SlideShare a Scribd company logo
Machine Learning
con Apache Mahout
  Domingo Suarez Torres
Machine Learning (ML)
        Introduction
Definition

     • Machine learning, a branch of artificial
        intelligence, is a scientific discipline
        concerned with the design and
        development of algorithms that allow
        computers to evolve behaviors based on
        empirical data (1)


1http://en.wikipedia.org/wiki/Machine_learning
• “Machine Learning is programming
  computers to optimize a performance
  criterion using example data or past
  experience”
 • Intro. To Machine Learning by E. Alpaydin
Applications
•   Recommend friends/dates/        •   Detect anomalies in machine
    products                            output

•   Classify content into           •   Ranking search results
    predefined groups
                                    •   Fraud detection
•   Find similar content based
    on object properties            •   Spam detection

•   Find associations/patterns in   •   Medical diagnostics
    actions/behaviors
                                    •   Translators
•   Identify key topics in large
    collections of text             •   Much more¡
Math

• Stadistics
• Discrete Math
• Linear algebra
• Probability
Machine Learning & Apache Mahout
Starting with ML
•   Get your data
•   Decide on your features per your algorithm
•   Prep the data
    •   Different approaches for different algorithms
•   Run your algorithm(s)
    •   Lather, rinse, repeat
•   Validate your results
    •   Smell test, A/B testing
Apache Mahout

• Machine Learning library. Platform?
• Extensible, we can use our own algorithm.
• Hadoop support
• 2005. Taste Framework
• 2008. Included in Lucene
Scalability
•   Huge amount of data, growing every second¡
•   Be as fast and efficient as possible given the intrinsic design of
    the algorithm
    •   Some algorithms won’t scale to massive machine clusters
    •   Others fit logically on a Map Reduce framework like
        Apache Hadoop
    •   Still others will need alternative distributed programming
        models
    •   Be pragmatic
•   Most Mahout implementations are Map Reduce enabled
Who uses Mahout?
Components

• Recommender Engines (collaborative
  filtering, content-based)
• Clustering
• Classification
When to use?
• Recommendation
 • Rank large datasets
• Clustering
 • Group your data
• Classification
 • Train me to think like you
Recommenders
•   Given a data set. Make a recomendation.
    •   Item recomendation (Book, Movie, etc)
•   Ranking based
•   Recomendations
    •   User based
    •   Item based
•   knowledge of user’s relationships to items (user
    preferences)
Machine Learning & Apache Mahout
Colaborative filtering
• User based
• Item based
• Both techniques require no knowledge of
  the properties of the items themselves.
• Item Type is irrelevant. Apache Mahout is
  happy
17
Content based
• Domain-specific approaches
• Hard to meaningfully codify into a
  framework
• We are responsables of choosing which
  item's attributes to use.
• Apache Mahout can’t handle this out-of-
  the-box, but can built on top.
Making recommendations

 • What we need?
  • Input data
  • Neighborhood
  • Similarity
Input Data
•   In Mahout terms: Preferences
•   A preference contains:
    •   User ID
    •   Item ID
    •   Preference value
    •   Example:
        •   1,101,5.0
        •   USER ID: 1, ITEM ID: 101, PrefValue: 5.0
21
Machine Learning & Apache Mahout
Neighborhood
Nearest N Users    Threshold
Similarity
Clustering

• Surface naturally occurring groups of data
• A notion of similarity (and dissimilarity)
• Algorithms do not require training
• Stopping condition - iterate until close
  enough
Clustering
•   Document level
    •   Group documents based on a notion of similarity
    •   K-Means, Fuzzy K-Means, Dirichlet, Canopy, Mean-Shift
    •   Distance Measures
    •   Manhattan, Euclidean, other
•   Topic Modeling
    •   Cluster words across documents to identify topics
    •   Latent Dirichlet Allocation
Classification

• Require training (supervised)
• Make a single decision with a very limited
  set of outcomes
• Typical answers naturally fit into categories
Classification samples

• Credit card fraud prediction
• Customer attrition
• Diabetes detector
• Search Engine
Mahout/Hadoop
• For large data sets
• Online
• Offline (Hadoop prefered)
• You can build your solution with Mahout
• Take a look into Weka
 • http://www.cs.waikato.ac.nz/ml/weka/
Resources
Resources
Resources
Machine Learning & Apache Mahout
Join us¡
• GIAMA.
 • Agustin Ramos iniciative
Ad

