SlideShare a Scribd company logo
1
Outline
Blockchain 101
Blockchain to graph
Graph data in Spark
DEMO
2
What is Blockchain
Distributed ledger
Linked list of blocks
Trust stems from Merkle trees and proof of work (aka mining)
Cryptography
3
header
What is Block
Set of transactions approved at once
Metadata
Hard limit 1 MB ( )*
4
Alice Bob
What is Transaction
(INs, OUTs)
sum of INs ≥ sum of OUTs
confirming ~ including it to a new block and finding the "nonce"
5
6
What is Transaction(more general case)
7
Transaction to Graph
M:N transactions produces a lot of edges
Apache Parquet
blockchain binary data -> parquet converter
8
Transaction to Graph
# of Satoshis sent on the edges of type [T→A] and [A→T]
timestamp on the block nodes
more suitable for querying the graph
9
Graphs and Spark
GraphX
GraphFrames
built-ins (label propagation, pagerank, triangles, bfs, etc.)
motif ~ cypher
Pregel
10
Demo time
Talk is Cheap
11
Page Rank
12
Takeways
Blockchain is out there
GraphFrames vs GraphX
Reproducible experiments with notebooks and containers
13
More projects, tutorials and examples can be found at
radanalytics.io
How to get started
14
This presentation
http://bit.ly/sais18
@JirkaKremser
Thank You!
Jiri-Kremser/bitcoin-insights
15
Ad

More Related Content

What's hot (20)

Real-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and DruidReal-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and Druid
Jan Graßegger
 
How to size up an Apache Cassandra cluster (Training)
How to size up an Apache Cassandra cluster (Training)How to size up an Apache Cassandra cluster (Training)
How to size up an Apache Cassandra cluster (Training)
DataStax Academy
 
TiDB Introduction
TiDB IntroductionTiDB Introduction
TiDB Introduction
Morgan Tocker
 
Fast analytics kudu to druid
Fast analytics  kudu to druidFast analytics  kudu to druid
Fast analytics kudu to druid
Worapol Alex Pongpech, PhD
 
Monitoring kubernetes with prometheus
Monitoring kubernetes with prometheusMonitoring kubernetes with prometheus
Monitoring kubernetes with prometheus
Brice Fernandes
 
Optimising Geospatial Queries with Dynamic File Pruning
Optimising Geospatial Queries with Dynamic File PruningOptimising Geospatial Queries with Dynamic File Pruning
Optimising Geospatial Queries with Dynamic File Pruning
Databricks
 
YugaByte DB Internals - Storage Engine and Transactions
YugaByte DB Internals - Storage Engine and Transactions YugaByte DB Internals - Storage Engine and Transactions
YugaByte DB Internals - Storage Engine and Transactions
Yugabyte
 
Change Data Feed in Delta
Change Data Feed in DeltaChange Data Feed in Delta
Change Data Feed in Delta
Databricks
 
Stargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動する
Stargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動するStargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動する
Stargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動する
Kohei Tokunaga
 
Introduction to Spark Internals
Introduction to Spark InternalsIntroduction to Spark Internals
Introduction to Spark Internals
Pietro Michiardi
 
Webinar: 99 Ways to Enrich Streaming Data with Apache Flink - Konstantin Knauf
Webinar: 99 Ways to Enrich Streaming Data with Apache Flink - Konstantin KnaufWebinar: 99 Ways to Enrich Streaming Data with Apache Flink - Konstantin Knauf
Webinar: 99 Ways to Enrich Streaming Data with Apache Flink - Konstantin Knauf
Ververica
 
Streaming SQL with Apache Calcite
Streaming SQL with Apache CalciteStreaming SQL with Apache Calcite
Streaming SQL with Apache Calcite
Julian Hyde
 
Multi Master PostgreSQL Cluster on Kubernetes
Multi Master PostgreSQL Cluster on KubernetesMulti Master PostgreSQL Cluster on Kubernetes
Multi Master PostgreSQL Cluster on Kubernetes
Ohyama Masanori
 
Apache Igniteインメモリーデータ処理プラットフォーム:特徴&利活用
Apache Igniteインメモリーデータ処理プラットフォーム:特徴&利活用Apache Igniteインメモリーデータ処理プラットフォーム:特徴&利活用
Apache Igniteインメモリーデータ処理プラットフォーム:特徴&利活用
Yahoo!デベロッパーネットワーク
 
