Abstract
Software systems are highly configurable. Although there are lots of advantages in improving the configuration, it is difficult to test unique errors hiding in configurations. To overcome this problem, combinatorial interaction testing (CIT) is used to selects strength and computes a covering array which includes all configuration option combinations. It poorly identifies the effective configuration space. So the cost required for testing get increased. In this work, techniques includes hierarchical clustering algorithm and ripper algorithm. It gives high strength interaction which it can be missed by CIT approach and it identifies effective configuration space. We evaluated and comparecoverage achieves by CIT and RIPPER classification with hierarchical clustering. Using this approach we validate loop as well as statement based configurations. Our results strongly suggest that Proto-interaction formed by RIPPER classificationwith hierarchical clusteringcan effectively covers sets of configurations than traditional CIT.
Keywords: Configuration options, Hierarchical Clustering, RIPPER Algorithm