More Related Content

What's hot (20)

Scikit Learn intro
Scikit Learn introScikit Learn intro
Scikit Learn intro
9xdot
 
Tools and techniques for data science
Tools and techniques for data scienceTools and techniques for data science
Tools and techniques for data science
Ajay Ohri
 
Evaluating hypothesis
Evaluating  hypothesisEvaluating  hypothesis
Evaluating hypothesis
swapnac12
 
Knowledge Discovery and Data Mining
Knowledge Discovery and Data MiningKnowledge Discovery and Data Mining
Knowledge Discovery and Data Mining
Amritanshu Mehra
 
Predicting house price
Predicting house pricePredicting house price
Predicting house price
Divya Tiwari
 
HANDWRITTEN DIGIT RECOGNITION USING k-NN CLASSIFIER
HANDWRITTEN DIGIT RECOGNITION USING k-NN CLASSIFIERHANDWRITTEN DIGIT RECOGNITION USING k-NN CLASSIFIER
HANDWRITTEN DIGIT RECOGNITION USING k-NN CLASSIFIER
vineet raj
 
Detecting Fake News Through NLP
Detecting Fake News Through NLPDetecting Fake News Through NLP
Detecting Fake News Through NLP
Sakha Global
 
Iris data analysis example in R
Iris data analysis example in RIris data analysis example in R
Iris data analysis example in R
Duyen Do
 
Data partitioning
Data partitioningData partitioning
Data partitioning
Vinod Wilson
 
R Programming Language
R Programming LanguageR Programming Language
R Programming Language
NareshKarela1
 
Machine Learning: Bias and Variance Trade-off
Machine Learning: Bias and Variance Trade-offMachine Learning: Bias and Variance Trade-off
Machine Learning: Bias and Variance Trade-off
International Institute of Information Technology (I²IT)
 
Zero shot-learning: paper presentation
Zero shot-learning: paper presentationZero shot-learning: paper presentation
Zero shot-learning: paper presentation
Jérémie Kalfon
 
NOSQL- Presentation on NoSQL
NOSQL- Presentation on NoSQLNOSQL- Presentation on NoSQL
NOSQL- Presentation on NoSQL
Ramakant Soni
 
2.3 bayesian classification
2.3 bayesian classification2.3 bayesian classification
2.3 bayesian classification
Krish_ver2
 
Introduction To Machine Learning
Introduction To Machine LearningIntroduction To Machine Learning
Introduction To Machine Learning
Knoldus Inc.
 
Machine Learning - Splitting Datasets
Machine Learning - Splitting DatasetsMachine Learning - Splitting Datasets
Machine Learning - Splitting Datasets
Andrew Ferlitsch
 
Diabetes prediction using machine learning
Diabetes prediction using machine learningDiabetes prediction using machine learning
Diabetes prediction using machine learning
dataalcott
 
Difference between molap, rolap and holap in ssas
Difference between molap, rolap and holap  in ssasDifference between molap, rolap and holap  in ssas
Difference between molap, rolap and holap in ssas
Umar Ali
 
Introduction to Data Mining
Introduction to Data MiningIntroduction to Data Mining
Introduction to Data Mining
DataminingTools Inc
 
Loan Approval Prediction Using Machine Learning
Loan Approval Prediction Using Machine LearningLoan Approval Prediction Using Machine Learning
Loan Approval Prediction Using Machine Learning
Souma Maiti
 
Scikit Learn intro
Scikit Learn introScikit Learn intro
Scikit Learn intro
9xdot
 
Tools and techniques for data science
Tools and techniques for data scienceTools and techniques for data science
Tools and techniques for data science
Ajay Ohri
 
Evaluating hypothesis
Evaluating  hypothesisEvaluating  hypothesis
Evaluating hypothesis
swapnac12
 
Knowledge Discovery and Data Mining
Knowledge Discovery and Data MiningKnowledge Discovery and Data Mining
Knowledge Discovery and Data Mining
Amritanshu Mehra
 
Predicting house price
Predicting house pricePredicting house price
Predicting house price
Divya Tiwari
 
