps.pptxMLOps.pptx
MLOps.pptx
AllenPeter7
 
Ml ops intro session
Ml ops   intro sessionMl ops   intro session
Ml ops intro session
Avinash Patil
 
Seamless MLOps with Seldon and MLflow
Seamless MLOps with Seldon and MLflowSeamless MLOps with Seldon and MLflow
Seamless MLOps with Seldon and MLflow
Databricks
 
Ml ops past_present_future
Ml ops past_present_futureMl ops past_present_future
Ml ops past_present_future
Nisha Talagala
 
ML-Ops how to bring your data science to production
ML-Ops  how to bring your data science to productionML-Ops  how to bring your data science to production
ML-Ops how to bring your data science to production
Herman Wu
 
Machine Learning Operations & Azure
Machine Learning Operations & AzureMachine Learning Operations & Azure
Machine Learning Operations & Azure
Erlangen Artificial Intelligence & Machine Learning Meetup
 
Databricks Overview for MLOps
Databricks Overview for MLOpsDatabricks Overview for MLOps
Databricks Overview for MLOps
Databricks
 
“Houston, we have a model...” Introduction to MLOps
“Houston, we have a model...” Introduction to MLOps“Houston, we have a model...” Introduction to MLOps
“Houston, we have a model...” Introduction to MLOps
Rui Quintino
 
Apply MLOps at Scale by H&M
Apply MLOps at Scale by H&MApply MLOps at Scale by H&M
Apply MLOps at Scale by H&M
Databricks
 
MLOps with Kubeflow
MLOps with Kubeflow MLOps with Kubeflow
MLOps with Kubeflow
Saurabh Kaushik
 
"Managing the Complete Machine Learning Lifecycle with MLflow"
"Managing the Complete Machine Learning Lifecycle with MLflow""Managing the Complete Machine Learning Lifecycle with MLflow"
"Managing the Complete Machine Learning Lifecycle with MLflow"
Databricks
 
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMakerMLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
Provectus
 
Introduction to MLflow
Introduction to MLflowIntroduction to MLflow
Introduction to MLflow
Databricks
 
MLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
MLOps Virtual Event | Building Machine Learning Platforms for the Full LifecycleMLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
MLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
Databricks
 
MLFlow: Platform for Complete Machine Learning Lifecycle
MLFlow: Platform for Complete Machine Learning Lifecycle MLFlow: Platform for Complete Machine Learning Lifecycle
MLFlow: Platform for Complete Machine Learning Lifecycle
Databricks
 
MLflow: A Platform for Production Machine Learning
MLflow: A Platform for Production Machine LearningMLflow: A Platform for Production Machine Learning
MLflow: A Platform for Production Machine Learning
Matei Zaharia
 
MLOps with Azure DevOps
MLOps with Azure DevOpsMLOps with Azure DevOps
MLOps with Azure DevOps
Marco Parenzan
 
Managing the Complete Machine Learning Lifecycle with MLflow
Managing the Complete Machine Learning Lifecycle with MLflowManaging the Complete Machine Learning Lifecycle with MLflow
Managing the Complete Machine Learning Lifecycle with MLflow
Databricks
 
Pythonsevilla2019 - Introduction to MLFlow
Pythonsevilla2019 - Introduction to MLFlowPythonsevilla2019 - Introduction to MLFlow
Pythonsevilla2019 - Introduction to MLFlow
Fernando Ortega Gallego
 
From Data Science to MLOps
From Data Science to MLOpsFrom Data Science to MLOps
From Data Science to MLOps
Carl W. Handlin
 
Ml ops intro session
Ml ops   intro sessionMl ops   intro session
Ml ops intro session
Avinash Patil
 
Seamless MLOps with Seldon and MLflow
Seamless MLOps with Seldon and MLflowSeamless MLOps with Seldon and MLflow
Seamless MLOps with Seldon and MLflow
Databricks
 
Ml ops past_present_future
Ml ops past_present_futureMl ops past_present_future
Ml ops past_present_future
Nisha Talagala
 
ML-Ops how to bring your data science to production
ML-Ops  how to bring your data science to productionML-Ops  how to bring your data science to production
ML-Ops how to bring your data science to production
Herman Wu
 
