SlideShare a Scribd company logo
Building a Modern Big Data & Advanced
Analytics Pipeline
(Ideas for building UDAP)
About Us
• Emerging technology firm focused on helping enterprises build breakthrough
software solutions
• Building software solutions powered by disruptive enterprise software trends
-Machine learning and data science
-Cyber-security
-Enterprise IOT
-Powered by Cloud and Mobile
• Bringing innovation from startups and academic institutions to the enterprise
• Award winning agencies: Inc 500, American Business Awards, International
Business Awards
• The principles of big data and advanced analytics pipelines
• Some inspiration
• Capabilities
• Building a big data and advanced analytics pipeline
Agenda
The principles of an enterprise big data
infrastructure
Data Needs
Vision
Solutions
Data Science
Data Infrastructure
Data Access
There are only a few
technology choices….
Data Needs
Some inspiration….
Netflix
Data Access
Data Fetching:
Falcor(https://github.com/Ne
tflix/falcor )
Data Streaming: Apache Kafka
(http://kafka.apache.org/ )
Federated Job Execution
Engine:
Genie(https://github.com/Net
flix/genie )
Data Infrastructure
Data Lakes: Apache Hadoop
(http://hadoop.apache.org/ )
Data Compute: Apache Spark
SQL Querying: Presto
(https://prestodb.io/ )
Data Discovery : Metacat
Data Science
Multidimensional analysis:
Druid (http://druid.io/ )
Data Visualization: Sting
Machine learning: Scikit-
learn( http://scikit-
learn.org/stable/ )
Tools & Solutions
Netflix big data portal
Hadoop Search:
Inviso(https://github.com/Net
flix/inviso )
Workflow visualization
(https://github.com/Netflix/Li
pstick )
Netflix Big Data Portal
Netflix Lipstick
Netflix Data Pipeline
Spotify
Data Access
Data Fetching:
GraphQL(https://facebook.git
hub.io/react/blog/2015/05/0
1/graphql-introduction.html )
Data Streaming: Apache Kafka
(http://kafka.apache.org/ )
Data Infrastructure
Data Lakes: Apache Hadoop
(http://hadoop.apache.org/ )
Data Compute: Apache Spark
SQL Aggregation: Apache
Crunch(https://crunch.apache
.org/ )
Fast Data Access: Apache
Cassandra(http://cassandra.a
pache.org/ )
Workflow Manager
:Luigi(https://github.com/spo
tify/luigi )
Data Transformation: Apache
Falcon(http://hortonworks.co
m/hadoop/falcon/ )
Data Science
Data Visualization: Sting
Machine learning: Spark
MLib( http://scikit-
learn.org/stable/ )
Data Discovery: Raynor
Tools & Solutions
Hadoop Search:
Inviso(https://github.com/Net
flix/inviso )
Raynor
LinkedIn
Data Access
Data Streaming: Apache Kafka
(http://kafka.apache.org/ )
Data Fetching:
GraphQL(https://facebook.git
hub.io/react/blog/2015/05/0
1/graphql-introduction.html )
Data Infrastructure
Data Lakes: Apache Hadoop
(http://hadoop.apache.org/ )
Data Compute: Apache
Spark(http://www.project-
voldemort.com/voldemort/ )
Fast Data Access:
Voldemort(http://cassandra.a
pache.org/ )
Stream Analytics : Apache
Samza(http://samza.apache.o
rg/ )
Real Time Search : Zoie
(http://javasoze.github.io/zoi
e/ )
Data Science
Multidimensional analysis:
Druid (http://druid.io/ )
Data Visualization: Sting
Machine learning: Scikit-
learn( http://scikit-
learn.org/stable/ )
Data Discovery: Raynor
Tools & Solutions
Hadoop Search:
Inviso(https://github.com/Net
flix/inviso )
LinkedIn Stream Data Processing
LinkedIn Rewinder
Goldman Sachs
Data Access
Data Fetching:
GraphQL(https://facebook.git
hub.io/react/blog/2015/05/0
1/graphql-introduction.html )
Data Streaming: Apache Kafka
(http://kafka.apache.org/ )
Data Infrastructure
Data Lakes: Apache
Hadoop/HBase
(http://hadoop.apache.org/ )
Data Compute: Apache Spark
Data Transformation: Apache
Pig(http://hortonworks.com/
hadoop/falcon/ )
Stream Analytics: Apache
Storm
(http://storm.apache.org/ )
Data Science
Multidimensional analysis:
Druid (http://druid.io/ )
Data Visualization: Sting
Machine learning: Spark
MLib( http://scikit-
learn.org/stable/ )
Data Discovery: Custom data
catalog
Tools & Solutions
Secure data exchange:
Symphony
(http://www.goldmansachs.co
m/what-we-
do/engineering/see-our-
work/inside-symphony.html )
Goldman Sachs Data Exchange Architecture
Capabilities of a big data pipeline
Data Access….