HANDWRITTEN DIGIT RECOGNITION USING k-NN CLASSIFIER
HANDWRITTEN DIGIT RECOGNITION USING k-NN CLASSIFIERHANDWRITTEN DIGIT RECOGNITION USING k-NN CLASSIFIER
HANDWRITTEN DIGIT RECOGNITION USING k-NN CLASSIFIER
vineet raj
 
Detecting Fake News Through NLP
Detecting Fake News Through NLPDetecting Fake News Through NLP
Detecting Fake News Through NLP
Sakha Global
 
Iris data analysis example in R
Iris data analysis example in RIris data analysis example in R
Iris data analysis example in R
Duyen Do
 
R Programming Language
R Programming LanguageR Programming Language
R Programming Language
NareshKarela1
 
Zero shot-learning: paper presentation
Zero shot-learning: paper presentationZero shot-learning: paper presentation
Zero shot-learning: paper presentation
Jérémie Kalfon
 
NOSQL- Presentation on NoSQL
NOSQL- Presentation on NoSQLNOSQL- Presentation on NoSQL
NOSQL- Presentation on NoSQL
Ramakant Soni
 
2.3 bayesian classification
2.3 bayesian classification2.3 bayesian classification
2.3 bayesian classification
Krish_ver2
 
Introduction To Machine Learning
Introduction To Machine LearningIntroduction To Machine Learning
Introduction To Machine Learning
Knoldus Inc.
 
Machine Learning - Splitting Datasets
Machine Learning - Splitting DatasetsMachine Learning - Splitting Datasets
Machine Learning - Splitting Datasets
Andrew Ferlitsch
 
Diabetes prediction using machine learning
Diabetes prediction using machine learningDiabetes prediction using machine learning
Diabetes prediction using machine learning
dataalcott
 
Difference between molap, rolap and holap in ssas
Difference between molap, rolap and holap  in ssasDifference between molap, rolap and holap  in ssas
Difference between molap, rolap and holap in ssas
Umar Ali
 
Loan Approval Prediction Using Machine Learning
Loan Approval Prediction Using Machine LearningLoan Approval Prediction Using Machine Learning
Loan Approval Prediction Using Machine Learning
Souma Maiti
 

Viewers also liked (6)

SGCE 2015 REST APIs
SGCE 2015 REST APIsSGCE 2015 REST APIs
SGCE 2015 REST APIs
Domingo Suarez Torres
 
Serling dev team, development process
Serling dev team, development processSerling dev team, development process
Serling dev team, development process
Domingo Suarez Torres
 
SGCE 2012 Lightning Talk-Single Page Interface
SGCE 2012 Lightning Talk-Single Page InterfaceSGCE 2012 Lightning Talk-Single Page Interface
SGCE 2012 Lightning Talk-Single Page Interface
Domingo Suarez Torres
 
SGNext Elasticsearch
SGNext ElasticsearchSGNext Elasticsearch
SGNext Elasticsearch
Domingo Suarez Torres
 
JVM Reactive Programming
JVM Reactive ProgrammingJVM Reactive Programming
JVM Reactive Programming
Domingo Suarez Torres
 
SGCE 2014 micro services
SGCE 2014 micro servicesSGCE 2014 micro services
SGCE 2014 micro services
Domingo Suarez Torres
 
Ad

Similar to Machine Learning & Apache Mahout (20)

Hadoop World 2011: Data Mining in Hadoop, Making Sense of it in Mahout! - Mic...
Hadoop World 2011: Data Mining in Hadoop, Making Sense of it in Mahout! - Mic...Hadoop World 2011: Data Mining in Hadoop, Making Sense of it in Mahout! - Mic...
Hadoop World 2011: Data Mining in Hadoop, Making Sense of it in Mahout! - Mic...
Cloudera, Inc.
 
