SlideShare a Scribd company logo
Ray: Enterprise-Grade, Distributed Python
Ray: Enterprise-Grade,
Distributed Python
Dean Wampler
Anyscale
@deanwampler
Feedback
Your feedback is important to us.
Don’t forget to rate and
review the sessions.
Agenda
Why Ray?
Demo
When to use Spark? When to use Ray?
How to get started with Ray
Why Ray?
@deanwampler
Usage%
2012 2014 2016
Ti
05
Hence, there is a pressing need for
robust, easy to use solutions for
distributed Python
Model sizes and therefore
compute requirements
outstripping Moore’s Law
Moore’s Law (2x every 18 months)
35x every 18 months!
Python growth driven by ML/AI and
other data science workloads
Reinforcement Learning: Motivation for Ray
@deanwampler
Decisions
(actions)
Consequences
(observations, rewards)
environmentagent
@deanwampler
Beating Lee Sedol…
@deanwampler
▪Observations
▪ Board state
▪Actions
▪ Where to place stones
▪Rewards
▪ 1 if win
▪ 0 otherwise
AlphaGo (Silver et al. 2016)
@deanwampler
@deanwampler
Diverse Compute Requirements Motivated Creation of Ray!
Simulator (game
engine, robot sim,
factory floor sim…)
Neural network “stuff”
And repeated play,
over and over again, to
train for achieving the
best reward
Complex agent?
The Ray Ecosystem
@deanwampler
Hyperparameter
Tuning
Training Simulation Model Serving
@deanwampler
Microservices (simulators, too)
REST
API Gateway
µ-service 1 µ-service 2
µ-service 3
Nice! (In theory…)
@deanwampler
Microservices (simulators, too)
REST
API Gateway
µ-service 1 µ-service 2
µ-service 3
Production is a pain
API GatewayAPI Gateway
µ-service 1 µ-service 2µ-service 2µ-service 2µ-service 2µ-service 2
µ-service 3µ-service 3µ-service 3
! Each microservice
has a different
number of instances
for scalability &
resiliency
! But they have to be
managed explicitly
@deanwampler
Ray Cluster
task/
actortask/
actor
task/
actor
task/
actortask/
actor
task/
actor
task/
actor
task/
actor
task/
actor
task/
actor
task/
actor
task/
actor
task/
actor
task/
actor
Microservices (simulators, too)
REST
API Gateway
µ-service 1 µ-service 2
µ-service 3
Back to simplicity
! Back to one
“logical”
instance
! Ray handles
scaling
transparently
Demo!
When to use Spark
When to use Ray
@deanwampler
Where Spark Excels
▪ Massive-scale data sets
▪ Uniform, records with a schema
▪ Efficient, parallelized transformations
▪ SQL
▪ Batch analytics
▪ Stream processing
▪ Intuitive, high-level abstractions for data science & engineering tasks
@deanwampler
Where Ray Excels
▪ Highly non-uniform data graphs
▪ Think typical “in-memory object models”, but distributed
▪ Handles distributed state intuitively
▪ Highly non-uniform task graphs
▪ Small to large scale tasks
▪ Intuitive API for the “90%” of cases
▪ Supports compute problems ranging from
▪ general services, games, and simulators
▪ to
▪ stochastic gradient descent, HPO, …
Getting started with Ray
@deanwampler
If you’re already using these…
▪ asyncio
▪ joblib
▪ multiprocessing.Pool
▪ Use Ray’s implementations
▪ Drop-in replacements
▪ Change import statements
▪ Break the one-node limitation!
For example, from this:
from multiprocessing.pool import Pool
To this:
from ray.util.multiprocessing.pool import Pool
@deanwampler
Ray Community and Resources
▪ ray.io - entry point for all things Ray
▪ Tutorials: anyscale.com/academy
▪ github.com/ray-project/ray
▪ anyscale.com/events
@deanwampler
Feedback
Your feedback is important to us.
Don’t forget to rate and
review the sessions.
Ray: Enterprise-Grade, Distributed Python
Ad

More Related Content

What's hot (20)

