This document presents a study that uses convolutional neural networks to automatically detect intracranial neoplasms (brain tumors) from MRI scans. The researchers developed a CNN model that achieved 97.87% accuracy in identifying tumors. They used preprocessed MRI images to train and test the model for tumor detection. Convolutional neural networks are a type of deep learning that can provide efficient results for medical image classification tasks like tumor detection compared to traditional methods. The study demonstrates that CNNs are a promising approach for automated brain tumor identification from MRI scans.