SlideShare a Scribd company logo
2
Most read
4
Most read
17
Most read
© 2017 IBM Corporation
Spark 2.x Troubleshooting Guide
IBM Big Data Performance
Jesse Chen, jesse.f.chen@gmail.com
3/2017
© 2017 IBM Corporation2
Troubleshooting Spark 2.x
§  Building Spark
§  Running Spark
-  ‘--verbose’
-  Missing external JARs
-  OOM on Spark driver
-  OOM on executors
-  GC policies
-  Spark Thrift Server for JDBC apps
-  HDFS block distribution
-  HDFS blocksize vs Parquet blocksize
§  Profiling Spark
-  Collecting thread & heap dumps in-flight
-  Collecting core dumps after jobs fail
© 2017 IBM Corporation3
Lots of errors when building a new Spark release on my own…
§  Run ‘make-distribution.sh’ (generates ‘bin/spark-shell’, ‘bin/spark-submit’, etc.)
§  Does not always work
-  Wrong JRE version or no JRE found
-  No Maven installed
-  Support for certain components not default, e.g., ‘hive’ support
§  TIP #1: Always explicitly set the following in ‘.bashrc’ for ‘root’
# for Spark distribution compiling
export JAVA_HOME=/usr/jdk64/java-1.8.0-openjdk-1.8.0.77-0.b03.el7_2.x86_64
export JRE_HOME=$JAVA_HOME/jre
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH
#set maven environment
M2_HOME=/TestAutomation/downloads/tmp/spark-master/build/apache-maven-3.3.9
export MAVEN_OPTS="-Xms256m -Xmx2048m -XX:MaxPermSize=512m"
export PATH=$M2_HOME/bin:$PATH
§  TIP #2: Specify support you want explicitly
-  To build Spark with YARN and Hive support, do:
./dev/make-distribution.sh --name spark-master-2.1 --tgz -Pyarn -Phadoop-2.7 -
Dhadoop.version=2.7.2 -Phive -Phive-thriftserver
© 2017 IBM Corporation4
Building a Spark release is extremely slow …
§  Use more cores to speed up the build process (default uses only 1 core)
§  Rebuild only modified source code (default is “clean”)
Edit the file ‘./dev/make-distribution.sh’, change line
BUILD_COMMAND=("$MVN" –T 1C clean package -DskipTests $@)
To:
BUILD_COMMAND=("$MVN" -T 48C package -DskipTests $@)
** Assuming your have 48 cores on your build machine
** Assuming you don’t need to always build clean, for iterative changes
§  Can cut build time from 45 min to 15 min on a typical 128GB-RAM 48-core node
© 2017 IBM Corporation5
Don’t know what settings used when running Spark …
§  Always use ‘–-verbose’ option on ‘spark-submit’ command to run your workload
§  Prints
-  All default properties
-  Command line options
-  Settings from spark ‘conf’ file
-  Settings from CLI
§  Example output
Spark properties used, including those specified through
--conf and those from the properties file /TestAutomation/spark-2.0/conf/spark-defaults.conf:
spark.yarn.queue -> default
spark.local.dir -> /data1/tmp,/data2/tmp,/data3/tmp,/data4/tmp
spark.history.kerberos.principal -> none
spark.sql.broadcastTimeout -> 800
spark.hadoop.yarn.timeline-service.enabled -> false
spark.yarn.max.executor.failures -> 3
spark.driver.memory -> 10g
spark.network.timeout -> 800
spark.yarn.historyServer.address -> node458.xyz.com:18080
spark.eventLog.enabled -> true
spark.history.ui.port -> 18080
spark.rpc.askTimeout -> 800
…
§  Example command:
spark-submit --driver-memory 10g --verbose --master yarn --executor-memory ….
© 2017 IBM Corporation6
Missing external jars
§  Compiled OK, but run-time NoClassDefFoundError:
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/kafka/clients/producer/KafkaProducer
at java.lang.Class.getDeclaredMethods0(Native Method)
at java.lang.Class.privateGetDeclaredMethods(Class.java:2701)
at java.lang.Class.privateGetMethodRecursive(Class.java:3048)
at java.lang.Class.getMethod0(Class.java:3018)
§  Use ‘--packages’ to include comma-separated list of Maven coordinates of JARs
§  Example
spark-submit --driver-memory 12g --verbose --master yarn-client --executor-memory 4096m --num-executors 20
--class com.ibm.biginsights.pqa.spark.SparkStreamingTest --packages org.apache.spark:spark-streaming-
kafka_2.10:1.5.1 …
§  This includes JARs on both driver and executor classpaths
§  Order of look-up
-  The local Maven repo – local machine
-  Maven central - Web
-  Additional remote repositories specified in –repositories
© 2017 IBM Corporation7
OutOfMemory related to Spark driver
§  Types of OOM related to Spark driver heap size
15/10/06 17:10:00 ERROR akka.ErrorMonitor: Uncaught fatal error from thread [sparkDriver-
akka.actor.default-dispatcher-29] shutting down ActorSystem [sparkDriver]
java.lang.OutOfMemoryError: Java heap space
Exception in thread "task-result-getter-0" java.lang.OutOfMemoryError: Java heap space
Subsequent error: Exception in thread "ResponseProcessor for block
BP-1697216913-9.30.104.154-1438974319723:blk_1073847224_106652" java.lang.OutOfMemoryError: Java heap
space
WARN nio.AbstractNioSelector: Unexpected exception in the selector loop.
java.lang.OutOfMemoryError: Java heap space at
org.jboss.netty.buffer.HeapChannelBuffer.<init>(HeapChannelBuffer.java:42)
§  Increase ‘--driver-memory’ usually resolves these
§  Default 512M is usually too small for serious workloads
§  Example: 8GB minimum needed for Spark SQL running TPCDS @ 1TB
§  Typical workloads that need large driver heap size
-  Spark SQL
-  Spark Streaming
© 2017 IBM Corporation8
OOM – GC overhead limit exceeded
15/12/09 19:57:02 WARN scheduler.TaskSetManager: Lost task 175.0 in stage 68.0 (TID 7588,
rhel8.cisco.com): java.lang.OutOfMemoryError: GC overhead limit exceeded
at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:478)
at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:55)
§  Too much time is being spent in garbage collection (98% of the total time)
§  Less than 2% of the heap is recovered
§  From ‘top’, often see “1 CPU core fully used at 100%” but no work is done
§  Tuning #1: Increase executor heapsize
spark-submit … --executor-memory 4096m --num-executors 20 …
§  OR Tuning #2: Change GC policy (next slide)
© 2017 IBM Corporation9
GC policies
§  Choose between -XX:UseG1GC & -XX:UseParallelGC
§  Show current GC settings