Cassandra at eBay - Cassandra Summit 2012
Cassandra at eBay - Cassandra Summit 2012Cassandra at eBay - Cassandra Summit 2012
Cassandra at eBay - Cassandra Summit 2012
Jay Patel
 
Change Data Feed in Delta
Change Data Feed in DeltaChange Data Feed in Delta
Change Data Feed in Delta
Databricks
 
DASK and Apache Spark
DASK and Apache SparkDASK and Apache Spark
DASK and Apache Spark
Databricks
 
Dive into PySpark
Dive into PySparkDive into PySpark
Dive into PySpark
Mateusz Buśkiewicz
 
Big Data at Riot Games – Using Hadoop to Understand Player Experience - Stamp...
Big Data at Riot Games – Using Hadoop to Understand Player Experience - Stamp...Big Data at Riot Games – Using Hadoop to Understand Player Experience - Stamp...
Big Data at Riot Games – Using Hadoop to Understand Player Experience - Stamp...
StampedeCon
 
자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.
자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.
자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.
Yongho Ha
 
Funnel Analysis with Apache Spark and Druid
Funnel Analysis with Apache Spark and DruidFunnel Analysis with Apache Spark and Druid
Funnel Analysis with Apache Spark and Druid
Databricks
 
Embulk - 進化するバルクデータローダ
Embulk - 進化するバルクデータローダEmbulk - 進化するバルクデータローダ
Embulk - 進化するバルクデータローダ
Sadayuki Furuhashi
 
Imply at Apache Druid Meetup in London 1-15-20
Imply at Apache Druid Meetup in London 1-15-20Imply at Apache Druid Meetup in London 1-15-20
Imply at Apache Druid Meetup in London 1-15-20
Jelena Zanko
 
Approximate Queries and Graph Streams on Apache Flink - Theodore Vasiloudis -...
Approximate Queries and Graph Streams on Apache Flink - Theodore Vasiloudis -...Approximate Queries and Graph Streams on Apache Flink - Theodore Vasiloudis -...
Approximate Queries and Graph Streams on Apache Flink - Theodore Vasiloudis -...
Seattle Apache Flink Meetup
 
Apache Kylin – Cubes on Hadoop
Apache Kylin – Cubes on HadoopApache Kylin – Cubes on Hadoop
Apache Kylin – Cubes on Hadoop
DataWorks Summit
 
Data in Motion Tour 2024 Riyadh, Saudi Arabia
Data in Motion Tour 2024 Riyadh, Saudi ArabiaData in Motion Tour 2024 Riyadh, Saudi Arabia
Data in Motion Tour 2024 Riyadh, Saudi Arabia
confluent
 
Spark 의 핵심은 무엇인가? RDD! (RDD paper review)
Spark 의 핵심은 무엇인가? RDD! (RDD paper review)Spark 의 핵심은 무엇인가? RDD! (RDD paper review)
Spark 의 핵심은 무엇인가? RDD! (RDD paper review)
Yongho Ha
 
Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]
Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]
Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]
Animesh Singh
 
Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...
Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...
Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...
Spark Summit
 
Scaling Hadoop at LinkedIn
Scaling Hadoop at LinkedInScaling Hadoop at LinkedIn
Scaling Hadoop at LinkedIn
DataWorks Summit
 
Accelerate Your ML Pipeline with AutoML and MLflow
Accelerate Your ML Pipeline with AutoML and MLflowAccelerate Your ML Pipeline with AutoML and MLflow
Accelerate Your ML Pipeline with AutoML and MLflow
Databricks
 
Giraph at Hadoop Summit 2014
Giraph at Hadoop Summit 2014Giraph at Hadoop Summit 2014
Giraph at Hadoop Summit 2014
Claudio Martella
 
Kafka Streams: What it is, and how to use it?
Kafka Streams: What it is, and how to use it?Kafka Streams: What it is, and how to use it?
Kafka Streams: What it is, and how to use it?
confluent
 
Deploy and Serve Model from Azure Databricks onto Azure Machine Learning
Deploy and Serve Model from Azure Databricks onto Azure Machine LearningDeploy and Serve Model from Azure Databricks onto Azure Machine Learning
Deploy and Serve Model from Azure Databricks onto Azure Machine Learning
Databricks
 
