SlideShare a Scribd company logo
ON THE MANY GRAPHS OF THE
WEB AND THE INTEREST OF
ADDING THEIR MISSING LINKS.
Fabien GANDON, @fabien_gandon http://fabien.info
   
WIMMICS TEAM
 Inria
 CNRS
 University of Nice
Inria Lille - Nord Europe (2008)
Inria Saclay – Ile-de-France
(2008)
Inria Nancy – Grand Est
(1986)
Inria Grenoble – Rhône-
Alpes (1992)
Inria Sophia Antipolis Méditerranée (1983)
Inria Bordeaux
Sud-Ouest (2008)
Inria Rennes
Bretagne
Atlantique
(1980)
Inria Paris-Rocquencourt
(1967)
Montpellier
Lyon
Nantes
Strasbourg
Center
Branch
Pau
I3S
Web-Instrumented Man-Machine Interactions,
Communities and Semantics
CHALLENGE
to bridge social semantics and
formal semantics on the Web
WEB GRAPHS
(meta)data of
the relations
and the
resources of the
web
…sites …social …of data …of services
+ + + +…
web…
= +
…semantics
+ + + +…= +
typed
graphs
web
(graphs)
networks
(graphs)
linked data
(graphs)
workflows
(graphs)
schemas
(graphs)
CHALLENGES
typed graphs to analyze,
model, formalize and
implement social semantic
web applications for
epistemic communities
 multidisciplinary approach for analyzing and modeling
the many aspects of intertwined information systems
communities of users and their interactions
 formalizing and reasoning on these models using typed graphs
new analysis tools and indicators
new functionalities and better management
MULTI-DISCIPLINARY TEAM
 50 members (2015)
 14 nationalities
 1 DR, 3 Professors
 3CR, 4 Assistant professors
 1 SRP
DR/Professors:
 Fabien GANDON, Inria, AI, KR, Semantic Web, Social Web
 Nhan LE THANH, UNS, Logics, KR, Emotions
 Peter SANDER, UNS, Web, Emotions
 Andrea TETTAMANZI, UNS, AI, Logics, Agents,
CR/Assistant Professors:
 Michel BUFFA, UNS, Web, Social Media
 Elena CABRIO, UNS, NLP, KR, Linguistics
 Olivier CORBY, Inria, KR, AI, Sem. Web, Programming, Graphs
 Catherine FARON-ZUCKER, UNS, KR, AI, Semantic Web, Graphs
 Alain GIBOIN, Inria, Interaction Design, KE, User & Task models
 Isabelle MIRBEL, UNS, Requirements, Communities
 Serena VILLATA, CNRS, AI, Argumentation, Licenses, Rights
Inria Starting Position: Alexandre MONNIN, Philosophy, Web
PREVIOUSLY IN ICCS
ON RDF & CG
• Griwes: Generic Model and Preliminary Specifications
for a Graph-Based Knowledge Representation Toolkit,
Jean-François Baget, Olivier Corby, Rose Dieng-Kuntz1, Catherine Faron-
Zucker, Fabien Gandon, Alain Giboin, Alain Gutierrez, Michel Leclère,
Marie-Laure Mugnier, Rallou Thomopoulos, ICCS 2008
• Keynote “Web, Graphs and Semantics”
Olivier Corby , ICCS 2008
…
• A Conceptual Graph Model for W3C RDF Resource
Description Framework, Olivier Corby, Rose Dieng, Cédric
Hebert, ICCS 8/14/2000
Previously on… the Web
10
three components of the Web architecture
1. identification (URI) & address (URL)
ex. http://www.inria.fr
URL
11
three components of the Web architecture
1. identification (URI) & address (URL)
ex. http://www.inria.fr
2. communication / protocol (HTTP)
GET /centre/sophia HTTP/1.1
Host: www.inria.fr
HTTP
URL
address
12
three components of the Web architecture
1. identification (URI) & address (URL)
ex. http://www.inria.fr
2. communication / protocol (HTTP)
GET /centre/sophia HTTP/1.1
Host: www.inria.fr
3. representation language (HTML)
Fabien works at
<a href="http://inria.fr">Inria</a>
HTTP
URL
HTML
reference address
communication
WEB
linking open data
14
multiplying references to the Web
HTTP
URL
HTML
reference address
communication
WEB
identify what
exists on the
web
http://my-site.fr
identify,
on the web, what
exists
http://animals.org/this-zebra
16
W3C standards
HTTP
URI
HTML
reference address
communication
WEB
universal nodes and types
identification
17
a Web approach to data publication
URI ???...
« http://fr.dbpedia.org/resource/Paris »
18
a Web approach to data publication
HTTP URI
19
a Web approach to data publication
HTTP URI
GET
20
a Web approach to data publication
HTTP URI
GET
HTML, …
21
a Web approach to data publication
HTTP URI
GET
HTML,XML,…
22
linked data
23
ratatouille.fr
or the recipe for linked data
24
ratatouille.fr
or the recipe for linked data
25
ratatouille.fr
or the recipe for linked data
26
ratatouille.fr
or the recipe for linked data
27
datatouille.fr
or the recipe for linked data
28
a Web graph data model
HTTP
URI
RDF
reference address
communication
Web of
data
universal
graph data
model
29
"Music"
RDFis a model for directed labeled multigraphs
http://inria.fr/rr/doc.html
http://ns.inria.fr/fabien.gandon#me
http://inria.fr/schema#author
http://inria.fr/schema#topic
http://inria.fr/rr/doc.html
http://inria.fr/schema#keyword
GLOBAL GIANT GRAPH
of linked (open) data on the Web
31
linked open data explosion on the Web
0
50
100
150
200
250
300
350
01/05/2007 01/05/2008 01/05/2009 01/05/2010 01/05/2011
number of open, published and linked datasets in the LOD cloud
32
a Web graph access
HTTP
URI
RDF
reference address
communication
Web of
data
QUERY THE RDF GRAPH
SPARQL graph patterns
& constraints
e.g. DBpedia
34
HTTP
URI
RDFS
OWL
reference address
communication
web of
data
Web ontology languages
35
RDFS to declare classes of
resources, properties, and
organize their hierarchy
Document
Report
creator
author
Document Person
36
OWL in one…
algebraic properties
disjoint properties
qualified cardinality
1..1
!
individual prop. neg
chained prop.