% /usr/jdk64/java-1.8.0-openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/java -XX:+PrintFlagsFinal
uintx GCHeapFreeLimit = 2 {product}
uintx GCLockerEdenExpansionPercent = 5 {product}
uintx GCLogFileSize = 8192 {product}
uintx GCTimeLimit = 98 {product}
uintx GCTimeRatio = 99 {product}
bool UseG1GC = false {product}
bool UseParallelGC := true {product}
§  Tuning options
-  Spark default is -XX:UseParallelGC
-  Try overwrite with –XX:G1GC
§  Performance Impact: “Mythical at best”, “It depends”
§  Default is pretty good!
§  Databricks blog on Tuning GC for Spark
-  https://databricks.com/blog/2015/05/28/tuning-java-garbage-collection-for-spark-
applications.html
© 2017 IBM Corporation10
Support JDBC Apps via Spark Thrift Server
§  Spark SQL can act as a distributed query engine using its JDBC/ODBC interface
§  Supported by running the Thrift JDBC/ODBC server
§  Has a single SparkContext with multiple sessions supporting
-  Concurrency
-  re-usable connections (pool)
-  Shared cache (e.g., catalog, tables, etc.)
§  Can specify any amount of memory, CPUs through standard Spark-submit parameters:
-  Driver-memory
-  Executor-memory
-  Num-executors, etc.
§  Example, to start Thrift Server with 2.3TB of memory, 800 cores and YARN mode:
% $SPARK_HOME/sbin/start-thriftserver.sh --driver-memory 12g --verbose --master yarn --executor-memory 16g
--num-executors 100 --executor-cores 8 --conf spark.hadoop.yarn.timeline-service.enabled=false --conf
spark.yarn.executor.memoryOverhead=8192 --conf spark.driver.maxResultSize=5g
§  Default number of workers (sessions) = 500
§  Client tool bundled with Spark 2.0: Beeline
% $SPARK_HOME/bin/beeline -u "jdbc:hive2://node460.xyz.com:10013/my1tbdb" -n spark --force=true -f /test/
query_00_01_96.sql
© 2017 IBM Corporation11
Not all CPUs are busy …
§  Designed for big data
§  More cores and more memory always better (well, until it breaks!)
§  Ways to max out your cluster, for example:
-  40 vCores per node
-  128GB memory per node
-  5-node cluster = 200 vCores, ~500GB RAM
§  Method #1 – Start with evenly divided memory and cores
--executor-memory 2500m --num-executors 200
Total # of executors = 200 (default: 1-core each)
# of executors/node = 40 (fully using all cores)
Total memory used = 500 GB
§  Method #2 – When heap size non-negotiable
--executor-memory 6g --num-executors 80
Total # of executors = 80 (1-core each)
# of executors/node = 16 (40% CPU utilization)
Total memory used ~= 500 GB
Can increase cores per executor as:
--executor-memory 6g --num-executors 80 –executor-cores 2
Forcing 80% utilization, boosting 33% performance!
© 2017 IBM Corporation12
Spread out Spark “scratch” space
§  Typical error
stage 89.3 failed 4 times, most recent failure:
Lost task 38.4 in stage 89.3 (TID 30100, rhel4.cisco.com): java.io.IOException: No space left on device
at java.io.FileOutputStream.writeBytes(Native Method)
at java.io.FileOutputStream.write(FileOutputStream.java:326)
at org.apache.spark.storage.TimeTrackingOutputStream.write(TimeTrackingOutputStream.java:58)
at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:126)
§ 
Complains about ‘/tmp’ is full
§  Controlled by ‘spark.local.dir’ parameter
-  Default is ‘/tmp’
-  Stores map output files and RDDs
§  Two reasons ‘/tmp’ is not an ideal place for Spark “scratch” space
-  ‘/tmp’ usually is small and for OS
-  ‘/tmp’ usually is a single disk, a potential IO bottleneck
§  To fix, add the following line to ‘spark-defaults.conf’ file:
spark.local.dir /data/disk1/tmp,/data/disk2/tmp,/data/disk3/tmp,/data/disk4/tmp,…
© 2017 IBM Corporation13
Max result size exceeded
§  Typical error
stream5/query_05_22_77.sql.out:Error: org.apache.spark.SparkException: Job aborted due to stage failure:
Total size of serialized results of 381610 tasks (5.0 GB) is bigger than spark.driver.maxResultSize (5.0
GB) (state=,code=0))
§  Likely to occur with complex SQL on large data volumes
§  Limit of total size of serialized results of all partitions for each Spark action (e.g., collect)
§  Controlled by ‘spark.driver.maxResultSize’ parameter
-  Default is 1G
-  Can be ‘0’ or ‘unlimited’
-  ‘unlimited’ will throw OOM on driver
§  To fix, add the following line to ‘spark-defaults.conf’ file:
spark.driver.maxResultSize 5g
** 5G is a learned value for Spark SQL running TPCDS queries at 1TB scale factors
© 2017 IBM Corporation14
Catalyst errors
§  Typical error
stream7/query_07_24_48.sql.out:Error: org.apache.spark.sql.catalyst.errors.package$TreeNodeException:
execute, tree: at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute
$1.apply(ShuffleExchange.scala:122)
at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute
$1.apply(ShuffleExchange.scala:113)
at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:49)
... 96 more
Caused by: java.util.concurrent.TimeoutException: Futures timed out after [800 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:190)
at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53)
at scala.concurrent.Await$.result(package.scala:190)
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:190)
... 208 more
§  On surface appears to be Catalyst error (optimizer)
§  Actually an internal Spark timeout error most likely to occur under concurrency
java.util.concurrent.TimeoutException: Futures timed out after [800 seconds]
§  Controlled by an unpublished Spark setting ‘spark.sql.broadcastTimeout’ parameter
-  Default in source code shows 300 seconds
§  To fix, add the following line to ‘spark-defaults.conf’ file or as CLI --conf
spark.sql.broadcastTimeout 1200
**1200 is the longest running query in a SQL workload in our case.
© 2017 IBM Corporation15
Other timeouts
§  Typical errors
16/07/09 01:14:18 ERROR spark.ContextCleaner: Error cleaning broadcast 28267
org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [800 seconds]. This timeout is
controlled by spark.rpc.askTimeout
at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$
$createRpcTimeoutException(RpcTimeout.scala:48)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167)