Databricks Overview for MLOps
Databricks Overview for MLOpsDatabricks Overview for MLOps
Databricks Overview for MLOps
Databricks
 
“Houston, we have a model...” Introduction to MLOps
“Houston, we have a model...” Introduction to MLOps“Houston, we have a model...” Introduction to MLOps
“Houston, we have a model...” Introduction to MLOps
Rui Quintino
 
Apply MLOps at Scale by H&M
Apply MLOps at Scale by H&MApply MLOps at Scale by H&M
Apply MLOps at Scale by H&M
Databricks
 
"Managing the Complete Machine Learning Lifecycle with MLflow"
"Managing the Complete Machine Learning Lifecycle with MLflow""Managing the Complete Machine Learning Lifecycle with MLflow"
"Managing the Complete Machine Learning Lifecycle with MLflow"
Databricks
 
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMakerMLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
Provectus
 
Introduction to MLflow
Introduction to MLflowIntroduction to MLflow
Introduction to MLflow
Databricks
 
MLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
MLOps Virtual Event | Building Machine Learning Platforms for the Full LifecycleMLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
MLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
Databricks
 
MLFlow: Platform for Complete Machine Learning Lifecycle
MLFlow: Platform for Complete Machine Learning Lifecycle MLFlow: Platform for Complete Machine Learning Lifecycle
MLFlow: Platform for Complete Machine Learning Lifecycle
Databricks
 
MLflow: A Platform for Production Machine Learning
MLflow: A Platform for Production Machine LearningMLflow: A Platform for Production Machine Learning
MLflow: A Platform for Production Machine Learning
Matei Zaharia
 
MLOps with Azure DevOps
MLOps with Azure DevOpsMLOps with Azure DevOps
MLOps with Azure DevOps
Marco Parenzan
 
Managing the Complete Machine Learning Lifecycle with MLflow
Managing the Complete Machine Learning Lifecycle with MLflowManaging the Complete Machine Learning Lifecycle with MLflow
Managing the Complete Machine Learning Lifecycle with MLflow
Databricks
 
Pythonsevilla2019 - Introduction to MLFlow
Pythonsevilla2019 - Introduction to MLFlowPythonsevilla2019 - Introduction to MLFlow
Pythonsevilla2019 - Introduction to MLFlow
Fernando Ortega Gallego
 

Similar to MLOps for production-level machine learning (20)

Dmitry Spodarets: Modern MLOps toolchain 2023
Dmitry Spodarets: Modern MLOps toolchain 2023Dmitry Spodarets: Modern MLOps toolchain 2023
Dmitry Spodarets: Modern MLOps toolchain 2023
Lviv Startup Club
 
Rsqrd AI: From R&D to ROI of AI
Rsqrd AI: From R&D to ROI of AIRsqrd AI: From R&D to ROI of AI
Rsqrd AI: From R&D to ROI of AI
Sanjana Chowdhury
 
Bridging the Gap: from Data Science to Production
Bridging the Gap: from Data Science to ProductionBridging the Gap: from Data Science to Production
Bridging the Gap: from Data Science to Production
Florian Wilhelm
 
Continuous Intelligence Workshop
Continuous Intelligence WorkshopContinuous Intelligence Workshop
Continuous Intelligence Workshop
David Tan
 
From Machine Learning Scientist to Full Stack Data Scientist: Lessons learned...
From Machine Learning Scientist to Full Stack Data Scientist: Lessons learned...From Machine Learning Scientist to Full Stack Data Scientist: Lessons learned...
From Machine Learning Scientist to Full Stack Data Scientist: Lessons learned...
Paris Women in Machine Learning and Data Science
 
Salesforce DevOps: Where Do You Start?
Salesforce DevOps: Where Do You Start?Salesforce DevOps: Where Do You Start?
Salesforce DevOps: Where Do You Start?
Chandler Anderson
 
Building a MLOps Platform Around MLflow to Enable Model Productionalization i...
Building a MLOps Platform Around MLflow to Enable Model Productionalization i...Building a MLOps Platform Around MLflow to Enable Model Productionalization i...
Building a MLOps Platform Around MLflow to Enable Model Productionalization i...
Databricks
 
Mohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with KubeflowMohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with Kubeflow
Lviv Startup Club
 
Mohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with KubeflowMohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with Kubeflow
Edunomica
 
Databricks for MLOps Presentation (AI/ML)
Databricks for MLOps Presentation (AI/ML)Databricks for MLOps Presentation (AI/ML)
Databricks for MLOps Presentation (AI/ML)
Knoldus Inc.
 