enumeration
intersection
union
complement
 disjunction
restriction!
cardinality
1..1
equivalence
[>18]
disjoint union
value restriction
keys
…
SKOS
thesaurus, lexicon
skos:narrowerTransitive
skos:narrower
skos:broaderTransitive
skos:broader
#Algebra#Mathematics #LinearAlgebra
broader
narrower
broader
narrower
broaderTransitive broaderTransitive
narrowerTransitive narrowerTransitive
broaderTransitive
narrowerTransitive
LOV.OKFN.ORG
Web directory of
vocabularies/schemas/
ontologies
39
data traceability & trust
40
PROV-O: vocabulary for provenance and traceability
describe entities and activities involved in providing a resource
RESEARCH CHALLENGES
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing
METHODS AND TOOLS
1. user & interaction design

METHODS AND TOOLS
1. user & interaction design
2. communities & social networks


METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web



METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing





G2 H2

G1 H1
<
Gn Hn
METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing
 • KB interaction (context, Q&A, exploration, …)
• user models, personas, emotion capture
• mockups, evaluation campaigns




G2 H2

G1 H1
<
Gn Hn
METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing


• KB interaction (context, Q&A, exploration, …)
• user models, personas, emotion capture
• mockups, evaluation campaigns
• community detection, labelling
• collective personas, coordinative artifacts
• argumentation theory, sentiment analysis



G2 H2

G1 H1
<
Gn Hn
METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing



• KB interaction (context, Q&A, exploration, …)
• user models, personas, emotion capture
• mockups, evaluation campaigns
• community detection, labelling
• collective personas, coordinative artifacts
• argumentation theory, sentiment analysis
• ontology-based knowledge representation
• formalisms: typed graphs, uncertainty
• knowledge extraction, data translation