Introduction to Mahout and Machine Learning
Introduction to Mahout and Machine LearningIntroduction to Mahout and Machine Learning
Introduction to Mahout and Machine Learning
Varad Meru
 
Building NLP solutions for Davidson ML Group
Building NLP solutions for Davidson ML GroupBuilding NLP solutions for Davidson ML Group
Building NLP solutions for Davidson ML Group
botsplash.com
 
Data Scientist Toolbox
Data Scientist ToolboxData Scientist Toolbox
Data Scientist Toolbox
Andrei Savu
 
Tutorial Mahout - Recommendation
Tutorial Mahout - RecommendationTutorial Mahout - Recommendation
Tutorial Mahout - Recommendation
Cataldo Musto
 
Download Materials
Download MaterialsDownload Materials
Download Materials
butest
 
Building NLP solutions using Python
Building NLP solutions using PythonBuilding NLP solutions using Python
Building NLP solutions using Python
botsplash.com
 
RecSys 2015 Tutorial – Scalable Recommender Systems: Where Machine Learning...
 RecSys 2015 Tutorial – Scalable Recommender Systems: Where Machine Learning... RecSys 2015 Tutorial – Scalable Recommender Systems: Where Machine Learning...
RecSys 2015 Tutorial – Scalable Recommender Systems: Where Machine Learning...
S. Diana Hu
 
RecSys 2015 Tutorial - Scalable Recommender Systems: Where Machine Learning m...
RecSys 2015 Tutorial - Scalable Recommender Systems: Where Machine Learning m...RecSys 2015 Tutorial - Scalable Recommender Systems: Where Machine Learning m...
RecSys 2015 Tutorial - Scalable Recommender Systems: Where Machine Learning m...
Joaquin Delgado PhD.
 
Scalable Ensemble Machine Learning @ Harvard Health Policy Data Science Lab
Scalable Ensemble Machine Learning @ Harvard Health Policy Data Science LabScalable Ensemble Machine Learning @ Harvard Health Policy Data Science Lab
Scalable Ensemble Machine Learning @ Harvard Health Policy Data Science Lab
Sri Ambati
 
Mahout Tutorial and Hands-on (version 2015)
Mahout Tutorial and Hands-on (version 2015)Mahout Tutorial and Hands-on (version 2015)
Mahout Tutorial and Hands-on (version 2015)
Cataldo Musto
 
SDEC2011 Essentials of Mahout
SDEC2011 Essentials of MahoutSDEC2011 Essentials of Mahout
SDEC2011 Essentials of Mahout
Korea Sdec
 
Towards a common data file format for hyperspectral images
Towards a common data file format for hyperspectral imagesTowards a common data file format for hyperspectral images
Towards a common data file format for hyperspectral images
Alex Henderson
 
Where Search Meets Machine Learning: Presented by Diana Hu & Joaquin Delgado,...
Where Search Meets Machine Learning: Presented by Diana Hu & Joaquin Delgado,...Where Search Meets Machine Learning: Presented by Diana Hu & Joaquin Delgado,...
Where Search Meets Machine Learning: Presented by Diana Hu & Joaquin Delgado,...
Lucidworks
 
Apache Mahout
Apache MahoutApache Mahout
Apache Mahout
Save Manos
 
Lucene/Solr Revolution 2015: Where Search Meets Machine Learning
Lucene/Solr Revolution 2015: Where Search Meets Machine LearningLucene/Solr Revolution 2015: Where Search Meets Machine Learning
Lucene/Solr Revolution 2015: Where Search Meets Machine Learning
Joaquin Delgado PhD.
 
Lucene/Solr Revolution 2015: Where Search Meets Machine Learning
Lucene/Solr Revolution 2015: Where Search Meets Machine LearningLucene/Solr Revolution 2015: Where Search Meets Machine Learning
Lucene/Solr Revolution 2015: Where Search Meets Machine Learning
S. Diana Hu
 
machine learning
machine learningmachine learning
machine learning
soundaryasarya
 
The Art of Intelligence – Introduction Machine Learning for Java professional...
The Art of Intelligence – Introduction Machine Learning for Java professional...The Art of Intelligence – Introduction Machine Learning for Java professional...
The Art of Intelligence – Introduction Machine Learning for Java professional...
Lucas Jellema
 
Workshop Exercise: Text Analysis Methods for Digital Humanities
Workshop Exercise: Text Analysis Methods for Digital HumanitiesWorkshop Exercise: Text Analysis Methods for Digital Humanities
Workshop Exercise: Text Analysis Methods for Digital Humanities
Helen Bailey
 
Hadoop World 2011: Data Mining in Hadoop, Making Sense of it in Mahout! - Mic...
Hadoop World 2011: Data Mining in Hadoop, Making Sense of it in Mahout! - Mic...Hadoop World 2011: Data Mining in Hadoop, Making Sense of it in Mahout! - Mic...
Hadoop World 2011: Data Mining in Hadoop, Making Sense of it in Mahout! - Mic...
Cloudera, Inc.
 
