This document presents a proposed intrusion detection system using data mining techniques. It begins with an abstract that describes how internal intrusions are difficult to detect as internal users know the organization's information. It then discusses how anomaly detection can be used to create behavior profiles for each user and detect anomalous activities. The introduction provides background on intrusion detection systems and the need for more efficient and effective detection methods. It describes the proposed system which will use data mining techniques like k-means clustering to separate normal and abnormal network activities in order to detect internal attacks. It discusses the hardware and software requirements and specifications. Finally, it concludes that the proposed system can better detect anomalies in the network compared to other machine learning approaches.