G2 H2

G1 H1
<
Gn Hn
METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing




• KB interaction (context, Q&A, exploration, …)
• user models, personas, emotion capture
• mockups, evaluation campaigns
• community detection, labelling
• collective personas, coordinative artifacts
• argumentation theory, sentiment analysis
• ontology-based knowledge representation
• formalisms: typed graphs, uncertainty
• knowledge extraction, data translation
• graph querying, reasoning, transforming
• induction, propagation, approximation
• explanation, tracing, control, licensing, trust
cultural data is a weapon of mass construction
PUBLISHING
 extract data (content, activity…)
 provide them as linked data
DBPEDIA.FR (extraction, end-point)
180 000 000 triples
models
Web architecture
[Cojan, Boyer et al.]
PUBLISHING
e.g. DBpedia.fr
185 377 686 RDF triples extracted and mapped
[Boyer, Cojan et al.]
PUBLISHING
e.g. DBpedia.fr
number of queries per day
70 000 on average
2.5 millions max
185 377 686 RDF triples (edges) extracted and mapped
public dumps, endpoints, interfaces, APIs…[Boyer, Cojan et al.]
PUBLISHING
e.g. DBpedia.fr
2.5 billion RDF triples (edges) of versioning activities
<http://fr.dbpedia.org/Réaux>
a prov:Revision ;
swp:isVersion "96"^^xsd:integer ;
dc:created "2005-08-05T07:27:07"^^xsd:dateTime ;
dc:modified "2015-01-06T10:26:35"^^xsd:dateTime ;
dbfr:uniqueContributorNb 58 ;
dbfr:revPerYear [ dc:date "2005"^^xsd:gYear ; rdf:value
"2"^^xsd:integer ] ;
…
dbfr:revPerYear [ dc:date "2015"^^xsd:gYear ; rdf:value
"1"^^xsd:integer ] ;
dbfr:revPerMonth [ dc:date "08/2005"^^xsd:gYearMonth ;
rdf:value "1"^^xsd:integer ] ;
…
dbfr:revPerMonth [ dc:date "01/2015"^^xsd:gYearMonth ;
rdf:value "1"^^xsd:integer ] ;
dbfr:averageSizePerMonth [ dc:date
"08/2005"^^xsd:gYearMonth ; rdf:value "3060"^^xsd:float ] ;
…
dbfr:averageSizePerYear [ dc:date "2015"^^xsd:gYear ;
rdf:value "4767"^^xsd:float ] ;
dbfr:averageSizePerMonth [ dc:date
"08/2005"^^xsd:gYearMonth ; rdf:value "3060"^^xsd:float ] ;
…
dbfr:averageSizePerMonth [ dc:date
"01/2015"^^xsd:gYearMonth ; rdf:value "4767"^^xsd:float ] ;
dbfr:size "4767"^^xsd:integer ;
dc:creator [ foaf:name "DasBot" ; rdf:type
scoro:ComputationalAgent ] ;
sioc:note "Robot : Remplacement de texte automatisé (-
[[commune française| +[[commune (France)|)"^^xsd:string ;
prov:wasRevisionOf
<https://fr.wikipedia.org/w/index.php?title=Réaux&oldid=103
441506> ;
prov:wasAttributedTo [ foaf:name "Escarbot" ; a
prov:SoftwareAgent ] .
[Boyer, Corby et al.]
DBPEDIA & STTL
declarative transformation
language from RDF to text
formats (XML, JSON, HTML,
Latex, natural language, GML,
…) [Corby, Faron-Zucker et al.]
“searching” comes in many flavors
SEARCHING
 exploratory search
 question-answering
DBPEDIA.FR (extraction, end-point)
180 000 000 triples
[Cojan, Boyer et al.]
SEARCHING
 exploratory search
 question-answering
DBPEDIA.FR (extraction, end-point)
180 000 000 triples
DISCOVERYHUB.CO
semantic spreading
activation
new evaluation protocol
[Marie, Giboin, Palagi et al.]
[Cojan, Boyer et al.]
SEARCHING
 exploratory search
 question-answering
DBPEDIA.FR (extraction, end-point)
180 000 000 triples
DISCOVERYHUB.CO
QAKiS.ORG
semantic spreading
activation
new evaluation protocol
[D:Work], played by [R:Person]
[D:Work] stars [R:Person]
[D:Work] film stars [R:Person]
starring(Work, Person)
linguistic relational
pattern extraction
named entity recognition
similarity based SPARQL
generation
select * where {
dbpr:Batman_Begins dbp:starring ?v .
OPTIONAL {?v rdfs:label ?l
filter(lang(?l)="en")} }
[Cabrio et al.]
[Marie, Giboin, Palagi et al.]
[Cojan, Boyer et al.]
SEARCHING
e.g. DiscoveryHub
semantic spreading activation
SIMILARITY
FILTERING
discoveryhub.co
SEARCHING
e.g. QAKIS
ALOOF: robots learning by reading on the Web
Annie cuts the bread in the kitchen with her knife dbp:Knife aloof:Location dbp:Kitchen
[Cabrio, Basile et al.]
ALOOF: robots learning by reading on the Web
 First Object Relation Knowledge Base:
46.212 co-mentions, 49 tools, 14 rooms,
101 “possible location” relations,696
tuples <entity, relation, frame>
 Evaluation: 100 domestic implements, 20
rooms, Crowdsourcing 2000 judgements
 Object co-occurrence for coherence
building
Annie cuts the bread in the kitchen with her knife dbp:Knife aloof:Location dbp:Kitchen
[Cabrio, Basile et al.]
BROWSING
e.g. SMILK plugin
[Lopez, Cabrio, et al.]
BROWSING
e.g. SMILK plugin
[Nooralahzadeh, Cabrio, et al.]
On the many graphs of the Web and the interest of adding their missing links.
MODELING USERS
 individual context
 social structures
MODELING USERS
 individual context
 social structures
PRISSMA
prissma:Context
0 48.86034
-2.337599
200
geo:lat
geo:lon
prissma:radius
1
:museumGeo
prissma:Environment
2
{ 3, 1, 2, { pr i ssma: poi } }
{ 4, 0, 3, { pr i ssma: envi r onment } }
:atTheMuseum
error tolerant graph
edit distance
context
ontology
[Costabello et al.]
MODELING USERS
 individual context
 social structures
PRISSMA
prissma:Context
0 48.86034
-2.337599
200
geo:lat
geo:lon
prissma:radius
1
:museumGeo
prissma:Environment
2
{ 3, 1, 2, { pr i ssma: poi } }
{ 4, 0, 3, { pr i ssma: envi r onment } }
:atTheMuseum
error tolerant graph
edit distance
context
ontology
OCKTOPUS
tag, topic, user
distribution
tag and folksonomy
restructuring with
prefix trees
[Costabello et al.]
[Meng et al.]
MODELING USERS
 individual context
 social structures
PRISSMA
prissma:Context
0 48.86034
-2.337599
200
geo:lat
geo:lon
prissma:radius
1
:museumGeo
prissma:Environment
2
{ 3, 1, 2, { pr i ssma: poi } }
{ 4, 0, 3, { pr i ssma: envi r onment } }
:atTheMuseum
error tolerant graph
edit distance
context
ontology
OCKTOPUS
tag, topic, user
distribution
tag and folksonomy
restructuring with
prefix trees
EMOCA&SEEMPAD
emotion detection & annotation
[Villata, Cabrio et al.]
[Costabello et al.]
[Meng et al.]
DEBATES & EMOTIONS
#IRC
DEBATES & EMOTIONS
#IRC argument rejection
attacks-disgust
DISGUST
ARGUMENTS
debate graphs,
argument networks,
argumentation theory.
• bipolar argumentation framework (BAF) = A, R, S
• A: a set of arguments
• R: a binary attack relation between arguments
• S: a binary support relation between arguments
• reason about arguments
• deductive support
• acceptability
• support people in understanding ongoing
debates
[Villata et al.]
MODELING USERS
e.g. e-learning & serious games
[Rodriguez-Rocha, Faron-Zucker et al.]
LUDO: ontological modeling of serious games
Learning
Game KB
Player’s profile &
context
Game design
[Rodriguez-Rocha, Faron-Zucker et al.]
DOCS & TOPICS
link topics, questions, docs,
[Dehors, Faron-Zucker et al.]
MONITORING
e.g. progress of learners
[Dehors, Faron-Zucker et al.]
On the many graphs of the Web and the interest of adding their missing links.
QUERY & INFER
 graph rules and queries
 deontic reasoning
 induction
QUERY & INFER
 graph rules and queries
 deontic reasoning
 induction
CORESE
 &
G2 H2
 &
G1 H1
<
Gn Hn
abstract graph machine
STTL
[Corby, Faron-Zucker et al.]
QUERY & INFER
 graph rules and queries
 deontic reasoning
 induction
CORESE
 &
G2 H2
 &
G1 H1
<
Gn Hn
RATIO4TA
predict &
explain
abstract graph machine
STTL
[Corby, Faron-Zucker et al.]
[Hasan et al.]
QUERY & INFER
 graph rules and queries
 deontic reasoning
 induction
CORESE
INDUCTION
 &
G2 H2
 &
G1 H1
<
Gn Hn
RATIO4TA
predict &
explain
find missing
knowledge
abstract graph machine
STTL
[Corby, Faron-Zucker et al.]
[Hasan et al.]
[Tettamanzietal.]
QUERY & INFER
 graph rules and queries
 deontic reasoning
 induction
CORESE
LICENTIA INDUCTION
 &
G2 H2
 &
G1 H1
<
Gn Hn
RATIO4TA
predict &
explain
find missing
knowledge
license compatibility
and composition
abstract graph machine
STTL
[Corby, Faron-Zucker et al.]
[Hasan et al.]
[Tettamanzietal.]
[Villata et al.]
QUERY & INFER
e.g. CORESE/KGRAM
[Corby et al.]
FO  R  GF  GR
mapping modulo an ontology
car
vehicle
car(x)vehicle(x)
GF
GR
vehicle
car
O
RIF-BLD SPARQL RIFSPARQL
?x ?x
C C
List(T1. . . Tn) (T1’. . . Tn’)
OpenList(T1. . . Tn T)
External(op((T1. . . Tn))) Filter(op’ (T1’. . . Tn’))
T1 = T2 Filter(T1’ =T2’)
X # C X’ rdf:type C’
T1 ## T2 T1’ rdfs:subClassOf T2’
C(A1 ->V1 . . .An ->Vn)
C(T1 . . . Tn)
AND(A1. . . An) A1’. . . An’
Or(A1. . . An) {A1’} …UNION {An’}
OPTIONAL{B}
Exists ?x1 . . . ?xn (A) A’
Forall ?x1 . . . ?xn (H)
Forall ?x1 . . . ?xn (H:- B) CONSTRUCT { H’}
WHERE{ B’}
restrictions
equivalence no equivalence
extensions [Seye et al.]
FO  R  GF  GR
mapping modulo an ontology
car
vehicle
car(x)vehicle(x)
GF
GR
vehicle
car
O
truck
car
   