at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83)
at org.apache.spark.storage.BlockManagerMaster.removeBroadcast(BlockManagerMaster.scala:143)
And timeout exceptions related to the following:
spark.core.connection.ack.wait.timeout
spark.akka.timeout
spark.storage.blockManagerSlaveTimeoutMs
spark.shuffle.io.connectionTimeout
spark.rpc.askTimeout
spark.rpc.lookupTimeout
§  Depending on system resource usage, any of the above can occur (e.g., no heartbeats)
§  You can tune each individual setting OR use an “umbrella” timeout setting
§  Controlled by ‘spark.network.timeout’ parameter
-  Default is 120 seconds
-  Overrides all above timeout values
§  To fix, add the following line to ‘spark-defaults.conf’ file:
spark.network.timeout 700
© 2017 IBM Corporation16
Out of space on a few data nodes …
§  Unbalanced HDFS forces more IO over network
§  Run command ‘hdfs balancer’ to start rebalancing
§  dfs.datanode.balance.bandwidthPerSec
-  Default 6250000 or 6.25 MB/s network bandwidth
-  Increased to 6 GB/s on F1 to take advantage of fat pipe
§  dfs.datanode.balance.max.concurrent.moves
-  Default is undefined
-  Add this setting in hdfs-site
-  Set to 500 concurrent threads
-  Example shows 5.4 TB/hour balancing rate
16/10/05 10:17:24 INFO balancer.Balancer: 0 over-utilized: []
16/10/05 10:17:24 INFO balancer.Balancer: 0 underutilized: []
The cluster is balanced. Exiting...
Oct 5, 2016 10:17:24 AM         337   19.71 TB  0 B -1 B
Oct 5, 2016 10:17:24 AM  Balancing took 3.6939516666666665 hours
© 2017 IBM Corporation17
What block size to use in HDFS and in Parquet?
Take-away:
Keep block size for both at default (128MB)
Parquet Block
HDFS Block HDFS Block HDFS Block HDFS Block
Parquet Block Parquet Block
HDFS Block HDFS Block HDFS Block HDFS Block
Parquet Block Parquet Block Parquet Block Parquet Block
Remote reads occur when block boundaries cross
Slows down scan time
Prefer row group boundaries be at block boundaries
© 2017 IBM Corporation18
In-flight capturing of executor thread & heap dumps
§  Typically run as YARN containers across multiple nodes, e.g.,
yarn 355583 355580 91 09:15 ? 00:05:35 /usr/jdk64/java-1.8.0-
openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/java -server -XX:OnOutOfMemoryError=kill %p -Xms6144m -Xmx6144m -
Djava.io.tmpdir=/data6/hadoop/yarn/local/usercache/biadmin/appcache/application_1452558922304_0075/
container_1452558922304_0075_01_000020/tmp -Dspark.driver.port=3110 -Dspark.history.ui.port=18080 -
Dspark.yarn.app.container.log.dir=/data1/hadoop/yarn/log/application_1452558922304_0075/
container_1452558922304_0075_01_000020 org.apache.spark.executor.CoarseGrainedExecutorBackend --driver-url
akka.tcp://sparkDriver@9.30.104.154:3110/user/CoarseGrainedScheduler --executor-id 19 –hostname
node133.yxz.com --cores 1 --app-id application_1452558922304_0075 --user-class-path file:/data6/hadoop/
yarn/local/usercache/biadmin/appcache/application_1452558922304_0075/
container_1452558922304_0075_01_000020/__app__.jar
§  OpenJDK has a set of tools for Java thread and heap dumps
jmap, jstack, jstat, jhat, etc.
§  Typical location of OpenJDK tools for IBM Hadoop platform
/usr/jdk64/java-1.8.0-openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/
§  To get a full thread dump
% jstack –l 355583 > /TestAutomation/results/twitter/javacore.355583.1
% jstack –l –F 355583 > /TestAutomation/results/twitter/javacore-hung.355583.1
Use –F to attach to a non-responsive JVM
§  To get a full heap dump
% jmap -dump:live,format=b,file=/TestAutomation/results/dump.355583.2 355583
Dumping heap to /TestAutomation/results/sparkstreamtests/dump.355583.2 ...
Heap dump file created
© 2017 IBM Corporation19
Can’t find core dumps even when Spark says there are ….
§  Core dumps created by Spark jobs
16/11/14 16:45:05 WARN scheduler.TaskSetManager: Lost task 692.0 in stage 4.0 (TID 129021, node12.xyz.com,
executor 824): ExecutorLostFailure (executor 824 exited caused by one of the running tasks) Reason:
Container marked as failed: container_e69_1479156026828_0006_01_000825 on host: node12.xyz.com. Exit status:
134. Diagnostics: Exception from container-launch.
Exit code: 134
Container id: container_e69_1479156026828_0006_01_000825
Exception message: /bin/bash: line 1: 3694385 Aborted (core dumped) /usr/jdk64/java-1.8.0-
openjdk-1.8.0.77-0.b03.el7_2.x86_64/bin/java -server -Xmx24576m -Djava.io.tmpdir=/data2/hadoop/yarn/local/
….ontainer.log.dir=/data5/hadoop/…container_e69_1479156026828_0006_01_000825/com.univocity_univocity-
parsers-1.5.1.jar > /data5/hadoop/yarn/log/application_1479156026828_0006/
container_e69_1479156026828_0006_01_000825/stdout 2> /data5/hadoop/yarn/log/application_1479156026828_0006/
container_e69_1479156026828_0006_01_000825/stderr
Stack trace: ExitCodeException exitCode=134: /bin/bash: line 1: 3694385 Aborted (core dumped) /usr/jdk64/
java-1.8.0-openjdk-1.8.0.77-0.b03.el7_2.x86_64/bin/java -server -Xmx24576m -Djava.io.tmpdir=/data2/hadoop/-…
container_e69_1479156026828_0006_01_000825/com.univocity_univocity-parsers-1.5.1.jar > /data5/hadoop/yarn/
log/application_1479156026828_0006/container_e69_1479156026828_0006_01_000825/stdout 2> /data5/hadoop/yarn/
log/application_1479156026828_0006/container_e69_1479156026828_0006_01_000825/stderr
§  YARN settings for core dump file retention
yarn.nodemanager.delete.debug-delay-sec default is 0, files deleted right after application finishes
Set it to enough time to get to files and copy them for debugging
§  Steps: 1. Find the hostname in the error log; 2. Find the local directory where ‘stderr’
resides; 3. Open the ‘stderr’, you will find lines similar to:
/data2/hadoop/yarn/local/usercache/spark/appcache/application_1479156026828_0006/
container_e69_1479156026828_0006_01_000825/hs_err_pid3694385.log
§  and core dump files too!
§  More on this setting https://hadoop.apache.org/docs/r2.7.3/hadoop-yarn/hadoop-yarn-common/yarn-
default.xml
1
2

