In this paper we define the generalized Cesaro sequence spaces 푐푒푠(푝, 푞, 푠). We prove the space 푐푒푠(푝, 푞, 푠) is a complete paranorm space. In section-2 we determine its Kothe-Toeplitz dual. In section-3 we establish necessary and sufficient conditions for a matrix A to map 푐푒푠 푝, 푞, 푠 to 푙∞ and 푐푒푠(푝, 푞, 푠) to c, where 푙∞ is the space of all bounded sequences and c is the space of all convergent sequences. We also get some known and unknown results as remarks.