Cassandra at eBay - Cassandra Summit 2012
Cassandra at eBay - Cassandra Summit 2012Cassandra at eBay - Cassandra Summit 2012
Cassandra at eBay - Cassandra Summit 2012
Jay Patel
 
Change Data Feed in Delta
Change Data Feed in DeltaChange Data Feed in Delta
Change Data Feed in Delta
Databricks
 
DASK and Apache Spark
DASK and Apache SparkDASK and Apache Spark
DASK and Apache Spark
Databricks
 
Big Data at Riot Games – Using Hadoop to Understand Player Experience - Stamp...
Big Data at Riot Games – Using Hadoop to Understand Player Experience - Stamp...Big Data at Riot Games – Using Hadoop to Understand Player Experience - Stamp...
Big Data at Riot Games – Using Hadoop to Understand Player Experience - Stamp...
StampedeCon
 
자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.
자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.
자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.
Yongho Ha
 
Funnel Analysis with Apache Spark and Druid
Funnel Analysis with Apache Spark and DruidFunnel Analysis with Apache Spark and Druid
Funnel Analysis with Apache Spark and Druid
Databricks
 
Embulk - 進化するバルクデータローダ
Embulk - 進化するバルクデータローダEmbulk - 進化するバルクデータローダ
Embulk - 進化するバルクデータローダ
Sadayuki Furuhashi
 
Imply at Apache Druid Meetup in London 1-15-20
Imply at Apache Druid Meetup in London 1-15-20Imply at Apache Druid Meetup in London 1-15-20
Imply at Apache Druid Meetup in London 1-15-20
Jelena Zanko
 
Approximate Queries and Graph Streams on Apache Flink - Theodore Vasiloudis -...
Approximate Queries and Graph Streams on Apache Flink - Theodore Vasiloudis -...Approximate Queries and Graph Streams on Apache Flink - Theodore Vasiloudis -...
Approximate Queries and Graph Streams on Apache Flink - Theodore Vasiloudis -...
Seattle Apache Flink Meetup
 
Apache Kylin – Cubes on Hadoop
Apache Kylin – Cubes on HadoopApache Kylin – Cubes on Hadoop
Apache Kylin – Cubes on Hadoop
DataWorks Summit
 
Data in Motion Tour 2024 Riyadh, Saudi Arabia
Data in Motion Tour 2024 Riyadh, Saudi ArabiaData in Motion Tour 2024 Riyadh, Saudi Arabia
Data in Motion Tour 2024 Riyadh, Saudi Arabia
confluent
 
Spark 의 핵심은 무엇인가? RDD! (RDD paper review)
Spark 의 핵심은 무엇인가? RDD! (RDD paper review)Spark 의 핵심은 무엇인가? RDD! (RDD paper review)
Spark 의 핵심은 무엇인가? RDD! (RDD paper review)
Yongho Ha
 
Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]
Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]
Hybrid Cloud, Kubeflow and Tensorflow Extended [TFX]
Animesh Singh
 
Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...
Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...
Large-Scale Text Processing Pipeline with Spark ML and GraphFrames: Spark Sum...
Spark Summit
 
Scaling Hadoop at LinkedIn
Scaling Hadoop at LinkedInScaling Hadoop at LinkedIn
Scaling Hadoop at LinkedIn
DataWorks Summit
 
Accelerate Your ML Pipeline with AutoML and MLflow
Accelerate Your ML Pipeline with AutoML and MLflowAccelerate Your ML Pipeline with AutoML and MLflow
Accelerate Your ML Pipeline with AutoML and MLflow
Databricks
 
Giraph at Hadoop Summit 2014
Giraph at Hadoop Summit 2014Giraph at Hadoop Summit 2014
Giraph at Hadoop Summit 2014
Claudio Martella
 
Kafka Streams: What it is, and how to use it?
Kafka Streams: What it is, and how to use it?Kafka Streams: What it is, and how to use it?
Kafka Streams: What it is, and how to use it?
confluent
 