Data Engineer's Lunch 89: Machine Learning Orchestration with AirflowMachine ...
Data Engineer's Lunch 89: Machine Learning Orchestration with AirflowMachine ...Data Engineer's Lunch 89: Machine Learning Orchestration with AirflowMachine ...
Data Engineer's Lunch 89: Machine Learning Orchestration with AirflowMachine ...
Anant Corporation
 
FlorenceAI: Reinventing Data Science at Humana
FlorenceAI: Reinventing Data Science at HumanaFlorenceAI: Reinventing Data Science at Humana
FlorenceAI: Reinventing Data Science at Humana
Databricks
 
Model Drift Monitoring using Tensorflow Model Analysis
Model Drift Monitoring using Tensorflow Model AnalysisModel Drift Monitoring using Tensorflow Model Analysis
Model Drift Monitoring using Tensorflow Model Analysis
Vivek Raja P S
 
SIM RTP Meeting - So Who's Using Open Source Anyway?
SIM RTP Meeting - So Who's Using Open Source Anyway?SIM RTP Meeting - So Who's Using Open Source Anyway?
SIM RTP Meeting - So Who's Using Open Source Anyway?
Alex Meadows
 
Deploying ML models in the enterprise
Deploying ML models in the enterpriseDeploying ML models in the enterprise
Deploying ML models in the enterprise
doppenhe
 
AgileDC15 I'm Using Chef So I'm DevOps Right?
AgileDC15 I'm Using Chef So I'm DevOps Right?AgileDC15 I'm Using Chef So I'm DevOps Right?
AgileDC15 I'm Using Chef So I'm DevOps Right?
Rob Brown
 
AI hype or reality
AI  hype or realityAI  hype or reality
AI hype or reality
Awantik Das
 
Day 2 (Lecture 5): A Practitioner's Perspective on Building Machine Product i...
Day 2 (Lecture 5): A Practitioner's Perspective on Building Machine Product i...Day 2 (Lecture 5): A Practitioner's Perspective on Building Machine Product i...
Day 2 (Lecture 5): A Practitioner's Perspective on Building Machine Product i...
Aseda Owusua Addai-Deseh
 
Demystifying Devops - Uday kumar
Demystifying Devops - Uday kumarDemystifying Devops - Uday kumar
Demystifying Devops - Uday kumar
Agile Testing Alliance
 
Continuous Intelligence: Keeping your AI Application in Production
Continuous Intelligence: Keeping your AI Application in ProductionContinuous Intelligence: Keeping your AI Application in Production
Continuous Intelligence: Keeping your AI Application in Production
Dr. Arif Wider
 
Dmitry Spodarets: Modern MLOps toolchain 2023
Dmitry Spodarets: Modern MLOps toolchain 2023Dmitry Spodarets: Modern MLOps toolchain 2023
Dmitry Spodarets: Modern MLOps toolchain 2023
Lviv Startup Club
 
Rsqrd AI: From R&D to ROI of AI
Rsqrd AI: From R&D to ROI of AIRsqrd AI: From R&D to ROI of AI
Rsqrd AI: From R&D to ROI of AI
Sanjana Chowdhury
 
Bridging the Gap: from Data Science to Production
Bridging the Gap: from Data Science to ProductionBridging the Gap: from Data Science to Production
Bridging the Gap: from Data Science to Production
Florian Wilhelm
 
Continuous Intelligence Workshop
Continuous Intelligence WorkshopContinuous Intelligence Workshop
Continuous Intelligence Workshop
David Tan
 
Salesforce DevOps: Where Do You Start?
Salesforce DevOps: Where Do You Start?Salesforce DevOps: Where Do You Start?
Salesforce DevOps: Where Do You Start?
Chandler Anderson
 
Building a MLOps Platform Around MLflow to Enable Model Productionalization i...
Building a MLOps Platform Around MLflow to Enable Model Productionalization i...Building a MLOps Platform Around MLflow to Enable Model Productionalization i...
Building a MLOps Platform Around MLflow to Enable Model Productionalization i...
Databricks
 
Mohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with KubeflowMohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with Kubeflow
Lviv Startup Club
 
Mohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with KubeflowMohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with Kubeflow
Edunomica
 
Databricks for MLOps Presentation (AI/ML)
Databricks for MLOps Presentation (AI/ML)Databricks for MLOps Presentation (AI/ML)
Databricks for MLOps Presentation (AI/ML)
Knoldus Inc.
 