More Related Content

What's hot (20)

PDF
Enabling Vectorized Engine in Apache Spark
Kazuaki Ishizaki
 
PDF
How to Automate Performance Tuning for Apache Spark
Databricks
 
PDF
Spark performance tuning - Maksud Ibrahimov
Maksud Ibrahimov
 
PDF
Best Practice of Compression/Decompression Codes in Apache Spark with Sophia...
Databricks
 
PDF
Apache Spark Core – Practical Optimization
Databricks
 
PDF
Apache Spark Listeners: A Crash Course in Fast, Easy Monitoring
Databricks
 
PPTX
Processing Large Data with Apache Spark -- HasGeek
Venkata Naga Ravi
 
PPTX
Intro to Apache Spark
Robert Sanders
 
PDF
Migrating Apache Hive Workload to Apache Spark: Bridge the Gap with Zhan Zhan...
Databricks
 
PPTX
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark
Bo Yang
 
PDF
Apache Spark Core—Deep Dive—Proper Optimization
Databricks
 
PDF
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
PDF
Top 5 mistakes when writing Spark applications
hadooparchbook
 
PPTX
How to Actually Tune Your Spark Jobs So They Work
Ilya Ganelin
 
PDF
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Databricks
 
PPTX
Rocks db state store in structured streaming
Balaji Mohanam
 
PDF
Spark Autotuning Talk - Strata New York
Holden Karau
 
PDF
Deep Dive into the New Features of Apache Spark 3.0
Databricks
 
PDF
Apache Spark in Depth: Core Concepts, Architecture & Internals
Anton Kirillov
 
PDF
Apache Spark At Scale in the Cloud
Databricks
 
Enabling Vectorized Engine in Apache Spark
Kazuaki Ishizaki
 
How to Automate Performance Tuning for Apache Spark
Databricks
 
Spark performance tuning - Maksud Ibrahimov
Maksud Ibrahimov
 
Best Practice of Compression/Decompression Codes in Apache Spark with Sophia...
Databricks
 
Apache Spark Core – Practical Optimization
Databricks
 
Apache Spark Listeners: A Crash Course in Fast, Easy Monitoring
Databricks
 
Processing Large Data with Apache Spark -- HasGeek
Venkata Naga Ravi
 
Intro to Apache Spark
Robert Sanders
 
Migrating Apache Hive Workload to Apache Spark: Bridge the Gap with Zhan Zhan...
Databricks
 
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark
Bo Yang
 
Apache Spark Core—Deep Dive—Proper Optimization
Databricks
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Top 5 mistakes when writing Spark applications
hadooparchbook
 
How to Actually Tune Your Spark Jobs So They Work
Ilya Ganelin
 
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Databricks
 
Rocks db state store in structured streaming
Balaji Mohanam
 
Spark Autotuning Talk - Strata New York
Holden Karau
 
Deep Dive into the New Features of Apache Spark 3.0
Databricks
 
Apache Spark in Depth: Core Concepts, Architecture & Internals
Anton Kirillov
 
Apache Spark At Scale in the Cloud
Databricks
 

Viewers also liked (20)

PDF
Why your Spark job is failing
Sandy Ryza
 
PPTX
Extreme Apache Spark: how in 3 months we created a pipeline that can process ...
Josef A. Habdank
 
PPTX
Intro to Spark development
Spark Summit
 
PDF
Advanced Data Science on Spark-(Reza Zadeh, Stanford)
Spark Summit
 
PDF
Dev Ops Training
Spark Summit
 
PDF
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
Databricks
 
PDF
SQL to Hive Cheat Sheet
Hortonworks
 
PDF
Dynamically Allocate Cluster Resources to your Spark Application
DataWorks Summit
 
PDF
Spark on yarn
datamantra
 
PDF
Spark Compute as a Service at Paypal with Prabhu Kasinathan
Databricks
 
PDF
Productionizing Spark and the Spark Job Server
Evan Chan
 
PPTX
Get most out of Spark on YARN
DataWorks Summit
 
PPTX
Hadoop and Spark Analytics over Better Storage
Sandeep Patil
 
PPTX
Producing Spark on YARN for ETL
DataWorks Summit/Hadoop Summit
 
PDF
Spark Summit Europe: Building a REST Job Server for interactive Spark as a se...
gethue
 
PPT
SocSciBot(01 Mar2010) - Korean Manual
WCU Webometrics Institute
 
PPTX
Spark-on-YARN: Empower Spark Applications on Hadoop Cluster
DataWorks Summit
 
PPTX
ETL with SPARK - First Spark London meetup
Rafal Kwasny
 
PPTX
Apache Spark Model Deployment
Databricks
 
PPT
Proxy Servers
Sourav Roy
 
Why your Spark job is failing
Sandy Ryza
 
Extreme Apache Spark: how in 3 months we created a pipeline that can process ...
Josef A. Habdank
 
Intro to Spark development
Spark Summit
 
Advanced Data Science on Spark-(Reza Zadeh, Stanford)
Spark Summit
 
Dev Ops Training
Spark Summit
 
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
Databricks
 
SQL to Hive Cheat Sheet
Hortonworks
 
Dynamically Allocate Cluster Resources to your Spark Application
DataWorks Summit
 
Spark on yarn
datamantra
 
Spark Compute as a Service at Paypal with Prabhu Kasinathan
Databricks
 
Productionizing Spark and the Spark Job Server
Evan Chan
 
Get most out of Spark on YARN
DataWorks Summit
 
Hadoop and Spark Analytics over Better Storage
Sandeep Patil
 
Producing Spark on YARN for ETL
DataWorks Summit/Hadoop Summit
 
Spark Summit Europe: Building a REST Job Server for interactive Spark as a se...
gethue
 
