Machine Learning feature engineering is one of the most critical workloads on Spark at Facebook and serves as a means of improving the quality of each of the prediction models we have in production. Over the last year, we’ve added several features in Spark core/SQL to add first class support for Feature Injection and Feature Reaping in Spark. Feature Injection is an important prerequisite to (offline) ML training where the base features are injected/aligned with new/experimental features, with the goal to improve model performance over time. From a query engine’s perspective, this can be thought of as a LEFT OUTER join between the base training table and the feature table which, if implemented naively, could get extremely expensive. As part of this work, we added native support for writing indexed/aligned tables in Spark, wherein IF the data in the base table and the injected feature can be aligned during writes, the join itself can be performed inexpensively.