Introduction to Mahout and Machine Learning
Introduction to Mahout and Machine LearningIntroduction to Mahout and Machine Learning
Introduction to Mahout and Machine Learning
Varad Meru
 
Building NLP solutions for Davidson ML Group
Building NLP solutions for Davidson ML GroupBuilding NLP solutions for Davidson ML Group
Building NLP solutions for Davidson ML Group
botsplash.com
 
Data Scientist Toolbox
Data Scientist ToolboxData Scientist Toolbox
Data Scientist Toolbox
Andrei Savu
 
Tutorial Mahout - Recommendation
Tutorial Mahout - RecommendationTutorial Mahout - Recommendation
Tutorial Mahout - Recommendation
Cataldo Musto
 
Download Materials
Download MaterialsDownload Materials
Download Materials
butest
 
Building NLP solutions using Python
Building NLP solutions using PythonBuilding NLP solutions using Python
Building NLP solutions using Python
botsplash.com
 
RecSys 2015 Tutorial – Scalable Recommender Systems: Where Machine Learning...
 RecSys 2015 Tutorial – Scalable Recommender Systems: Where Machine Learning... RecSys 2015 Tutorial – Scalable Recommender Systems: Where Machine Learning...
RecSys 2015 Tutorial – Scalable Recommender Systems: Where Machine Learning...
S. Diana Hu
 
RecSys 2015 Tutorial - Scalable Recommender Systems: Where Machine Learning m...
RecSys 2015 Tutorial - Scalable Recommender Systems: Where Machine Learning m...RecSys 2015 Tutorial - Scalable Recommender Systems: Where Machine Learning m...
RecSys 2015 Tutorial - Scalable Recommender Systems: Where Machine Learning m...
Joaquin Delgado PhD.
 
Scalable Ensemble Machine Learning @ Harvard Health Policy Data Science Lab
Scalable Ensemble Machine Learning @ Harvard Health Policy Data Science LabScalable Ensemble Machine Learning @ Harvard Health Policy Data Science Lab
Scalable Ensemble Machine Learning @ Harvard Health Policy Data Science Lab
Sri Ambati
 
Mahout Tutorial and Hands-on (version 2015)
Mahout Tutorial and Hands-on (version 2015)Mahout Tutorial and Hands-on (version 2015)
Mahout Tutorial and Hands-on (version 2015)
Cataldo Musto
 
SDEC2011 Essentials of Mahout
SDEC2011 Essentials of MahoutSDEC2011 Essentials of Mahout
SDEC2011 Essentials of Mahout
Korea Sdec
 
Towards a common data file format for hyperspectral images
Towards a common data file format for hyperspectral imagesTowards a common data file format for hyperspectral images
Towards a common data file format for hyperspectral images
Alex Henderson
 
Where Search Meets Machine Learning: Presented by Diana Hu & Joaquin Delgado,...
Where Search Meets Machine Learning: Presented by Diana Hu & Joaquin Delgado,...Where Search Meets Machine Learning: Presented by Diana Hu & Joaquin Delgado,...
Where Search Meets Machine Learning: Presented by Diana Hu & Joaquin Delgado,...
Lucidworks
 
Lucene/Solr Revolution 2015: Where Search Meets Machine Learning
Lucene/Solr Revolution 2015: Where Search Meets Machine LearningLucene/Solr Revolution 2015: Where Search Meets Machine Learning
Lucene/Solr Revolution 2015: Where Search Meets Machine Learning
Joaquin Delgado PhD.
 