SocSciBot(01 Mar2010) - Korean Manual
WCU Webometrics Institute
 
Spark-on-YARN: Empower Spark Applications on Hadoop Cluster
DataWorks Summit
 
ETL with SPARK - First Spark London meetup
Rafal Kwasny
 
Apache Spark Model Deployment
Databricks
 
Proxy Servers
Sourav Roy
 
Ad

Similar to Spark 2.x Troubleshooting Guide (20)

PDF
Using apache spark for processing trillions of records each day at Datadog
Vadim Semenov
 
PPTX
Speed it up and Spark it up at Intel
DataWorks Summit
 
PPTX
Productionizing Spark and the REST Job Server- Evan Chan
Spark Summit
 
PDF
Spark Tuning for Enterprise System Administrators
Anya Bida
 
PPTX
In Memory Analytics with Apache Spark
Venkata Naga Ravi
 
PDF
Apache Cassandra and Apche Spark
Alex Thompson
 
PPTX
Breaking Spark: Top 5 mistakes to avoid when using Apache Spark in production
Neelesh Srinivas Salian
 
PDF
Apache Sparkにおけるメモリ - アプリケーションを落とさないメモリ設計手法 -
Yoshiyasu SAEKI
 
PPTX
Uncovering an Apache Spark 2 Benchmark - Configuration, Tuning and Test Results
DataWorks Summit
 
PPTX
Spark Intro by Adform Research
Vasil Remeniuk
 
PPTX
Spark intro by Adform Research
Vasil Remeniuk
 
PDF
Hadoop Spark Introduction-20150130
Xuan-Chao Huang
 
PPTX
Metrics-driven tuning of Apache Spark at scale
DataWorks Summit
 
PDF
Metrics-Driven Tuning of Apache Spark at Scale with Edwina Lu and Ye Zhou
Databricks
 
PDF
Introduction to Spark Training
Spark Summit
 
PPTX
Spark with HDInsight
Khalid Salama
 
PDF
Spark Tuning for Enterprise System Administrators By Anya Bida
Spark Summit
 
PDF
Spark Tuning For Enterprise System Administrators, Spark Summit East 2016
Anya Bida
 
PDF
Faster Data Integration Pipeline Execution using Spark-Jobserver
Databricks
 
PPTX
JVM and OS Tuning for accelerating Spark application
Tatsuhiro Chiba
 
Using apache spark for processing trillions of records each day at Datadog
Vadim Semenov
 
Speed it up and Spark it up at Intel
DataWorks Summit
 
Productionizing Spark and the REST Job Server- Evan Chan
Spark Summit
 
Spark Tuning for Enterprise System Administrators
Anya Bida
 
In Memory Analytics with Apache Spark
Venkata Naga Ravi
 
Apache Cassandra and Apche Spark
Alex Thompson
 
Breaking Spark: Top 5 mistakes to avoid when using Apache Spark in production
Neelesh Srinivas Salian
 
Apache Sparkにおけるメモリ - アプリケーションを落とさないメモリ設計手法 -
Yoshiyasu SAEKI
 
Uncovering an Apache Spark 2 Benchmark - Configuration, Tuning and Test Results
DataWorks Summit
 
Spark Intro by Adform Research
Vasil Remeniuk
 
Spark intro by Adform Research
Vasil Remeniuk
 
Hadoop Spark Introduction-20150130
Xuan-Chao Huang
 
Metrics-driven tuning of Apache Spark at scale
DataWorks Summit
 
Metrics-Driven Tuning of Apache Spark at Scale with Edwina Lu and Ye Zhou
Databricks
 
Introduction to Spark Training
Spark Summit
 
Spark with HDInsight
Khalid Salama
 
Spark Tuning for Enterprise System Administrators By Anya Bida
Spark Summit
 
Spark Tuning For Enterprise System Administrators, Spark Summit East 2016
Anya Bida
 
Faster Data Integration Pipeline Execution using Spark-Jobserver
Databricks
 
JVM and OS Tuning for accelerating Spark application
Tatsuhiro Chiba
 
Ad

Recently uploaded (20)

PDF
LLMs.txt: Easily Control How AI Crawls Your Site
Keploy
 
PDF
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
PDF
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PDF
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
PDF
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
PDF
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
PDF
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
PDF
Blockchain Transactions Explained For Everyone
CIFDAQ
 
PDF
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
IoT-Powered Industrial Transformation – Smart Manufacturing to Connected Heal...
Rejig Digital
 
PPTX
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
PDF
Using FME to Develop Self-Service CAD Applications for a Major UK Police Force
Safe Software
 
PPTX
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
PDF
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
PPTX
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
PDF
Biography of Daniel Podor.pdf
Daniel Podor
 
PDF
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
LLMs.txt: Easily Control How AI Crawls Your Site
Keploy
 
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
DevBcn - Building 10x Organizations Using Modern Productivity Metrics
Justin Reock
 
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
"Beyond English: Navigating the Challenges of Building a Ukrainian-language R...
Fwdays
 
Mastering Financial Management in Direct Selling
Epixel MLM Software
 
Blockchain Transactions Explained For Everyone
CIFDAQ
 
Reverse Engineering of Security Products: Developing an Advanced Microsoft De...
nwbxhhcyjv
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
IoT-Powered Industrial Transformation – Smart Manufacturing to Connected Heal...
Rejig Digital
 
WooCommerce Workshop: Bring Your Laptop
Laura Hartwig
 
Using FME to Develop Self-Service CAD Applications for a Major UK Police Force
Safe Software
 
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
"AI Transformation: Directions and Challenges", Pavlo Shaternik
Fwdays
 
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
Biography of Daniel Podor.pdf
Daniel Podor
 