Data Engineer's Lunch 89: Machine Learning Orchestration with AirflowMachine ...
Data Engineer's Lunch 89: Machine Learning Orchestration with AirflowMachine ...Data Engineer's Lunch 89: Machine Learning Orchestration with AirflowMachine ...
Data Engineer's Lunch 89: Machine Learning Orchestration with AirflowMachine ...
Anant Corporation
 
FlorenceAI: Reinventing Data Science at Humana
FlorenceAI: Reinventing Data Science at HumanaFlorenceAI: Reinventing Data Science at Humana
FlorenceAI: Reinventing Data Science at Humana
Databricks
 
Model Drift Monitoring using Tensorflow Model Analysis
Model Drift Monitoring using Tensorflow Model AnalysisModel Drift Monitoring using Tensorflow Model Analysis
Model Drift Monitoring using Tensorflow Model Analysis
Vivek Raja P S
 
SIM RTP Meeting - So Who's Using Open Source Anyway?
SIM RTP Meeting - So Who's Using Open Source Anyway?SIM RTP Meeting - So Who's Using Open Source Anyway?
SIM RTP Meeting - So Who's Using Open Source Anyway?
Alex Meadows
 
Deploying ML models in the enterprise
Deploying ML models in the enterpriseDeploying ML models in the enterprise
Deploying ML models in the enterprise
doppenhe
 
AgileDC15 I'm Using Chef So I'm DevOps Right?
AgileDC15 I'm Using Chef So I'm DevOps Right?AgileDC15 I'm Using Chef So I'm DevOps Right?
AgileDC15 I'm Using Chef So I'm DevOps Right?
Rob Brown
 
AI hype or reality
AI  hype or realityAI  hype or reality
AI hype or reality
Awantik Das
 
Day 2 (Lecture 5): A Practitioner's Perspective on Building Machine Product i...
Day 2 (Lecture 5): A Practitioner's Perspective on Building Machine Product i...Day 2 (Lecture 5): A Practitioner's Perspective on Building Machine Product i...
Day 2 (Lecture 5): A Practitioner's Perspective on Building Machine Product i...
Aseda Owusua Addai-Deseh
 
Continuous Intelligence: Keeping your AI Application in Production
Continuous Intelligence: Keeping your AI Application in ProductionContinuous Intelligence: Keeping your AI Application in Production
Continuous Intelligence: Keeping your AI Application in Production
Dr. Arif Wider
 
Ad

More from cnvrg.io AI OS - Hands-on ML Workshops (12)

Webinar kubernetes and-spark
Webinar  kubernetes and-sparkWebinar  kubernetes and-spark
Webinar kubernetes and-spark
cnvrg.io AI OS - Hands-on ML Workshops
 
How to set up Kubernetes for all your machine learning workflows
How to set up Kubernetes for all your machine learning workflowsHow to set up Kubernetes for all your machine learning workflows
How to set up Kubernetes for all your machine learning workflows
cnvrg.io AI OS - Hands-on ML Workshops
 
CI/CD for Machine Learning
CI/CD for Machine LearningCI/CD for Machine Learning
CI/CD for Machine Learning
cnvrg.io AI OS - Hands-on ML Workshops
 
How to use continual learning in your ML models
How to use continual learning in your ML modelsHow to use continual learning in your ML models
How to use continual learning in your ML models
cnvrg.io AI OS - Hands-on ML Workshops
 
How To Build Auto-Adaptive Machine Learning Models with Kubernetes
How To Build Auto-Adaptive Machine Learning Models with KubernetesHow To Build Auto-Adaptive Machine Learning Models with Kubernetes
How To Build Auto-Adaptive Machine Learning Models with Kubernetes
cnvrg.io AI OS - Hands-on ML Workshops
 