AlloyDBを触ってみた!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)
AlloyDBを触ってみた!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)AlloyDBを触ってみた!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)
AlloyDBを触ってみた!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)
NTT DATA Technology & Innovation
 
PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)
NTT DATA Technology & Innovation
 
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in SparkSpark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark
Bo Yang
 
RethinkConn 2022!
RethinkConn 2022!RethinkConn 2022!
RethinkConn 2022!
NATS
 
Apache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & InternalsApache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & Internals
Anton Kirillov
 
The Rise of ZStandard: Apache Spark/Parquet/ORC/Avro
The Rise of ZStandard: Apache Spark/Parquet/ORC/AvroThe Rise of ZStandard: Apache Spark/Parquet/ORC/Avro
The Rise of ZStandard: Apache Spark/Parquet/ORC/Avro
Databricks
 
Real-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and DruidReal-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and Druid
Jan Graßegger
 
How to size up an Apache Cassandra cluster (Training)
How to size up an Apache Cassandra cluster (Training)How to size up an Apache Cassandra cluster (Training)
How to size up an Apache Cassandra cluster (Training)
DataStax Academy
 
Monitoring kubernetes with prometheus
Monitoring kubernetes with prometheusMonitoring kubernetes with prometheus
Monitoring kubernetes with prometheus
Brice Fernandes
 
Optimising Geospatial Queries with Dynamic File Pruning
Optimising Geospatial Queries with Dynamic File PruningOptimising Geospatial Queries with Dynamic File Pruning
Optimising Geospatial Queries with Dynamic File Pruning
Databricks
 
YugaByte DB Internals - Storage Engine and Transactions
YugaByte DB Internals - Storage Engine and Transactions YugaByte DB Internals - Storage Engine and Transactions
YugaByte DB Internals - Storage Engine and Transactions
Yugabyte
 
Change Data Feed in Delta
Change Data Feed in DeltaChange Data Feed in Delta
Change Data Feed in Delta
Databricks
 
Stargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動する
Stargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動するStargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動する
Stargz Snapshotter: イメージのpullを省略しcontainerdでコンテナを高速に起動する
Kohei Tokunaga
 
Introduction to Spark Internals
Introduction to Spark InternalsIntroduction to Spark Internals
Introduction to Spark Internals
Pietro Michiardi
 
Webinar: 99 Ways to Enrich Streaming Data with Apache Flink - Konstantin Knauf
Webinar: 99 Ways to Enrich Streaming Data with Apache Flink - Konstantin KnaufWebinar: 99 Ways to Enrich Streaming Data with Apache Flink - Konstantin Knauf
Webinar: 99 Ways to Enrich Streaming Data with Apache Flink - Konstantin Knauf
Ververica
 
Streaming SQL with Apache Calcite
Streaming SQL with Apache CalciteStreaming SQL with Apache Calcite
Streaming SQL with Apache Calcite
Julian Hyde
 
Multi Master PostgreSQL Cluster on Kubernetes
Multi Master PostgreSQL Cluster on KubernetesMulti Master PostgreSQL Cluster on Kubernetes
Multi Master PostgreSQL Cluster on Kubernetes
Ohyama Masanori
 
Apache Igniteインメモリーデータ処理プラットフォーム:特徴&利活用
Apache Igniteインメモリーデータ処理プラットフォーム:特徴&利活用Apache Igniteインメモリーデータ処理プラットフォーム:特徴&利活用
Apache Igniteインメモリーデータ処理プラットフォーム:特徴&利活用
Yahoo!デベロッパーネットワーク
 
AlloyDBを触ってみた!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)
AlloyDBを触ってみた!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)AlloyDBを触ってみた!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)
AlloyDBを触ってみた!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)
NTT DATA Technology & Innovation
 
PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)
NTT DATA Technology & Innovation
 
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in SparkSpark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark
Bo Yang
 
RethinkConn 2022!
RethinkConn 2022!RethinkConn 2022!
RethinkConn 2022!
NATS
 
Apache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & InternalsApache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & Internals
Anton Kirillov
 
The Rise of ZStandard: Apache Spark/Parquet/ORC/Avro
The Rise of ZStandard: Apache Spark/Parquet/ORC/AvroThe Rise of ZStandard: Apache Spark/Parquet/ORC/Avro
The Rise of ZStandard: Apache Spark/Parquet/ORC/Avro
Databricks
 