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 

Spark 2.x Troubleshooting Guide

  • 1. © 2017 IBM Corporation Spark 2.x Troubleshooting Guide IBM Big Data Performance Jesse Chen, [email protected] 3/2017
  • 2. © 2017 IBM Corporation2 Troubleshooting Spark 2.x §  Building Spark §  Running Spark -  ‘--verbose’ -  Missing external JARs -  OOM on Spark driver -  OOM on executors -  GC policies -  Spark Thrift Server for JDBC apps -  HDFS block distribution -  HDFS blocksize vs Parquet blocksize §  Profiling Spark -  Collecting thread & heap dumps in-flight -  Collecting core dumps after jobs fail
  • 3. © 2017 IBM Corporation3 Lots of errors when building a new Spark release on my own… §  Run ‘make-distribution.sh’ (generates ‘bin/spark-shell’, ‘bin/spark-submit’, etc.) §  Does not always work -  Wrong JRE version or no JRE found -  No Maven installed -  Support for certain components not default, e.g., ‘hive’ support §  TIP #1: Always explicitly set the following in ‘.bashrc’ for ‘root’ # for Spark distribution compiling export JAVA_HOME=/usr/jdk64/java-1.8.0-openjdk-1.8.0.77-0.b03.el7_2.x86_64 export JRE_HOME=$JAVA_HOME/jre export PATH=$JAVA_HOME/bin:$PATH export CLASSPATH=.:$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH #set maven environment M2_HOME=/TestAutomation/downloads/tmp/spark-master/build/apache-maven-3.3.9 export MAVEN_OPTS="-Xms256m -Xmx2048m -XX:MaxPermSize=512m" export PATH=$M2_HOME/bin:$PATH §  TIP #2: Specify support you want explicitly -  To build Spark with YARN and Hive support, do: ./dev/make-distribution.sh --name spark-master-2.1 --tgz -Pyarn -Phadoop-2.7 - Dhadoop.version=2.7.2 -Phive -Phive-thriftserver
  • 4. © 2017 IBM Corporation4 Building a Spark release is extremely slow … §  Use more cores to speed up the build process (default uses only 1 core) §  Rebuild only modified source code (default is “clean”) Edit the file ‘./dev/make-distribution.sh’, change line BUILD_COMMAND=("$MVN" –T 1C clean package -DskipTests $@) To: BUILD_COMMAND=("$MVN" -T 48C package -DskipTests $@) ** Assuming your have 48 cores on your build machine ** Assuming you don’t need to always build clean, for iterative changes §  Can cut build time from 45 min to 15 min on a typical 128GB-RAM 48-core node
  • 5. © 2017 IBM Corporation5 Don’t know what settings used when running Spark … §  Always use ‘–-verbose’ option on ‘spark-submit’ command to run your workload §  Prints -  All default properties -  Command line options -  Settings from spark ‘conf’ file -  Settings from CLI §  Example output Spark properties used, including those specified through --conf and those from the properties file /TestAutomation/spark-2.0/conf/spark-defaults.conf: spark.yarn.queue -> default spark.local.dir -> /data1/tmp,/data2/tmp,/data3/tmp,/data4/tmp spark.history.kerberos.principal -> none spark.sql.broadcastTimeout -> 800 spark.hadoop.yarn.timeline-service.enabled -> false spark.yarn.max.executor.failures -> 3 spark.driver.memory -> 10g spark.network.timeout -> 800 spark.yarn.historyServer.address -> node458.xyz.com:18080 spark.eventLog.enabled -> true spark.history.ui.port -> 18080 spark.rpc.askTimeout -> 800 … §  Example command: spark-submit --driver-memory 10g --verbose --master yarn --executor-memory ….
  • 6. © 2017 IBM Corporation6 Missing external jars §  Compiled OK, but run-time NoClassDefFoundError: Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/kafka/clients/producer/KafkaProducer at java.lang.Class.getDeclaredMethods0(Native Method) at java.lang.Class.privateGetDeclaredMethods(Class.java:2701) at java.lang.Class.privateGetMethodRecursive(Class.java:3048) at java.lang.Class.getMethod0(Class.java:3018) §  Use ‘--packages’ to include comma-separated list of Maven coordinates of JARs §  Example spark-submit --driver-memory 12g --verbose --master yarn-client --executor-memory 4096m --num-executors 20 --class com.ibm.biginsights.pqa.spark.SparkStreamingTest --packages org.apache.spark:spark-streaming- kafka_2.10:1.5.1 … §  This includes JARs on both driver and executor classpaths §  Order of look-up -  The local Maven repo – local machine -  Maven central - Web -  Additional remote repositories specified in –repositories
  • 7. © 2017 IBM Corporation7 OutOfMemory related to Spark driver §  Types of OOM related to Spark driver heap size 15/10/06 17:10:00 ERROR akka.ErrorMonitor: Uncaught fatal error from thread [sparkDriver- akka.actor.default-dispatcher-29] shutting down ActorSystem [sparkDriver] java.lang.OutOfMemoryError: Java heap space Exception in thread "task-result-getter-0" java.lang.OutOfMemoryError: Java heap space Subsequent error: Exception in thread "ResponseProcessor for block BP-1697216913-9.30.104.154-1438974319723:blk_1073847224_106652" java.lang.OutOfMemoryError: Java heap space WARN nio.AbstractNioSelector: Unexpected exception in the selector loop. java.lang.OutOfMemoryError: Java heap space at org.jboss.netty.buffer.HeapChannelBuffer.<init>(HeapChannelBuffer.java:42) §  Increase ‘--driver-memory’ usually resolves these §  Default 512M is usually too small for serious workloads §  Example: 8GB minimum needed for Spark SQL running TPCDS @ 1TB §  Typical workloads that need large driver heap size -  Spark SQL -  Spark Streaming
  • 8. © 2017 IBM Corporation8 OOM – GC overhead limit exceeded 15/12/09 19:57:02 WARN scheduler.TaskSetManager: Lost task 175.0 in stage 68.0 (TID 7588, rhel8.cisco.com): java.lang.OutOfMemoryError: GC overhead limit exceeded at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:478) at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:55) §  Too much time is being spent in garbage collection (98% of the total time) §  Less than 2% of the heap is recovered §  From ‘top’, often see “1 CPU core fully used at 100%” but no work is done §  Tuning #1: Increase executor heapsize spark-submit … --executor-memory 4096m --num-executors 20 … §  OR Tuning #2: Change GC policy (next slide)
