Abstract Path planning in mobile robots must ensure optimality of the path. The optimality achieved may be in path, time, energy consumed etc. Path planning in robots also depends on the environment in which it operates like, static or dynamic, known or unknown etc. Global path planning using A* algorithm and genetic algorithm is investigated in this paper. A known dynamic environment, in which a control station will compute the shortest path and communicate to the mobile robot and the mobile robot, will traverse through this path to reach the goal. The control station will keep track of the path traversed by the robot. The mobile robot navigates through the shortest path and if the robot detects any obstacle in the destined path, the mobile robot will update the information about the environment and this information together with the current location will be communicated to the control station. Then the control station, with the updated map of the environment and new starting location and destination recalculates the new shortest path, if any, and will communicate to the mobile robot so that it can reach the destination. The technique has been implemented and tested extensively in real-world experiments and simulation runs. The results demonstrate that the technique effectively calculates the shortest path in known dynamic environment and allows the robot to quickly accomplish the mission.