This document discusses load balancing strategies for grid computing. It proposes a dynamic tree-based model to represent grid architecture in a hierarchical way that supports heterogeneity and scalability. It then develops a hierarchical load balancing strategy and algorithms based on neighborhood properties to decrease communication overhead. Conventional scheduling algorithms like Min-Min, Max-Min, and Sufferage are discussed but determined to ignore dynamic network status, which is important for load balancing. Genetic algorithms are also mentioned as a potential solution.