121 ,, )(2121
2
21
2
1
),(let;),( ttttt tdepthHc ttlttHtt c
  ),(),(min),(let),( 21,21
2
21 21
ttlttlttdistHtt cc HHttttc  
vehicle
car
O
truck
t1(x)t2(x)  d(t1,t2)< threshold
QUERY & INFER
e.g. Gephi+CORESE/KGRAM
QUERY & INFER
e.g. Licencia
[Villata et al.]
EXPLAIN
 justify results
 predict performances
[Hasan et al.]
EXPLAIN
 justify results
 predict performances
[Hasan et al.]
On the many graphs of the Web and the interest of adding their missing links.
98
Web 1.0, 2.0, 3.0 …
99
price
convert?
person
other sellers?
Web 1.0, 2.0, 3.0 …
WIMMICS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing
epistemic communitieslinked data
usages and introspection
contributions and traces
101
Toward a Web of Programs
“We have the potential for every HTML document to be a
computer — and for it to be programmable. Because the thing
about a Turing complete computer is that … anything you can
imagine doing, you should be able to program.”
(Tim Berners-Lee, 2015)
102
one Web … a unique space in every meanings:
data
persons documents
programs
metadata
103
Toward a Web of Things
WIMMICSWeb-instrumented man-machine interactions, communities and semantics
   
Fabien Gandon - @fabien_gandon - http://fabien.info
he who controls metadata, controls the web
and through the world-wide web many things in our world.
Technical details: http://bit.ly/wimmics-papers

More Related Content

What's hot (20)

PDF
on the ontological necessity of the multidisciplinary development of the web
Fabien Gandon
 
PPTX
Web open standards for linked data and knowledge graphs as enablers of EU dig...
Fabien Gandon
 
PDF
Overview of the Research in Wimmics 2018
Fabien Gandon
 
PDF
Introduction to Graph Databases
Paolo Pareti
 
PDF
The Web We Mix - benevolent AIs for a resilient web
Fabien Gandon
 
PDF
From the Semantic Web to the Web of Data: ten years of linking up
Davide Palmisano
 
PDF
The Semantic Web: RPI ITWS Capstone (Fall 2012)
Rensselaer Polytechnic Institute
 
PDF
ITWS Capstone Lecture (Spring 2013)
Rensselaer Polytechnic Institute
 
PPTX
Development of Semantic Web based Disaster Management System
NIT Durgapur
 
PPS
Linking Open Data with Drupal
emmanuel_jamin
 
PPTX
Linked Data at the Open University: From Technical Challenges to Organization...
Mathieu d'Aquin
 
PPTX
Knowledge Graph Introduction
Sören Auer
 
PDF
Lecture: Ontologies and the Semantic Web
Marina Santini
 
PDF
Tuning Personalized PageRank for Semantics-aware Recommendations based on Lin...
Cataldo Musto
 
PPT
Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...
Marko Rodriguez
 
PDF
Introduction of Knowledge Graphs
Jeff Z. Pan
 
PPTX
Das Semantische Daten Web für Unternehmen
Sören Auer
 
PPTX
LUCERO - Building the Open University Web of Linked Data
Mathieu d'Aquin
 
PPTX
Get on the Linked Data Web!
Armin Haller
 
on the ontological necessity of the multidisciplinary development of the web
Fabien Gandon
 
Web open standards for linked data and knowledge graphs as enablers of EU dig...
Fabien Gandon
 
Overview of the Research in Wimmics 2018
Fabien Gandon
 
Introduction to Graph Databases
Paolo Pareti
 
The Web We Mix - benevolent AIs for a resilient web
Fabien Gandon
 
From the Semantic Web to the Web of Data: ten years of linking up
Davide Palmisano
 
The Semantic Web: RPI ITWS Capstone (Fall 2012)
Rensselaer Polytechnic Institute
 
ITWS Capstone Lecture (Spring 2013)
Rensselaer Polytechnic Institute
 
Development of Semantic Web based Disaster Management System
NIT Durgapur
 
Linking Open Data with Drupal
emmanuel_jamin
 
Linked Data at the Open University: From Technical Challenges to Organization...
Mathieu d'Aquin
 
Knowledge Graph Introduction
Sören Auer
 
Lecture: Ontologies and the Semantic Web
Marina Santini
 
Tuning Personalized PageRank for Semantics-aware Recommendations based on Lin...
Cataldo Musto
 
Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...
Marko Rodriguez
 
Introduction of Knowledge Graphs
Jeff Z. Pan
 
Das Semantische Daten Web für Unternehmen
Sören Auer
 
LUCERO - Building the Open University Web of Linked Data
Mathieu d'Aquin
 
Get on the Linked Data Web!
Armin Haller
 

Similar to On the many graphs of the Web and the interest of adding their missing links. (20)

PPTX
The Web of Data: do we actually understand what we built?
Frank van Harmelen
 
PDF
The Future of Semantics on the Web
John Domingue
 
PDF
Tutorial@BDA 2017 -- Knowledge Graph Expansion and Enrichment
Paris Sud University
 
PDF
Knowledge Representation on the Web
Rinke Hoekstra
 
PDF
Knowledge Engineering: Semantic web, web of data, linked data
Franck Michel
 
PPT
Where Does It Break?
Frank van Harmelen
 
PDF
semantic and social (intra)webs
Fabien Gandon
 
PDF
2014_WWW_BTOR
Dongpo Deng
 
PPTX
Assessing, Creating and Using Knowledge Graph Restrictions
Sven Lieber
 
DOCX
Edu.03 assignment
LudiyaStanlySG
 
DOCX
Edu.03
LudiyaStanlySG
 
PDF
Hide the Stack: Toward Usable Linked Data
aba-sah
 
PDF
WebGUI And The Semantic Web
William McKee
 
ODP
State of the Semantic Web
Ivan Herman
 
PPTX
Knowledge Representation, Semantic Web
Serendipity Seraph
 
PPT
Intro semanticweb
ultimate007
 
PPTX
Web 3 final(1)
Venky Dood
 
PPT
22 owl section 1
Sharat Jagannath
 
PDF
Exploring Article Networks on Wikipedia with NodeXL
Shalin Hai-Jew
 
PPT
Knowledge engineering and the Web
Guus Schreiber
 
The Web of Data: do we actually understand what we built?
Frank van Harmelen
 
The Future of Semantics on the Web
John Domingue
 
Tutorial@BDA 2017 -- Knowledge Graph Expansion and Enrichment
Paris Sud University
 
