This document discusses using machine learning techniques to predict and analyze multiple diseases. It presents research using KNN, support vector machine, random forest, and decision tree algorithms applied to a medical database to predict future and previous diseases. The goal is to provide a smart card method for easily and accurately diagnosing disease by storing an individual's full medical record. It reviews related work applying various machine learning classifiers like decision trees, naive Bayes, and logistic regression to diseases such as heart disease, diabetes, and cancer. The conclusion is that machine learning applied to medical data can help predict disease and save time for patients and doctors.