  • 9. © 2017 IBM Corporation9 GC policies §  Choose between -XX:UseG1GC & -XX:UseParallelGC §  Show current GC settings % /usr/jdk64/java-1.8.0-openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/java -XX:+PrintFlagsFinal uintx GCHeapFreeLimit = 2 {product} uintx GCLockerEdenExpansionPercent = 5 {product} uintx GCLogFileSize = 8192 {product} uintx GCTimeLimit = 98 {product} uintx GCTimeRatio = 99 {product} bool UseG1GC = false {product} bool UseParallelGC := true {product} §  Tuning options -  Spark default is -XX:UseParallelGC -  Try overwrite with –XX:G1GC §  Performance Impact: “Mythical at best”, “It depends” §  Default is pretty good! §  Databricks blog on Tuning GC for Spark -  https://databricks.com/blog/2015/05/28/tuning-java-garbage-collection-for-spark- applications.html
  • 10. © 2017 IBM Corporation10 Support JDBC Apps via Spark Thrift Server §  Spark SQL can act as a distributed query engine using its JDBC/ODBC interface §  Supported by running the Thrift JDBC/ODBC server §  Has a single SparkContext with multiple sessions supporting -  Concurrency -  re-usable connections (pool) -  Shared cache (e.g., catalog, tables, etc.) §  Can specify any amount of memory, CPUs through standard Spark-submit parameters: -  Driver-memory -  Executor-memory -  Num-executors, etc. §  Example, to start Thrift Server with 2.3TB of memory, 800 cores and YARN mode: % $SPARK_HOME/sbin/start-thriftserver.sh --driver-memory 12g --verbose --master yarn --executor-memory 16g --num-executors 100 --executor-cores 8 --conf spark.hadoop.yarn.timeline-service.enabled=false --conf spark.yarn.executor.memoryOverhead=8192 --conf spark.driver.maxResultSize=5g §  Default number of workers (sessions) = 500 §  Client tool bundled with Spark 2.0: Beeline % $SPARK_HOME/bin/beeline -u "jdbc:hive2://node460.xyz.com:10013/my1tbdb" -n spark --force=true -f /test/ query_00_01_96.sql
  • 11. © 2017 IBM Corporation11 Not all CPUs are busy … §  Designed for big data §  More cores and more memory always better (well, until it breaks!) §  Ways to max out your cluster, for example: -  40 vCores per node -  128GB memory per node -  5-node cluster = 200 vCores, ~500GB RAM §  Method #1 – Start with evenly divided memory and cores --executor-memory 2500m --num-executors 200 Total # of executors = 200 (default: 1-core each) # of executors/node = 40 (fully using all cores) Total memory used = 500 GB §  Method #2 – When heap size non-negotiable --executor-memory 6g --num-executors 80 Total # of executors = 80 (1-core each) # of executors/node = 16 (40% CPU utilization) Total memory used ~= 500 GB Can increase cores per executor as: --executor-memory 6g --num-executors 80 –executor-cores 2 Forcing 80% utilization, boosting 33% performance!
  • 12. © 2017 IBM Corporation12 Spread out Spark “scratch” space §  Typical error stage 89.3 failed 4 times, most recent failure: Lost task 38.4 in stage 89.3 (TID 30100, rhel4.cisco.com): java.io.IOException: No space left on device at java.io.FileOutputStream.writeBytes(Native Method) at java.io.FileOutputStream.write(FileOutputStream.java:326) at org.apache.spark.storage.TimeTrackingOutputStream.write(TimeTrackingOutputStream.java:58) at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82) at java.io.BufferedOutputStream.write(BufferedOutputStream.java:126) §  Complains about ‘/tmp’ is full §  Controlled by ‘spark.local.dir’ parameter -  Default is ‘/tmp’ -  Stores map output files and RDDs §  Two reasons ‘/tmp’ is not an ideal place for Spark “scratch” space -  ‘/tmp’ usually is small and for OS -  ‘/tmp’ usually is a single disk, a potential IO bottleneck §  To fix, add the following line to ‘spark-defaults.conf’ file: spark.local.dir /data/disk1/tmp,/data/disk2/tmp,/data/disk3/tmp,/data/disk4/tmp,…
  • 13. © 2017 IBM Corporation13 Max result size exceeded §  Typical error stream5/query_05_22_77.sql.out:Error: org.apache.spark.SparkException: Job aborted due to stage failure: Total size of serialized results of 381610 tasks (5.0 GB) is bigger than spark.driver.maxResultSize (5.0 GB) (state=,code=0)) §  Likely to occur with complex SQL on large data volumes §  Limit of total size of serialized results of all partitions for each Spark action (e.g., collect) §  Controlled by ‘spark.driver.maxResultSize’ parameter -  Default is 1G -  Can be ‘0’ or ‘unlimited’ -  ‘unlimited’ will throw OOM on driver §  To fix, add the following line to ‘spark-defaults.conf’ file: spark.driver.maxResultSize 5g ** 5G is a learned value for Spark SQL running TPCDS queries at 1TB scale factors
  • 14. © 2017 IBM Corporation14 Catalyst errors §  Typical error stream7/query_07_24_48.sql.out:Error: org.apache.spark.sql.catalyst.errors.package$TreeNodeException: execute, tree: at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute $1.apply(ShuffleExchange.scala:122) at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute $1.apply(ShuffleExchange.scala:113) at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:49) ... 96 more Caused by: java.util.concurrent.TimeoutException: Futures timed out after [800 seconds] at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219) at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223) at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:190) at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53) at scala.concurrent.Await$.result(package.scala:190) at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:190) ... 208 more §  On surface appears to be Catalyst error (optimizer) §  Actually an internal Spark timeout error most likely to occur under concurrency java.util.concurrent.TimeoutException: Futures timed out after [800 seconds] §  Controlled by an unpublished Spark setting ‘spark.sql.broadcastTimeout’ parameter -  Default in source code shows 300 seconds §  To fix, add the following line to ‘spark-defaults.conf’ file or as CLI --conf spark.sql.broadcastTimeout 1200 **1200 is the longest running query in a SQL workload in our case.