Knowledge Representation on the Web
Rinke Hoekstra
 
Knowledge Engineering: Semantic web, web of data, linked data
Franck Michel
 
Where Does It Break?
Frank van Harmelen
 
semantic and social (intra)webs
Fabien Gandon
 
2014_WWW_BTOR
Dongpo Deng
 
Assessing, Creating and Using Knowledge Graph Restrictions
Sven Lieber
 
Edu.03 assignment
LudiyaStanlySG
 
Hide the Stack: Toward Usable Linked Data
aba-sah
 
WebGUI And The Semantic Web
William McKee
 
State of the Semantic Web
Ivan Herman
 
Knowledge Representation, Semantic Web
Serendipity Seraph
 
Intro semanticweb
ultimate007
 
Web 3 final(1)
Venky Dood
 
22 owl section 1
Sharat Jagannath
 
Exploring Article Networks on Wikipedia with NodeXL
Shalin Hai-Jew
 
Knowledge engineering and the Web
Guus Schreiber
 
Ad

More from Fabien Gandon (18)

PDF
Walking Our Way to the Web
Fabien Gandon
 
PDF
a shift in our research focus: from knowledge acquisition to knowledge augmen...
Fabien Gandon
 
PDF
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Fabien Gandon
 
PDF
A Never-Ending Project for Humanity Called “the Web”
Fabien Gandon
 
PDF
CovidOnTheWeb : covid19 linked data published on the Web
Fabien Gandon
 
PDF
from linked data & knowledge graphs to linked intelligence & intelligence graphs
Fabien Gandon
 
PDF
Web science AI and IA
Fabien Gandon
 
PDF
How to supervise your supervisor?
Fabien Gandon
 
PDF
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Fabien Gandon
 
PDF
Retours sur le MOOC "Web Sémantique et Web de données"
Fabien Gandon
 
PPTX
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Fabien Gandon
 
PDF
Les (r)évolutions de la planète Web
Fabien Gandon
 
PDF
Données liées et Web sémantique : quand le lien fait sens.
Fabien Gandon
 
PDF
Data protection and security on the web, ESWC2014 Panel
Fabien Gandon
 
PDF
An introduction to Semantic Web and Linked Data
Fabien Gandon
 
PDF
quand le lien fait sens
Fabien Gandon
 
PDF
when the link makes sense
Fabien Gandon
 
PDF
Données de la culture et culture des données
Fabien Gandon
 
Walking Our Way to the Web
Fabien Gandon
 
a shift in our research focus: from knowledge acquisition to knowledge augmen...
Fabien Gandon
 
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Fabien Gandon
 
A Never-Ending Project for Humanity Called “the Web”
Fabien Gandon
 
CovidOnTheWeb : covid19 linked data published on the Web
Fabien Gandon
 
from linked data & knowledge graphs to linked intelligence & intelligence graphs
Fabien Gandon
 
Web science AI and IA
Fabien Gandon
 
How to supervise your supervisor?
Fabien Gandon
 
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Fabien Gandon
 
Retours sur le MOOC "Web Sémantique et Web de données"
Fabien Gandon
 
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Fabien Gandon
 
Les (r)évolutions de la planète Web
Fabien Gandon
 
Données liées et Web sémantique : quand le lien fait sens.
Fabien Gandon
 
Data protection and security on the web, ESWC2014 Panel
Fabien Gandon
 
An introduction to Semantic Web and Linked Data
Fabien Gandon
 
quand le lien fait sens
Fabien Gandon
 
when the link makes sense
Fabien Gandon
 
Données de la culture et culture des données
Fabien Gandon
 
Ad

Recently uploaded (20)

PDF
EXploring Nanobiotechnology: Bridging Nanoscience and Biology for real world ...
Aamena3
 
PDF
Carbonate formation and fluctuating habitability on Mars
Sérgio Sacani
 
PDF
Bacterial microbes kal growth by Atlas.pdf
adimondal300
 
PPT
Supercapacitor materials For Material science
AnasBalghaith1
 
PDF
Rational points on curves -- BIMR 2025 --
mmasdeu
 
PPTX
Philippine_Literature_Precolonial_Period_Designed.pptx
josedalagdag5
 
PDF
oil and gas chemical injection system
Okeke Livinus
 
PDF
Thermal stratification in lakes-J. Bovas Joel.pdf
J. Bovas Joel BFSc
 
PDF
Can Consciousness Live and Travel Through Quantum AI?
Saikat Basu
 
PDF
20250603 Recycling 4.pdf . Rice flour, aluminium, hydrogen, paper, cardboard.
Sharon Liu
 
PDF
Historical Knowledge Bases with Semantic MediaWiki
BernhardKrabina
 
PDF
The Diversity of Exoplanetary Environments and the Search for Signs of Life B...
Sérgio Sacani
 
PDF
CERT Basic Training PTT, Brigadas comunitarias
chavezvaladezjuan
 
PDF
Rapid protoplanet formation in the outer Solar System recorded in a dunite fr...
Sérgio Sacani
 
PDF
HOW TO DEAL WITH THREATS FROM THE FORCES OF NATURE FROM OUTER SPACE.pdf
Faga1939
 
DOCX
Paper - Suprasegmental Features (Makalah Presentasi)
Sahmiral Amri Rajagukguk
 
DOCX
Analytical methods in CleaningValidation.docx
Markus Janssen
 
PPTX
Slideshow 2 about cows and how they procreate
chig22222
 
PPTX
Raising awareness on the story beyond the surface. A case study on the signif...
Kristel Wautier
 
PDF
seedproductiontechniques-210522130809.pdf
sr5566mukku
 
EXploring Nanobiotechnology: Bridging Nanoscience and Biology for real world ...
Aamena3
 
Carbonate formation and fluctuating habitability on Mars
Sérgio Sacani
 
Bacterial microbes kal growth by Atlas.pdf
adimondal300
 
Supercapacitor materials For Material science
AnasBalghaith1
 
Rational points on curves -- BIMR 2025 --
mmasdeu
 
Philippine_Literature_Precolonial_Period_Designed.pptx
josedalagdag5
 
oil and gas chemical injection system
Okeke Livinus
 
Thermal stratification in lakes-J. Bovas Joel.pdf
J. Bovas Joel BFSc
 
Can Consciousness Live and Travel Through Quantum AI?
Saikat Basu
 
20250603 Recycling 4.pdf . Rice flour, aluminium, hydrogen, paper, cardboard.
Sharon Liu
 
Historical Knowledge Bases with Semantic MediaWiki
BernhardKrabina
 
The Diversity of Exoplanetary Environments and the Search for Signs of Life B...
Sérgio Sacani
 
CERT Basic Training PTT, Brigadas comunitarias
chavezvaladezjuan
 
Rapid protoplanet formation in the outer Solar System recorded in a dunite fr...
Sérgio Sacani
 
HOW TO DEAL WITH THREATS FROM THE FORCES OF NATURE FROM OUTER SPACE.pdf
Faga1939
 
Paper - Suprasegmental Features (Makalah Presentasi)
Sahmiral Amri Rajagukguk
 
Analytical methods in CleaningValidation.docx
Markus Janssen
 
Slideshow 2 about cows and how they procreate
chig22222
 
Raising awareness on the story beyond the surface. A case study on the signif...
Kristel Wautier
 
seedproductiontechniques-210522130809.pdf
sr5566mukku
 

On the many graphs of the Web and the interest of adding their missing links.