Deploy and Serve Model from Azure Databricks onto Azure Machine Learning
Deploy and Serve Model from Azure Databricks onto Azure Machine LearningDeploy and Serve Model from Azure Databricks onto Azure Machine Learning
Deploy and Serve Model from Azure Databricks onto Azure Machine Learning
Databricks
 

Similar to Ray: Enterprise-Grade, Distributed Python (20)

Getting Spark ready for real-time, operational analytics
Getting Spark ready for real-time, operational analyticsGetting Spark ready for real-time, operational analytics
Getting Spark ready for real-time, operational analytics
airisData
 
JavaScript and Artificial Intelligence by Aatman & Sagar - AhmedabadJS
JavaScript and Artificial Intelligence by Aatman & Sagar - AhmedabadJSJavaScript and Artificial Intelligence by Aatman & Sagar - AhmedabadJS
JavaScript and Artificial Intelligence by Aatman & Sagar - AhmedabadJS
KNOWARTH - Software Development Company
 
Introduction to NetGuardians' Big Data Software Stack
Introduction to NetGuardians' Big Data Software StackIntroduction to NetGuardians' Big Data Software Stack
Introduction to NetGuardians' Big Data Software Stack
Jérôme Kehrli
 
SnappyData Toronto Meetup Nov 2017
SnappyData Toronto Meetup Nov 2017SnappyData Toronto Meetup Nov 2017
SnappyData Toronto Meetup Nov 2017
SnappyData
 
Is Spark the right choice for data analysis ?
Is Spark the right choice for data analysis ?Is Spark the right choice for data analysis ?
Is Spark the right choice for data analysis ?
Ahmed Kamal
 
Scalable machine learning
Scalable machine learningScalable machine learning
Scalable machine learning
Arnaud Rachez
 
Machine learning model to production
Machine learning model to productionMachine learning model to production
Machine learning model to production
Georg Heiler
 
Scala Days Highlights | BoldRadius
Scala Days Highlights | BoldRadiusScala Days Highlights | BoldRadius
Scala Days Highlights | BoldRadius
BoldRadius Solutions
 
From lots of reports (with some data Analysis) 
to Massive Data Analysis (Wit...
From lots of reports (with some data Analysis) 
to Massive Data Analysis (Wit...From lots of reports (with some data Analysis) 
to Massive Data Analysis (Wit...
From lots of reports (with some data Analysis) 
to Massive Data Analysis (Wit...
Mark Rittman
 
From HDFS to S3: Migrate Pinterest Apache Spark Clusters
From HDFS to S3: Migrate Pinterest Apache Spark ClustersFrom HDFS to S3: Migrate Pinterest Apache Spark Clusters
From HDFS to S3: Migrate Pinterest Apache Spark Clusters
Databricks
 
SnappyData at Spark Summit 2017
SnappyData at Spark Summit 2017SnappyData at Spark Summit 2017
SnappyData at Spark Summit 2017
Jags Ramnarayan
 
SnappyData, the Spark Database. A unified cluster for streaming, transactions...
SnappyData, the Spark Database. A unified cluster for streaming, transactions...SnappyData, the Spark Database. A unified cluster for streaming, transactions...
SnappyData, the Spark Database. A unified cluster for streaming, transactions...
SnappyData
 
SnappyData Overview Slidedeck for Big Data Bellevue
SnappyData Overview Slidedeck for Big Data Bellevue SnappyData Overview Slidedeck for Big Data Bellevue
SnappyData Overview Slidedeck for Big Data Bellevue
SnappyData
 
Architecting Agile Data Applications for Scale
Architecting Agile Data Applications for ScaleArchitecting Agile Data Applications for Scale
Architecting Agile Data Applications for Scale
Databricks
 
Microsoft Openness Mongo DB
Microsoft Openness Mongo DBMicrosoft Openness Mongo DB
Microsoft Openness Mongo DB
Heriyadi Janwar
 
Apache Spark for Everyone - Women Who Code Workshop
Apache Spark for Everyone - Women Who Code WorkshopApache Spark for Everyone - Women Who Code Workshop
Apache Spark for Everyone - Women Who Code Workshop
Amanda Casari
 