Similar to Analyzing Blockchain Transactions in Apache Spark with Jiri Kremser (20)

Blockchain Demystified
Blockchain DemystifiedBlockchain Demystified
Blockchain Demystified
Mahesh M Reddy
 
Blockchain meets database
Blockchain meets databaseBlockchain meets database
Blockchain meets database
YongraeJo
 
Jan 2012 HUG: Storm
Jan 2012 HUG: StormJan 2012 HUG: Storm
Jan 2012 HUG: Storm
Yahoo Developer Network
 
Day 1.pptx
Day 1.pptxDay 1.pptx
Day 1.pptx
MansiRaj26
 
Decipher openseminar (1)
Decipher openseminar (1)Decipher openseminar (1)
Decipher openseminar (1)
Jae-Yun Kim
 
tezos_hands-on-training.pdf
tezos_hands-on-training.pdftezos_hands-on-training.pdf
tezos_hands-on-training.pdf
Neven6
 
Introduce Apache Cassandra - JavaTwo Taiwan, 2012
Introduce Apache Cassandra - JavaTwo Taiwan, 2012Introduce Apache Cassandra - JavaTwo Taiwan, 2012
Introduce Apache Cassandra - JavaTwo Taiwan, 2012
Boris Yen
 
Ethereum Blockchain and DApps - Workshop at Software University
Ethereum Blockchain and DApps  - Workshop at Software UniversityEthereum Blockchain and DApps  - Workshop at Software University
Ethereum Blockchain and DApps - Workshop at Software University
Open Source University
 
CS 542 -- Concurrency Control, Distributed Commit
CS 542 -- Concurrency Control, Distributed CommitCS 542 -- Concurrency Control, Distributed Commit
CS 542 -- Concurrency Control, Distributed Commit
J Singh
 
Optimizing Application Architecture (.NET/Java topics)
Optimizing Application Architecture (.NET/Java topics)Optimizing Application Architecture (.NET/Java topics)
Optimizing Application Architecture (.NET/Java topics)
Ravi Okade
 
OracleCode_Berlin_Jun2018_AnalyzeBitcoinTransactionDataUsingAsGraph
OracleCode_Berlin_Jun2018_AnalyzeBitcoinTransactionDataUsingAsGraphOracleCode_Berlin_Jun2018_AnalyzeBitcoinTransactionDataUsingAsGraph
OracleCode_Berlin_Jun2018_AnalyzeBitcoinTransactionDataUsingAsGraph
Karin Patenge
 
Inside SQL Server In-Memory OLTP
Inside SQL Server In-Memory OLTPInside SQL Server In-Memory OLTP
Inside SQL Server In-Memory OLTP
Bob Ward
 
Renegotiating the boundary between database latency and consistency
Renegotiating the boundary between database latency  and consistencyRenegotiating the boundary between database latency  and consistency
Renegotiating the boundary between database latency and consistency
ScyllaDB
 
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...
Spark Summit
 
Klaytn: Service-Oriented Enterprise-Grade Public Blockchain Platform
Klaytn: Service-Oriented Enterprise-Grade Public Blockchain PlatformKlaytn: Service-Oriented Enterprise-Grade Public Blockchain Platform
Klaytn: Service-Oriented Enterprise-Grade Public Blockchain Platform
if kakao
 
Chronicle accelerate building a digital currency
Chronicle accelerate   building a digital currencyChronicle accelerate   building a digital currency
Chronicle accelerate building a digital currency
Peter Lawrey
 
Bitcoin and Blockchain
Bitcoin and BlockchainBitcoin and Blockchain
Bitcoin and Blockchain
Chen Wu
 
Seattle Scalability Meetup 6-26-13
Seattle Scalability Meetup 6-26-13Seattle Scalability Meetup 6-26-13
Seattle Scalability Meetup 6-26-13
specialk29
 
Presentation topalidis giorgos
Presentation topalidis giorgosPresentation topalidis giorgos
Presentation topalidis giorgos
Giorgos Topalidis
 
Presentation_Topalidis_Giorgos
Presentation_Topalidis_GiorgosPresentation_Topalidis_Giorgos
Presentation_Topalidis_Giorgos
Giorgos Topalidis
 