Continual learning with human in-the-loop
Continual learning with human in-the-loopContinual learning with human in-the-loop
Continual learning with human in-the-loop
cnvrg.io AI OS - Hands-on ML Workshops
 
How to monitor your ML models in production with Kubernetes
How to monitor your ML models in production with KubernetesHow to monitor your ML models in production with Kubernetes
How to monitor your ML models in production with Kubernetes
cnvrg.io AI OS - Hands-on ML Workshops
 
Build machine learning pipelines from research to production
Build machine learning pipelines from research to productionBuild machine learning pipelines from research to production
Build machine learning pipelines from research to production
cnvrg.io AI OS - Hands-on ML Workshops
 
Why more than half of ML models don't make it to production
Why more than half of ML models don't make it to productionWhy more than half of ML models don't make it to production
Why more than half of ML models don't make it to production
cnvrg.io AI OS - Hands-on ML Workshops
 
Training Machine Learning models directly from GitHub with cnvrg.io MLOps
Training Machine Learning models directly from GitHub with cnvrg.io MLOpsTraining Machine Learning models directly from GitHub with cnvrg.io MLOps
Training Machine Learning models directly from GitHub with cnvrg.io MLOps
cnvrg.io AI OS - Hands-on ML Workshops
 
Scaling MLOps on NVIDIA DGX Systems
Scaling MLOps on NVIDIA DGX SystemsScaling MLOps on NVIDIA DGX Systems
Scaling MLOps on NVIDIA DGX Systems
cnvrg.io AI OS - Hands-on ML Workshops
 
Deploy your machine learning models to production with Kubernetes
Deploy your machine learning models to production with KubernetesDeploy your machine learning models to production with Kubernetes
Deploy your machine learning models to production with Kubernetes
cnvrg.io AI OS - Hands-on ML Workshops
 
Training Machine Learning models directly from GitHub with cnvrg.io MLOps
Training Machine Learning models directly from GitHub with cnvrg.io MLOpsTraining Machine Learning models directly from GitHub with cnvrg.io MLOps
Training Machine Learning models directly from GitHub with cnvrg.io MLOps
cnvrg.io AI OS - Hands-on ML Workshops
 
Ad

Recently uploaded (20)

Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 

MLOps for production-level machine learning

  • 2. whoami ● Solutions Architect @ cnvrg.io ● = built by data scientists, for data scientists to help teams: ○ Get from data to models to production in the most efficient and fast way ○ Bridge science and engineering ○ Automate MLOps
  • 3. def agenda(30 mins): ● Introduction to MLOps ● What can MLOps do? ● A world without MLOps ● Elements of an MLOps solution ● MLOps with cnvrg.io
  • 4. MLOps.intro() ● Is it a practice? A job? A platform? ● Collaboration & communication between data science & engineering professionals ● Stabilizes pipeline for entire ML lifecycle ● Create a real Machine Learning Cycle ● Ease friction at every point of the pipeline Research Data ExplorationDeployment Training
  • 5. if not MLops: + Not all data scientists come from a DevOps background and are not always following best practices + Enterprise ML development is slow & hard to standardize/scale + So many Tools & Frameworks = Many delays in process = Friction between teams = Wasted resources = Tough to iterate on models = No standardization in industry
  • 6. if MLOps == True: ● Deploy faster, easier and more often ● Centralize model tracking, versioning and monitoring ● Integrate different technologies together ● Reduce friction between science and engineering ○ Enhance collaboration ● Move towards standardization in the field ● Support continual learning with MLOps (CI/CD) ○ Webinar on CI/CD for Machine Learning
  • 7. MLOps.elements() 1. Data management 2. Collaboration & communication 3. Model tracking, version and management 4. One-click experiment execution and model deployment 5. Unifies team no matter what language, framework, or provider 6. Features to assist every role in the team a. Data Scientist b. Engineer c. Business Managers 7. Continual learning - the automatic deployment and retraining of models IN production
  • 8. MLOps.now() ● Many half-baked solutions ● Very early open-source technologies ● Requires deep know how to even implement
  • 10. webinar.summary() ● Data Science is a quickly advancing field ● The lifecycle is inefficient within most firms ● MLOps is a still developing field that should be quickly adopted ● As a community we need to invest in standardizing MLOps ● You can incorporate MLOps with open source tools or full platform solutions