  • 1. ON THE MANY GRAPHS OF THE WEB AND THE INTEREST OF ADDING THEIR MISSING LINKS. Fabien GANDON, @fabien_gandon http://fabien.info    
  • 2. WIMMICS TEAM  Inria  CNRS  University of Nice Inria Lille - Nord Europe (2008) Inria Saclay – Ile-de-France (2008) Inria Nancy – Grand Est (1986) Inria Grenoble – Rhône- Alpes (1992) Inria Sophia Antipolis Méditerranée (1983) Inria Bordeaux Sud-Ouest (2008) Inria Rennes Bretagne Atlantique (1980) Inria Paris-Rocquencourt (1967) Montpellier Lyon Nantes Strasbourg Center Branch Pau I3S Web-Instrumented Man-Machine Interactions, Communities and Semantics
  • 3. CHALLENGE to bridge social semantics and formal semantics on the Web
  • 4. WEB GRAPHS (meta)data of the relations and the resources of the web …sites …social …of data …of services + + + +… web… = + …semantics + + + +…= + typed graphs web (graphs) networks (graphs) linked data (graphs) workflows (graphs) schemas (graphs)
  • 5. CHALLENGES typed graphs to analyze, model, formalize and implement social semantic web applications for epistemic communities  multidisciplinary approach for analyzing and modeling the many aspects of intertwined information systems communities of users and their interactions  formalizing and reasoning on these models using typed graphs new analysis tools and indicators new functionalities and better management
  • 6. MULTI-DISCIPLINARY TEAM  50 members (2015)  14 nationalities  1 DR, 3 Professors  3CR, 4 Assistant professors  1 SRP DR/Professors:  Fabien GANDON, Inria, AI, KR, Semantic Web, Social Web  Nhan LE THANH, UNS, Logics, KR, Emotions  Peter SANDER, UNS, Web, Emotions  Andrea TETTAMANZI, UNS, AI, Logics, Agents, CR/Assistant Professors:  Michel BUFFA, UNS, Web, Social Media  Elena CABRIO, UNS, NLP, KR, Linguistics  Olivier CORBY, Inria, KR, AI, Sem. Web, Programming, Graphs  Catherine FARON-ZUCKER, UNS, KR, AI, Semantic Web, Graphs  Alain GIBOIN, Inria, Interaction Design, KE, User & Task models  Isabelle MIRBEL, UNS, Requirements, Communities  Serena VILLATA, CNRS, AI, Argumentation, Licenses, Rights Inria Starting Position: Alexandre MONNIN, Philosophy, Web
  • 7. PREVIOUSLY IN ICCS ON RDF & CG • Griwes: Generic Model and Preliminary Specifications for a Graph-Based Knowledge Representation Toolkit, Jean-François Baget, Olivier Corby, Rose Dieng-Kuntz1, Catherine Faron- Zucker, Fabien Gandon, Alain Giboin, Alain Gutierrez, Michel Leclère, Marie-Laure Mugnier, Rallou Thomopoulos, ICCS 2008 • Keynote “Web, Graphs and Semantics” Olivier Corby , ICCS 2008 … • A Conceptual Graph Model for W3C RDF Resource Description Framework, Olivier Corby, Rose Dieng, Cédric Hebert, ICCS 8/14/2000
  • 9. 10 three components of the Web architecture 1. identification (URI) & address (URL) ex. http://www.inria.fr URL
  • 10. 11 three components of the Web architecture 1. identification (URI) & address (URL) ex. http://www.inria.fr 2. communication / protocol (HTTP) GET /centre/sophia HTTP/1.1 Host: www.inria.fr HTTP URL address
  • 11. 12 three components of the Web architecture 1. identification (URI) & address (URL) ex. http://www.inria.fr 2. communication / protocol (HTTP) GET /centre/sophia HTTP/1.1 Host: www.inria.fr 3. representation language (HTML) Fabien works at <a href="http://inria.fr">Inria</a> HTTP URL HTML reference address communication WEB
  • 13. 14 multiplying references to the Web HTTP URL HTML reference address communication WEB
  • 14. identify what exists on the web http://my-site.fr identify, on the web, what exists http://animals.org/this-zebra
  • 16. 17 a Web approach to data publication URI ???... « http://fr.dbpedia.org/resource/Paris »
  • 17. 18 a Web approach to data publication HTTP URI
  • 18. 19 a Web approach to data publication HTTP URI GET
  • 19. 20 a Web approach to data publication HTTP URI GET HTML, …
  • 20. 21 a Web approach to data publication HTTP URI GET HTML,XML,…
  • 27. 28 a Web graph data model HTTP URI RDF reference address communication Web of data universal graph data model
  • 28. 29 "Music" RDFis a model for directed labeled multigraphs http://inria.fr/rr/doc.html http://ns.inria.fr/fabien.gandon#me http://inria.fr/schema#author http://inria.fr/schema#topic http://inria.fr/rr/doc.html http://inria.fr/schema#keyword
  • 29. GLOBAL GIANT GRAPH of linked (open) data on the Web
  • 30. 31 linked open data explosion on the Web 0 50 100 150 200 250 300 350 01/05/2007 01/05/2008 01/05/2009 01/05/2010 01/05/2011 number of open, published and linked datasets in the LOD cloud
  • 31. 32 a Web graph access HTTP URI RDF reference address communication Web of data
  • 32. QUERY THE RDF GRAPH SPARQL graph patterns & constraints e.g. DBpedia
  • 34. 35 RDFS to declare classes of resources, properties, and organize their hierarchy Document Report creator author Document Person
  • 35. 36 OWL in one… algebraic properties disjoint properties qualified cardinality 1..1 ! individual prop. neg chained prop.   enumeration intersection union complement  disjunction restriction! cardinality 1..1 equivalence [>18] disjoint union value restriction keys …
  • 39. 40 PROV-O: vocabulary for provenance and traceability describe entities and activities involved in providing a resource
  • 40. RESEARCH CHALLENGES 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing
  • 41. METHODS AND TOOLS 1. user & interaction design 
  • 42. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks  