Powering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin KimPowering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Healthcare Claim Reimbursement using Apache Spark
Healthcare Claim Reimbursement using Apache SparkHealthcare Claim Reimbursement using Apache Spark
Healthcare Claim Reimbursement using Apache Spark
Databricks
 
In-Memory Computing - The Big Picture
In-Memory Computing - The Big PictureIn-Memory Computing - The Big Picture
In-Memory Computing - The Big Picture
Markus Kett
 
Dirty data? Clean it up! - Datapalooza Denver 2016
Dirty data? Clean it up! - Datapalooza Denver 2016Dirty data? Clean it up! - Datapalooza Denver 2016
Dirty data? Clean it up! - Datapalooza Denver 2016
Dan Lynn
 
Getting Spark ready for real-time, operational analytics
Getting Spark ready for real-time, operational analyticsGetting Spark ready for real-time, operational analytics
Getting Spark ready for real-time, operational analytics
airisData
 
Introduction to NetGuardians' Big Data Software Stack
Introduction to NetGuardians' Big Data Software StackIntroduction to NetGuardians' Big Data Software Stack
Introduction to NetGuardians' Big Data Software Stack
Jérôme Kehrli
 
SnappyData Toronto Meetup Nov 2017
SnappyData Toronto Meetup Nov 2017SnappyData Toronto Meetup Nov 2017
SnappyData Toronto Meetup Nov 2017
SnappyData
 
Is Spark the right choice for data analysis ?
Is Spark the right choice for data analysis ?Is Spark the right choice for data analysis ?
Is Spark the right choice for data analysis ?
Ahmed Kamal
 
Scalable machine learning
Scalable machine learningScalable machine learning
Scalable machine learning
Arnaud Rachez
 
Machine learning model to production
Machine learning model to productionMachine learning model to production
Machine learning model to production
Georg Heiler
 
Scala Days Highlights | BoldRadius
Scala Days Highlights | BoldRadiusScala Days Highlights | BoldRadius
Scala Days Highlights | BoldRadius
BoldRadius Solutions
 
From lots of reports (with some data Analysis) 
to Massive Data Analysis (Wit...
From lots of reports (with some data Analysis) 
to Massive Data Analysis (Wit...From lots of reports (with some data Analysis) 
to Massive Data Analysis (Wit...
From lots of reports (with some data Analysis) 
to Massive Data Analysis (Wit...
Mark Rittman
 
From HDFS to S3: Migrate Pinterest Apache Spark Clusters
From HDFS to S3: Migrate Pinterest Apache Spark ClustersFrom HDFS to S3: Migrate Pinterest Apache Spark Clusters
From HDFS to S3: Migrate Pinterest Apache Spark Clusters
Databricks
 
SnappyData at Spark Summit 2017
SnappyData at Spark Summit 2017SnappyData at Spark Summit 2017
SnappyData at Spark Summit 2017
Jags Ramnarayan
 
SnappyData, the Spark Database. A unified cluster for streaming, transactions...
SnappyData, the Spark Database. A unified cluster for streaming, transactions...SnappyData, the Spark Database. A unified cluster for streaming, transactions...
SnappyData, the Spark Database. A unified cluster for streaming, transactions...
SnappyData
 
SnappyData Overview Slidedeck for Big Data Bellevue
SnappyData Overview Slidedeck for Big Data Bellevue SnappyData Overview Slidedeck for Big Data Bellevue
SnappyData Overview Slidedeck for Big Data Bellevue
SnappyData
 
Architecting Agile Data Applications for Scale
Architecting Agile Data Applications for ScaleArchitecting Agile Data Applications for Scale
Architecting Agile Data Applications for Scale
Databricks
 
Microsoft Openness Mongo DB
Microsoft Openness Mongo DBMicrosoft Openness Mongo DB
Microsoft Openness Mongo DB
Heriyadi Janwar
 
Apache Spark for Everyone - Women Who Code Workshop
Apache Spark for Everyone - Women Who Code WorkshopApache Spark for Everyone - Women Who Code Workshop
Apache Spark for Everyone - Women Who Code Workshop
Amanda Casari
 