Lucene/Solr Revolution 2015: Where Search Meets Machine Learning
Lucene/Solr Revolution 2015: Where Search Meets Machine LearningLucene/Solr Revolution 2015: Where Search Meets Machine Learning
Lucene/Solr Revolution 2015: Where Search Meets Machine Learning
S. Diana Hu
 
The Art of Intelligence – Introduction Machine Learning for Java professional...
The Art of Intelligence – Introduction Machine Learning for Java professional...The Art of Intelligence – Introduction Machine Learning for Java professional...
The Art of Intelligence – Introduction Machine Learning for Java professional...
Lucas Jellema
 
Workshop Exercise: Text Analysis Methods for Digital Humanities
Workshop Exercise: Text Analysis Methods for Digital HumanitiesWorkshop Exercise: Text Analysis Methods for Digital Humanities
Workshop Exercise: Text Analysis Methods for Digital Humanities
Helen Bailey
 
Ad

More from Domingo Suarez Torres (20)

Projecto Loom - Structured Concurrency - JavaMexico - Julio 2024
Projecto Loom - Structured Concurrency - JavaMexico - Julio 2024Projecto Loom - Structured Concurrency - JavaMexico - Julio 2024
Projecto Loom - Structured Concurrency - JavaMexico - Julio 2024
Domingo Suarez Torres
 
Cloud Native MX Meetup - Asegurando tu Cluster de Kubernetes
Cloud Native MX Meetup - Asegurando tu Cluster de KubernetesCloud Native MX Meetup - Asegurando tu Cluster de Kubernetes
Cloud Native MX Meetup - Asegurando tu Cluster de Kubernetes
Domingo Suarez Torres
 
Java Dev Day 2019 No kuberneteen por convivir
Java Dev Day 2019  No kuberneteen por convivirJava Dev Day 2019  No kuberneteen por convivir
Java Dev Day 2019 No kuberneteen por convivir
Domingo Suarez Torres
 
Contenedores 101 Digital Ocean CDMX
Contenedores 101 Digital Ocean CDMXContenedores 101 Digital Ocean CDMX
Contenedores 101 Digital Ocean CDMX
Domingo Suarez Torres
 
Retos en la arquitectura de Microservicios
Retos en la arquitectura de MicroserviciosRetos en la arquitectura de Microservicios
Retos en la arquitectura de Microservicios
Domingo Suarez Torres
 
Java Cloud Native Hack Nights GDL
Java Cloud Native Hack Nights GDLJava Cloud Native Hack Nights GDL
Java Cloud Native Hack Nights GDL
Domingo Suarez Torres
 
meetup digital ocean kubernetes
meetup digital ocean kubernetesmeetup digital ocean kubernetes
meetup digital ocean kubernetes
Domingo Suarez Torres
 
Peru JUG Micronaut & GraalVM
Peru JUG Micronaut & GraalVMPeru JUG Micronaut & GraalVM
Peru JUG Micronaut & GraalVM
Domingo Suarez Torres
 
DevFest Lima Corriendo cargas e trabajo seguras en GKE con Istio
DevFest Lima Corriendo cargas e trabajo seguras en GKE con IstioDevFest Lima Corriendo cargas e trabajo seguras en GKE con Istio
DevFest Lima Corriendo cargas e trabajo seguras en GKE con Istio
Domingo Suarez Torres
 
Cloud Native Development in the JVM
Cloud Native Development in the JVMCloud Native Development in the JVM
Cloud Native Development in the JVM
Domingo Suarez Torres
 
Cloud Native Mexico - Introducción a Kubernetes
Cloud Native Mexico - Introducción a KubernetesCloud Native Mexico - Introducción a Kubernetes
Cloud Native Mexico - Introducción a Kubernetes
Domingo Suarez Torres
 
Meetup DigitalOcean Cloud Native architecture
Meetup DigitalOcean Cloud Native architectureMeetup DigitalOcean Cloud Native architecture
Meetup DigitalOcean Cloud Native architecture
Domingo Suarez Torres
 
Cloud Native Mexico Meetup de Marzo 2018 Service Mesh con Istio y Envoy
Cloud Native Mexico Meetup de Marzo 2018 Service Mesh con Istio y EnvoyCloud Native Mexico Meetup de Marzo 2018 Service Mesh con Istio y Envoy
Cloud Native Mexico Meetup de Marzo 2018 Service Mesh con Istio y Envoy
Domingo Suarez Torres
 
Cloud Native Mexico Meetup enero 2018 Observability
Cloud Native Mexico Meetup enero 2018 ObservabilityCloud Native Mexico Meetup enero 2018 Observability
Cloud Native Mexico Meetup enero 2018 Observability
Domingo Suarez Torres
 