  • 43. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web   
  • 44. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing      G2 H2  G1 H1 < Gn Hn
  • 45. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing  • KB interaction (context, Q&A, exploration, …) • user models, personas, emotion capture • mockups, evaluation campaigns     G2 H2  G1 H1 < Gn Hn
  • 46. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing   • KB interaction (context, Q&A, exploration, …) • user models, personas, emotion capture • mockups, evaluation campaigns • community detection, labelling • collective personas, coordinative artifacts • argumentation theory, sentiment analysis    G2 H2  G1 H1 < Gn Hn
  • 47. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing    • KB interaction (context, Q&A, exploration, …) • user models, personas, emotion capture • mockups, evaluation campaigns • community detection, labelling • collective personas, coordinative artifacts • argumentation theory, sentiment analysis • ontology-based knowledge representation • formalisms: typed graphs, uncertainty • knowledge extraction, data translation   G2 H2  G1 H1 < Gn Hn
  • 48. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing     • KB interaction (context, Q&A, exploration, …) • user models, personas, emotion capture • mockups, evaluation campaigns • community detection, labelling • collective personas, coordinative artifacts • argumentation theory, sentiment analysis • ontology-based knowledge representation • formalisms: typed graphs, uncertainty • knowledge extraction, data translation • graph querying, reasoning, transforming • induction, propagation, approximation • explanation, tracing, control, licensing, trust
  • 49. cultural data is a weapon of mass construction
  • 50. PUBLISHING  extract data (content, activity…)  provide them as linked data DBPEDIA.FR (extraction, end-point) 180 000 000 triples models Web architecture [Cojan, Boyer et al.]
  • 51. PUBLISHING e.g. DBpedia.fr 185 377 686 RDF triples extracted and mapped [Boyer, Cojan et al.]
  • 52. PUBLISHING e.g. DBpedia.fr number of queries per day 70 000 on average 2.5 millions max 185 377 686 RDF triples (edges) extracted and mapped public dumps, endpoints, interfaces, APIs…[Boyer, Cojan et al.]
  • 53. PUBLISHING e.g. DBpedia.fr 2.5 billion RDF triples (edges) of versioning activities <http://fr.dbpedia.org/Réaux> a prov:Revision ; swp:isVersion "96"^^xsd:integer ; dc:created "2005-08-05T07:27:07"^^xsd:dateTime ; dc:modified "2015-01-06T10:26:35"^^xsd:dateTime ; dbfr:uniqueContributorNb 58 ; dbfr:revPerYear [ dc:date "2005"^^xsd:gYear ; rdf:value "2"^^xsd:integer ] ; … dbfr:revPerYear [ dc:date "2015"^^xsd:gYear ; rdf:value "1"^^xsd:integer ] ; dbfr:revPerMonth [ dc:date "08/2005"^^xsd:gYearMonth ; rdf:value "1"^^xsd:integer ] ; … dbfr:revPerMonth [ dc:date "01/2015"^^xsd:gYearMonth ; rdf:value "1"^^xsd:integer ] ; dbfr:averageSizePerMonth [ dc:date "08/2005"^^xsd:gYearMonth ; rdf:value "3060"^^xsd:float ] ; … dbfr:averageSizePerYear [ dc:date "2015"^^xsd:gYear ; rdf:value "4767"^^xsd:float ] ; dbfr:averageSizePerMonth [ dc:date "08/2005"^^xsd:gYearMonth ; rdf:value "3060"^^xsd:float ] ; … dbfr:averageSizePerMonth [ dc:date "01/2015"^^xsd:gYearMonth ; rdf:value "4767"^^xsd:float ] ; dbfr:size "4767"^^xsd:integer ; dc:creator [ foaf:name "DasBot" ; rdf:type scoro:ComputationalAgent ] ; sioc:note "Robot : Remplacement de texte automatisé (- [[commune française| +[[commune (France)|)"^^xsd:string ; prov:wasRevisionOf <https://fr.wikipedia.org/w/index.php?title=Réaux&oldid=103 441506> ; prov:wasAttributedTo [ foaf:name "Escarbot" ; a prov:SoftwareAgent ] . [Boyer, Corby et al.]
  • 54. DBPEDIA & STTL declarative transformation language from RDF to text formats (XML, JSON, HTML, Latex, natural language, GML, …) [Corby, Faron-Zucker et al.]
  • 55. “searching” comes in many flavors
  • 56. SEARCHING  exploratory search  question-answering DBPEDIA.FR (extraction, end-point) 180 000 000 triples [Cojan, Boyer et al.]
  • 57. SEARCHING  exploratory search  question-answering DBPEDIA.FR (extraction, end-point) 180 000 000 triples DISCOVERYHUB.CO semantic spreading activation new evaluation protocol [Marie, Giboin, Palagi et al.] [Cojan, Boyer et al.]
  • 58. SEARCHING  exploratory search  question-answering DBPEDIA.FR (extraction, end-point) 180 000 000 triples DISCOVERYHUB.CO QAKiS.ORG semantic spreading activation new evaluation protocol [D:Work], played by [R:Person] [D:Work] stars [R:Person] [D:Work] film stars [R:Person] starring(Work, Person) linguistic relational pattern extraction named entity recognition similarity based SPARQL generation select * where { dbpr:Batman_Begins dbp:starring ?v . OPTIONAL {?v rdfs:label ?l filter(lang(?l)="en")} } [Cabrio et al.] [Marie, Giboin, Palagi et al.] [Cojan, Boyer et al.]
  • 62. ALOOF: robots learning by reading on the Web Annie cuts the bread in the kitchen with her knife dbp:Knife aloof:Location dbp:Kitchen [Cabrio, Basile et al.]
  • 63. ALOOF: robots learning by reading on the Web  First Object Relation Knowledge Base: 46.212 co-mentions, 49 tools, 14 rooms, 101 “possible location” relations,696 tuples <entity, relation, frame>  Evaluation: 100 domestic implements, 20 rooms, Crowdsourcing 2000 judgements  Object co-occurrence for coherence building Annie cuts the bread in the kitchen with her knife dbp:Knife aloof:Location dbp:Kitchen [Cabrio, Basile et al.]