  • 15. © 2017 IBM Corporation15 Other timeouts §  Typical errors 16/07/09 01:14:18 ERROR spark.ContextCleaner: Error cleaning broadcast 28267 org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [800 seconds]. This timeout is controlled by spark.rpc.askTimeout at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$ $createRpcTimeoutException(RpcTimeout.scala:48) at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63) at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59) at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167) at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83) at org.apache.spark.storage.BlockManagerMaster.removeBroadcast(BlockManagerMaster.scala:143) And timeout exceptions related to the following: spark.core.connection.ack.wait.timeout spark.akka.timeout spark.storage.blockManagerSlaveTimeoutMs spark.shuffle.io.connectionTimeout spark.rpc.askTimeout spark.rpc.lookupTimeout §  Depending on system resource usage, any of the above can occur (e.g., no heartbeats) §  You can tune each individual setting OR use an “umbrella” timeout setting §  Controlled by ‘spark.network.timeout’ parameter -  Default is 120 seconds -  Overrides all above timeout values §  To fix, add the following line to ‘spark-defaults.conf’ file: spark.network.timeout 700
  • 16. © 2017 IBM Corporation16 Out of space on a few data nodes … §  Unbalanced HDFS forces more IO over network §  Run command ‘hdfs balancer’ to start rebalancing §  dfs.datanode.balance.bandwidthPerSec -  Default 6250000 or 6.25 MB/s network bandwidth -  Increased to 6 GB/s on F1 to take advantage of fat pipe §  dfs.datanode.balance.max.concurrent.moves -  Default is undefined -  Add this setting in hdfs-site -  Set to 500 concurrent threads -  Example shows 5.4 TB/hour balancing rate 16/10/05 10:17:24 INFO balancer.Balancer: 0 over-utilized: [] 16/10/05 10:17:24 INFO balancer.Balancer: 0 underutilized: [] The cluster is balanced. Exiting... Oct 5, 2016 10:17:24 AM         337   19.71 TB  0 B -1 B Oct 5, 2016 10:17:24 AM  Balancing took 3.6939516666666665 hours
  • 17. © 2017 IBM Corporation17 What block size to use in HDFS and in Parquet? Take-away: Keep block size for both at default (128MB) Parquet Block HDFS Block HDFS Block HDFS Block HDFS Block Parquet Block Parquet Block HDFS Block HDFS Block HDFS Block HDFS Block Parquet Block Parquet Block Parquet Block Parquet Block Remote reads occur when block boundaries cross Slows down scan time Prefer row group boundaries be at block boundaries
  • 18. © 2017 IBM Corporation18 In-flight capturing of executor thread & heap dumps §  Typically run as YARN containers across multiple nodes, e.g., yarn 355583 355580 91 09:15 ? 00:05:35 /usr/jdk64/java-1.8.0- openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/java -server -XX:OnOutOfMemoryError=kill %p -Xms6144m -Xmx6144m - Djava.io.tmpdir=/data6/hadoop/yarn/local/usercache/biadmin/appcache/application_1452558922304_0075/ container_1452558922304_0075_01_000020/tmp -Dspark.driver.port=3110 -Dspark.history.ui.port=18080 - Dspark.yarn.app.container.log.dir=/data1/hadoop/yarn/log/application_1452558922304_0075/ container_1452558922304_0075_01_000020 org.apache.spark.executor.CoarseGrainedExecutorBackend --driver-url akka.tcp://[email protected]:3110/user/CoarseGrainedScheduler --executor-id 19 –hostname node133.yxz.com --cores 1 --app-id application_1452558922304_0075 --user-class-path file:/data6/hadoop/ yarn/local/usercache/biadmin/appcache/application_1452558922304_0075/ container_1452558922304_0075_01_000020/__app__.jar §  OpenJDK has a set of tools for Java thread and heap dumps jmap, jstack, jstat, jhat, etc. §  Typical location of OpenJDK tools for IBM Hadoop platform /usr/jdk64/java-1.8.0-openjdk-1.8.0.45-28.b13.el6_6.x86_64/bin/ §  To get a full thread dump % jstack –l 355583 > /TestAutomation/results/twitter/javacore.355583.1 % jstack –l –F 355583 > /TestAutomation/results/twitter/javacore-hung.355583.1 Use –F to attach to a non-responsive JVM §  To get a full heap dump % jmap -dump:live,format=b,file=/TestAutomation/results/dump.355583.2 355583 Dumping heap to /TestAutomation/results/sparkstreamtests/dump.355583.2 ... Heap dump file created
  • 19. © 2017 IBM Corporation19 Can’t find core dumps even when Spark says there are …. §  Core dumps created by Spark jobs 16/11/14 16:45:05 WARN scheduler.TaskSetManager: Lost task 692.0 in stage 4.0 (TID 129021, node12.xyz.com, executor 824): ExecutorLostFailure (executor 824 exited caused by one of the running tasks) Reason: Container marked as failed: container_e69_1479156026828_0006_01_000825 on host: node12.xyz.com. Exit status: 134. Diagnostics: Exception from container-launch. Exit code: 134 Container id: container_e69_1479156026828_0006_01_000825 Exception message: /bin/bash: line 1: 3694385 Aborted (core dumped) /usr/jdk64/java-1.8.0- openjdk-1.8.0.77-0.b03.el7_2.x86_64/bin/java -server -Xmx24576m -Djava.io.tmpdir=/data2/hadoop/yarn/local/ ….ontainer.log.dir=/data5/hadoop/…container_e69_1479156026828_0006_01_000825/com.univocity_univocity- parsers-1.5.1.jar > /data5/hadoop/yarn/log/application_1479156026828_0006/ container_e69_1479156026828_0006_01_000825/stdout 2> /data5/hadoop/yarn/log/application_1479156026828_0006/ container_e69_1479156026828_0006_01_000825/stderr Stack trace: ExitCodeException exitCode=134: /bin/bash: line 1: 3694385 Aborted (core dumped) /usr/jdk64/ java-1.8.0-openjdk-1.8.0.77-0.b03.el7_2.x86_64/bin/java -server -Xmx24576m -Djava.io.tmpdir=/data2/hadoop/-… container_e69_1479156026828_0006_01_000825/com.univocity_univocity-parsers-1.5.1.jar > /data5/hadoop/yarn/ log/application_1479156026828_0006/container_e69_1479156026828_0006_01_000825/stdout 2> /data5/hadoop/yarn/ log/application_1479156026828_0006/container_e69_1479156026828_0006_01_000825/stderr §  YARN settings for core dump file retention yarn.nodemanager.delete.debug-delay-sec default is 0, files deleted right after application finishes Set it to enough time to get to files and copy them for debugging §  Steps: 1. Find the hostname in the error log; 2. Find the local directory where ‘stderr’ resides; 3. Open the ‘stderr’, you will find lines similar to: /data2/hadoop/yarn/local/usercache/spark/appcache/application_1479156026828_0006/ container_e69_1479156026828_0006_01_000825/hs_err_pid3694385.log §  and core dump files too! §  More on this setting https://hadoop.apache.org/docs/r2.7.3/hadoop-yarn/hadoop-yarn-common/yarn- default.xml 1 2