Cloud Native Mexico Presentacion
Cloud Native Mexico PresentacionCloud Native Mexico Presentacion
Cloud Native Mexico Presentacion
Domingo Suarez Torres
 
gRPC: Beyond REST
gRPC: Beyond RESTgRPC: Beyond REST
gRPC: Beyond REST
Domingo Suarez Torres
 
Devops Landscape
Devops LandscapeDevops Landscape
Devops Landscape
Domingo Suarez Torres
 
Orquestación de contenedores con Kubernetes SGNext
Orquestación de contenedores con Kubernetes SGNextOrquestación de contenedores con Kubernetes SGNext
Orquestación de contenedores con Kubernetes SGNext
Domingo Suarez Torres
 
Webinar Arquitectura de Microservicios
Webinar Arquitectura de MicroserviciosWebinar Arquitectura de Microservicios
Webinar Arquitectura de Microservicios
Domingo Suarez Torres
 
Elasticsearch JVM-MX Meetup April 2016
Elasticsearch JVM-MX Meetup April 2016Elasticsearch JVM-MX Meetup April 2016
Elasticsearch JVM-MX Meetup April 2016
Domingo Suarez Torres
 
Projecto Loom - Structured Concurrency - JavaMexico - Julio 2024
Projecto Loom - Structured Concurrency - JavaMexico - Julio 2024Projecto Loom - Structured Concurrency - JavaMexico - Julio 2024
Projecto Loom - Structured Concurrency - JavaMexico - Julio 2024
Domingo Suarez Torres
 
Cloud Native MX Meetup - Asegurando tu Cluster de Kubernetes
Cloud Native MX Meetup - Asegurando tu Cluster de KubernetesCloud Native MX Meetup - Asegurando tu Cluster de Kubernetes
Cloud Native MX Meetup - Asegurando tu Cluster de Kubernetes
Domingo Suarez Torres
 
Java Dev Day 2019 No kuberneteen por convivir
Java Dev Day 2019  No kuberneteen por convivirJava Dev Day 2019  No kuberneteen por convivir
Java Dev Day 2019 No kuberneteen por convivir
Domingo Suarez Torres
 
Retos en la arquitectura de Microservicios
Retos en la arquitectura de MicroserviciosRetos en la arquitectura de Microservicios
Retos en la arquitectura de Microservicios
Domingo Suarez Torres
 
DevFest Lima Corriendo cargas e trabajo seguras en GKE con Istio
DevFest Lima Corriendo cargas e trabajo seguras en GKE con IstioDevFest Lima Corriendo cargas e trabajo seguras en GKE con Istio
DevFest Lima Corriendo cargas e trabajo seguras en GKE con Istio
Domingo Suarez Torres
 
Cloud Native Mexico - Introducción a Kubernetes
Cloud Native Mexico - Introducción a KubernetesCloud Native Mexico - Introducción a Kubernetes
Cloud Native Mexico - Introducción a Kubernetes
Domingo Suarez Torres
 
Meetup DigitalOcean Cloud Native architecture
Meetup DigitalOcean Cloud Native architectureMeetup DigitalOcean Cloud Native architecture
Meetup DigitalOcean Cloud Native architecture
Domingo Suarez Torres
 
Cloud Native Mexico Meetup de Marzo 2018 Service Mesh con Istio y Envoy
Cloud Native Mexico Meetup de Marzo 2018 Service Mesh con Istio y EnvoyCloud Native Mexico Meetup de Marzo 2018 Service Mesh con Istio y Envoy
Cloud Native Mexico Meetup de Marzo 2018 Service Mesh con Istio y Envoy
Domingo Suarez Torres
 
Cloud Native Mexico Meetup enero 2018 Observability
Cloud Native Mexico Meetup enero 2018 ObservabilityCloud Native Mexico Meetup enero 2018 Observability
Cloud Native Mexico Meetup enero 2018 Observability
Domingo Suarez Torres
 
Orquestación de contenedores con Kubernetes SGNext
Orquestación de contenedores con Kubernetes SGNextOrquestación de contenedores con Kubernetes SGNext
Orquestación de contenedores con Kubernetes SGNext
Domingo Suarez Torres
 