Blockchain Demystified
Blockchain DemystifiedBlockchain Demystified
Blockchain Demystified
Mahesh M Reddy
 
Blockchain meets database
Blockchain meets databaseBlockchain meets database
Blockchain meets database
YongraeJo
 
Decipher openseminar (1)
Decipher openseminar (1)Decipher openseminar (1)
Decipher openseminar (1)
Jae-Yun Kim
 
tezos_hands-on-training.pdf
tezos_hands-on-training.pdftezos_hands-on-training.pdf
tezos_hands-on-training.pdf
Neven6
 
Introduce Apache Cassandra - JavaTwo Taiwan, 2012
Introduce Apache Cassandra - JavaTwo Taiwan, 2012Introduce Apache Cassandra - JavaTwo Taiwan, 2012
Introduce Apache Cassandra - JavaTwo Taiwan, 2012
Boris Yen
 
Ethereum Blockchain and DApps - Workshop at Software University
Ethereum Blockchain and DApps  - Workshop at Software UniversityEthereum Blockchain and DApps  - Workshop at Software University
Ethereum Blockchain and DApps - Workshop at Software University
Open Source University
 
CS 542 -- Concurrency Control, Distributed Commit
CS 542 -- Concurrency Control, Distributed CommitCS 542 -- Concurrency Control, Distributed Commit
CS 542 -- Concurrency Control, Distributed Commit
J Singh
 
Optimizing Application Architecture (.NET/Java topics)
Optimizing Application Architecture (.NET/Java topics)Optimizing Application Architecture (.NET/Java topics)
Optimizing Application Architecture (.NET/Java topics)
Ravi Okade
 
OracleCode_Berlin_Jun2018_AnalyzeBitcoinTransactionDataUsingAsGraph
OracleCode_Berlin_Jun2018_AnalyzeBitcoinTransactionDataUsingAsGraphOracleCode_Berlin_Jun2018_AnalyzeBitcoinTransactionDataUsingAsGraph
OracleCode_Berlin_Jun2018_AnalyzeBitcoinTransactionDataUsingAsGraph
Karin Patenge
 
Inside SQL Server In-Memory OLTP
Inside SQL Server In-Memory OLTPInside SQL Server In-Memory OLTP
Inside SQL Server In-Memory OLTP
Bob Ward
 
Renegotiating the boundary between database latency and consistency
Renegotiating the boundary between database latency  and consistencyRenegotiating the boundary between database latency  and consistency
Renegotiating the boundary between database latency and consistency
ScyllaDB
 
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...
Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal-(Josh Ro...
Spark Summit
 
Klaytn: Service-Oriented Enterprise-Grade Public Blockchain Platform
Klaytn: Service-Oriented Enterprise-Grade Public Blockchain PlatformKlaytn: Service-Oriented Enterprise-Grade Public Blockchain Platform
Klaytn: Service-Oriented Enterprise-Grade Public Blockchain Platform
if kakao
 
Chronicle accelerate building a digital currency
Chronicle accelerate   building a digital currencyChronicle accelerate   building a digital currency
Chronicle accelerate building a digital currency
Peter Lawrey
 
Bitcoin and Blockchain
Bitcoin and BlockchainBitcoin and Blockchain
Bitcoin and Blockchain
Chen Wu
 
Seattle Scalability Meetup 6-26-13
Seattle Scalability Meetup 6-26-13Seattle Scalability Meetup 6-26-13
Seattle Scalability Meetup 6-26-13
specialk29
 
Presentation topalidis giorgos
Presentation topalidis giorgosPresentation topalidis giorgos
Presentation topalidis giorgos
Giorgos Topalidis
 
Presentation_Topalidis_Giorgos
Presentation_Topalidis_GiorgosPresentation_Topalidis_Giorgos
Presentation_Topalidis_Giorgos
Giorgos Topalidis
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Ad

Recently uploaded (20)

Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Modern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx AaModern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx Aa
MuhammadAwaisKamboh
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf
axonneurologycenter1
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docxMASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
santosh162
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
Taqyea
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Process Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial IndustryProcess Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial Industry
Process mining Evangelist
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Modern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx AaModern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx Aa
MuhammadAwaisKamboh
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf
axonneurologycenter1
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docxMASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
santosh162
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
Taqyea
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Process Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial IndustryProcess Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial Industry
Process mining Evangelist