  • 67. MODELING USERS  individual context  social structures
  • 68. MODELING USERS  individual context  social structures PRISSMA prissma:Context 0 48.86034 -2.337599 200 geo:lat geo:lon prissma:radius 1 :museumGeo prissma:Environment 2 { 3, 1, 2, { pr i ssma: poi } } { 4, 0, 3, { pr i ssma: envi r onment } } :atTheMuseum error tolerant graph edit distance context ontology [Costabello et al.]
  • 69. MODELING USERS  individual context  social structures PRISSMA prissma:Context 0 48.86034 -2.337599 200 geo:lat geo:lon prissma:radius 1 :museumGeo prissma:Environment 2 { 3, 1, 2, { pr i ssma: poi } } { 4, 0, 3, { pr i ssma: envi r onment } } :atTheMuseum error tolerant graph edit distance context ontology OCKTOPUS tag, topic, user distribution tag and folksonomy restructuring with prefix trees [Costabello et al.] [Meng et al.]
  • 70. MODELING USERS  individual context  social structures PRISSMA prissma:Context 0 48.86034 -2.337599 200 geo:lat geo:lon prissma:radius 1 :museumGeo prissma:Environment 2 { 3, 1, 2, { pr i ssma: poi } } { 4, 0, 3, { pr i ssma: envi r onment } } :atTheMuseum error tolerant graph edit distance context ontology OCKTOPUS tag, topic, user distribution tag and folksonomy restructuring with prefix trees EMOCA&SEEMPAD emotion detection & annotation [Villata, Cabrio et al.] [Costabello et al.] [Meng et al.]
  • 72. DEBATES & EMOTIONS #IRC argument rejection attacks-disgust DISGUST
  • 73. ARGUMENTS debate graphs, argument networks, argumentation theory. • bipolar argumentation framework (BAF) = A, R, S • A: a set of arguments • R: a binary attack relation between arguments • S: a binary support relation between arguments • reason about arguments • deductive support • acceptability • support people in understanding ongoing debates [Villata et al.]
  • 74. MODELING USERS e.g. e-learning & serious games [Rodriguez-Rocha, Faron-Zucker et al.]
  • 75. LUDO: ontological modeling of serious games Learning Game KB Player’s profile & context Game design [Rodriguez-Rocha, Faron-Zucker et al.]
  • 76. DOCS & TOPICS link topics, questions, docs, [Dehors, Faron-Zucker et al.]
  • 77. MONITORING e.g. progress of learners [Dehors, Faron-Zucker et al.]
  • 79. QUERY & INFER  graph rules and queries  deontic reasoning  induction
  • 80. QUERY & INFER  graph rules and queries  deontic reasoning  induction CORESE  & G2 H2  & G1 H1 < Gn Hn abstract graph machine STTL [Corby, Faron-Zucker et al.]
  • 81. QUERY & INFER  graph rules and queries  deontic reasoning  induction CORESE  & G2 H2  & G1 H1 < Gn Hn RATIO4TA predict & explain abstract graph machine STTL [Corby, Faron-Zucker et al.] [Hasan et al.]
  • 82. QUERY & INFER  graph rules and queries  deontic reasoning  induction CORESE INDUCTION  & G2 H2  & G1 H1 < Gn Hn RATIO4TA predict & explain find missing knowledge abstract graph machine STTL [Corby, Faron-Zucker et al.] [Hasan et al.] [Tettamanzietal.]
  • 83. QUERY & INFER  graph rules and queries  deontic reasoning  induction CORESE LICENTIA INDUCTION  & G2 H2  & G1 H1 < Gn Hn RATIO4TA predict & explain find missing knowledge license compatibility and composition abstract graph machine STTL [Corby, Faron-Zucker et al.] [Hasan et al.] [Tettamanzietal.] [Villata et al.]
  • 84. QUERY & INFER e.g. CORESE/KGRAM [Corby et al.]
  • 85. FO  R  GF  GR mapping modulo an ontology car vehicle car(x)vehicle(x) GF GR vehicle car O RIF-BLD SPARQL RIFSPARQL ?x ?x C C List(T1. . . Tn) (T1’. . . Tn’) OpenList(T1. . . Tn T) External(op((T1. . . Tn))) Filter(op’ (T1’. . . Tn’)) T1 = T2 Filter(T1’ =T2’) X # C X’ rdf:type C’ T1 ## T2 T1’ rdfs:subClassOf T2’ C(A1 ->V1 . . .An ->Vn) C(T1 . . . Tn) AND(A1. . . An) A1’. . . An’ Or(A1. . . An) {A1’} …UNION {An’} OPTIONAL{B} Exists ?x1 . . . ?xn (A) A’ Forall ?x1 . . . ?xn (H) Forall ?x1 . . . ?xn (H:- B) CONSTRUCT { H’} WHERE{ B’} restrictions equivalence no equivalence extensions [Seye et al.]
  • 86. FO  R  GF  GR mapping modulo an ontology car vehicle car(x)vehicle(x) GF GR vehicle car O truck car         121 ,, )(2121 2 21 2 1 ),(let;),( ttttt tdepthHc ttlttHtt c   ),(),(min),(let),( 21,21 2 21 21 ttlttlttdistHtt cc HHttttc   vehicle car O truck t1(x)t2(x)  d(t1,t2)< threshold
  • 87. QUERY & INFER e.g. Gephi+CORESE/KGRAM
  • 88. QUERY & INFER e.g. Licencia [Villata et al.]
  • 89. EXPLAIN  justify results  predict performances [Hasan et al.]
  • 90. EXPLAIN  justify results  predict performances [Hasan et al.]
  • 92. 98 Web 1.0, 2.0, 3.0 …
  • 94. WIMMICS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing epistemic communitieslinked data usages and introspection contributions and traces
  • 95. 101 Toward a Web of Programs “We have the potential for every HTML document to be a computer — and for it to be programmable. Because the thing about a Turing complete computer is that … anything you can imagine doing, you should be able to program.” (Tim Berners-Lee, 2015)
  • 96. 102 one Web … a unique space in every meanings: data persons documents programs metadata
  • 97. 103 Toward a Web of Things
  • 98. WIMMICSWeb-instrumented man-machine interactions, communities and semantics     Fabien Gandon - @fabien_gandon - http://fabien.info he who controls metadata, controls the web and through the world-wide web many things in our world. Technical details: http://bit.ly/wimmics-papers