Webinar Arquitectura de Microservicios
Webinar Arquitectura de MicroserviciosWebinar Arquitectura de Microservicios
Webinar Arquitectura de Microservicios
Domingo Suarez Torres
 
Elasticsearch JVM-MX Meetup April 2016
Elasticsearch JVM-MX Meetup April 2016Elasticsearch JVM-MX Meetup April 2016
Elasticsearch JVM-MX Meetup April 2016
Domingo Suarez Torres
 

Recently uploaded (20)

Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 

Machine Learning & Apache Mahout

  • 1. Machine Learning con Apache Mahout Domingo Suarez Torres
  • 2. Machine Learning (ML) Introduction
  • 3. Definition • Machine learning, a branch of artificial intelligence, is a scientific discipline concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data (1) 1http://en.wikipedia.org/wiki/Machine_learning
  • 4. • “Machine Learning is programming computers to optimize a performance criterion using example data or past experience” • Intro. To Machine Learning by E. Alpaydin
  • 5. Applications • Recommend friends/dates/ • Detect anomalies in machine products output • Classify content into • Ranking search results predefined groups • Fraud detection • Find similar content based on object properties • Spam detection • Find associations/patterns in • Medical diagnostics actions/behaviors • Translators • Identify key topics in large collections of text • Much more¡
  • 6. Math • Stadistics • Discrete Math • Linear algebra • Probability
  • 8. Starting with ML • Get your data • Decide on your features per your algorithm • Prep the data • Different approaches for different algorithms • Run your algorithm(s) • Lather, rinse, repeat • Validate your results • Smell test, A/B testing
  • 9. Apache Mahout • Machine Learning library. Platform? • Extensible, we can use our own algorithm. • Hadoop support • 2005. Taste Framework • 2008. Included in Lucene
  • 10. Scalability • Huge amount of data, growing every second¡ • Be as fast and efficient as possible given the intrinsic design of the algorithm • Some algorithms won’t scale to massive machine clusters • Others fit logically on a Map Reduce framework like Apache Hadoop • Still others will need alternative distributed programming models • Be pragmatic • Most Mahout implementations are Map Reduce enabled
  • 12. Components • Recommender Engines (collaborative filtering, content-based) • Clustering • Classification
  • 13. When to use? • Recommendation • Rank large datasets • Clustering • Group your data • Classification • Train me to think like you
  • 14. Recommenders • Given a data set. Make a recomendation. • Item recomendation (Book, Movie, etc) • Ranking based • Recomendations • User based • Item based • knowledge of user’s relationships to items (user preferences)
  • 16. Colaborative filtering • User based • Item based • Both techniques require no knowledge of the properties of the items themselves. • Item Type is irrelevant. Apache Mahout is happy
  • 17. 17
  • 18. Content based • Domain-specific approaches • Hard to meaningfully codify into a framework • We are responsables of choosing which item's attributes to use. • Apache Mahout can’t handle this out-of- the-box, but can built on top.
  • 19. Making recommendations • What we need? • Input data • Neighborhood • Similarity
  • 20. Input Data • In Mahout terms: Preferences • A preference contains: • User ID • Item ID • Preference value • Example: • 1,101,5.0 • USER ID: 1, ITEM ID: 101, PrefValue: 5.0
  • 21. 21
  • 25. Clustering • Surface naturally occurring groups of data • A notion of similarity (and dissimilarity) • Algorithms do not require training • Stopping condition - iterate until close enough
  • 26. Clustering • Document level • Group documents based on a notion of similarity • K-Means, Fuzzy K-Means, Dirichlet, Canopy, Mean-Shift • Distance Measures • Manhattan, Euclidean, other • Topic Modeling • Cluster words across documents to identify topics • Latent Dirichlet Allocation
  • 27. Classification • Require training (supervised) • Make a single decision with a very limited set of outcomes • Typical answers naturally fit into categories
  • 28. Classification samples • Credit card fraud prediction • Customer attrition • Diabetes detector • Search Engine
  • 29. Mahout/Hadoop • For large data sets • Online • Offline (Hadoop prefered) • You can build your solution with Mahout • Take a look into Weka • http://www.cs.waikato.ac.nz/ml/weka/
  • 34. Join us¡ • GIAMA. • Agustin Ramos iniciative

Editor's Notes