Powering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin KimPowering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Healthcare Claim Reimbursement using Apache Spark
Healthcare Claim Reimbursement using Apache SparkHealthcare Claim Reimbursement using Apache Spark
Healthcare Claim Reimbursement using Apache Spark
Databricks
 
In-Memory Computing - The Big Picture
In-Memory Computing - The Big PictureIn-Memory Computing - The Big Picture
In-Memory Computing - The Big Picture
Markus Kett
 
Dirty data? Clean it up! - Datapalooza Denver 2016
Dirty data? Clean it up! - Datapalooza Denver 2016Dirty data? Clean it up! - Datapalooza Denver 2016
Dirty data? Clean it up! - Datapalooza Denver 2016
Dan Lynn
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Ad

Recently uploaded (20)

Process Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulenProcess Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulen
Process mining Evangelist
 
50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd
emir73065
 
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhhChapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
ChrisjohnAlfiler
 
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahahE-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
RyanRahardjo2
 
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
Taqyea
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
3. Univariable and Multivariable Analysis_Using Stata_2025.pdf
3. Univariable and Multivariable Analysis_Using Stata_2025.pdf3. Univariable and Multivariable Analysis_Using Stata_2025.pdf
3. Univariable and Multivariable Analysis_Using Stata_2025.pdf
axonneurologycenter1
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Impact_of_AI_on_Everyday_Life and info.pptx
Impact_of_AI_on_Everyday_Life and info.pptxImpact_of_AI_on_Everyday_Life and info.pptx
Impact_of_AI_on_Everyday_Life and info.pptx
swatibhusari5
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
...lab.Lab123456789123456789123456789123456789
...lab.Lab123456789123456789123456789123456789...lab.Lab123456789123456789123456789123456789
...lab.Lab123456789123456789123456789123456789
Ghh
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Volkswagen - Analyzing the World's Biggest Purchasing Process
Volkswagen - Analyzing the World's Biggest Purchasing ProcessVolkswagen - Analyzing the World's Biggest Purchasing Process
Volkswagen - Analyzing the World's Biggest Purchasing Process
Process mining Evangelist
 
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
Taqyea
 
real illuminati Uganda agent 0782561496/0756664682
real illuminati Uganda agent 0782561496/0756664682real illuminati Uganda agent 0782561496/0756664682
real illuminati Uganda agent 0782561496/0756664682
way to join real illuminati Agent In Kampala Call/WhatsApp+256782561496/0756664682
 
Call illuminati Agent in uganda+256776963507/0741506136
Call illuminati Agent in uganda+256776963507/0741506136Call illuminati Agent in uganda+256776963507/0741506136
Call illuminati Agent in uganda+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
disnakertransjabarda
 
Process Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulenProcess Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulen
Process mining Evangelist
 
50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd
emir73065
 
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhhChapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
ChrisjohnAlfiler
 
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahahE-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
RyanRahardjo2
 
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
Taqyea
 
3. Univariable and Multivariable Analysis_Using Stata_2025.pdf
3. Univariable and Multivariable Analysis_Using Stata_2025.pdf3. Univariable and Multivariable Analysis_Using Stata_2025.pdf
3. Univariable and Multivariable Analysis_Using Stata_2025.pdf
axonneurologycenter1
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Impact_of_AI_on_Everyday_Life and info.pptx
Impact_of_AI_on_Everyday_Life and info.pptxImpact_of_AI_on_Everyday_Life and info.pptx
Impact_of_AI_on_Everyday_Life and info.pptx
swatibhusari5
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
...lab.Lab123456789123456789123456789123456789
...lab.Lab123456789123456789123456789123456789...lab.Lab123456789123456789123456789123456789
...lab.Lab123456789123456789123456789123456789
Ghh
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Volkswagen - Analyzing the World's Biggest Purchasing Process
Volkswagen - Analyzing the World's Biggest Purchasing ProcessVolkswagen - Analyzing the World's Biggest Purchasing Process
Volkswagen - Analyzing the World's Biggest Purchasing Process
Process mining Evangelist
 
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
Taqyea
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
disnakertransjabarda
 

Ray: Enterprise-Grade, Distributed Python