• Provide the foundation for data collection and data ingestion methods at an enterprise
scale
• Support different data collection models in a consistent architecture
• Incorporate and remove data sources without impacting the overall infrastructure
Goals
• On-demand data access
• Batch data access
• Stream data access
• Data transformation
Foundational Capabilities
• Enable standard data access
protocols for line of business
systems
• Empower client applications
with data querying capabilities
• Provide data access
infrastructure building blocks
such as caching across business
data sources
On-Demand Data Access
Best Practices Interesting Technologies
• GraphQL(https://facebook.github.io/
react/blog/2015/05/01/graphql-
introduction.html )
• Odata(http://odata.org )
• Falcor
(http://netflix.github.io/falcor/ )
• Enable agile ETL models
• Support federated job
processing
Batch Data Access
Best Practices Interesting Technologies
• Genie(https://github.com/Netfl
ix/genie )
• Luigi(https://github.com/spoti
fy/luigi )
• Apache
Pig(https://pig.apache.org/ )
• Enable streaming data from
line of business systems
• Provide the infrastructure to
incorporate new data sources
such as sensors, web streams
etc
• Provide a consistent model for
data integration between line of
business systems
Stream Data Access
Best Practices Interesting Technologies
• Apache
Kafka(http://kafka.apache.org/
)
• RabbitMQ(https://www.rabbit
mq.com/ )
• ZeroMQ(http://zeromq.org/ )
• Many others….
• Enable federated aggregation of
disparate data sources
• Focus on small data sources
• Enable standard protocols to
access the federated data
sources
Data Virtualization
Best Practices Interesting Technologies
• Denodo(http://www.denodo.co
m/en )
• JBoss Data
Virtualization(http://www.jbos
s.org/products/datavirt/overvie
w/ )
Data Infrastructure….
• Store heterogeneous business data at scale
• Provide consistent models to aggregate and compose data sources from different data
sources
• Manage and curate business data sources
• Discover and consume data available in your organization
Goals
• Data lakes
• Data quality
• Data discovery
• Data transformation
Foundational Capabilities
• Focus on complementing and
expanding our data warehouse
capabilities
• Optimize the data lake to
incorporate heterogeneous data
sources
• Support multiple data ingestion
models
• Consider a hybrid cloud
strategy (pilot vs. production )
Data Lakes
Best Practices Interesting Technologies
• Hadoop(http://hadoop.apache.org/ )
• Hive(https://hive.apache.org/ )
• Hbase(https://hbase.apache.org/ )
• Spark(http://spark.apache.org/ )
• Greenplum(http://greenplum.org/ )
• Many others….
• Avoid traditional data quality
methodologies
• Leverage machine learning to
streamline data quality rules
• Leverage modern data quality
platforms
• Crowsourced vs. centralized
data quality models
Data Quality
Best Practices Interesting Technologies
• Trifacta(http://trifacta.com )
• Tamr(http://tamr.com )
• Alation(https://alation.com/ )
• Paxata(http://www.paxata.com/ )
• Master management solutions
don’t work with modern data
sources
• Promote crow-sourced vs.
centralized data publishing
• Focus on user experience
• Consider build vs. buy options
Data Discovery
Best Practices Interesting Technologies
• Tamr(http://tamr.com )
• Custom solutions…
• Spotify Raynor
• Netflix big data portal
• Enable programmable ETLs
• Support data transformations
for both batch and real time
data sources
• Agility over robustness
Data Transformations
Best Practices Interesting Technologies
• Apache
Pig(https://pig.apache.org/ )
• Streamsets(https://streamsets.
com/ )
• Apache Spark
(http://spark.apache.org/ )
Data Science….
• Discover insights of business data sources
• Integrate machine learning capabilities as part of the enterprise data pipeline
• Provide the foundation for predictive analytic capabilities across the enterprise
• Enable programmatic execution of machine learning models
Goals
• Data visualization & self-service BI
• Predictive analytics
• Stream analytics
• Proactive analytics
Foundational Capabilities
• Access business data sources
from mainstream data
visualization tools like Excel ,
Tableau, QlickView, Datameer,
etc.
• Publish data visualizations so
that they can be discovered by
other information workers
• Embed visualization as part of
existing line of business
solutions
Data Visualization and Self-Service BI
Best Practices Interesting Technologies
• Tableau(http://www.tableau.com/ )
• PowerBI(https://powerbi.microsoft.co
m/en-us/ )
• Datameer(http://www.datameer.com/
)
• QlikView(http://www.qlik.com/ )
• Visualization libraries
• ….
• Implement the tools and
frameworks to author machine
learning models using business
data sources
• Expose predictive models via
programmable APIs
• Provide the infrastructure to
test, train and evaluate machine
learning models
Predictive Analytics
Best Practices Interesting Technologies
• Spark
Mlib(http://spark.apache.org/docs/la
test/mllib-guide.html )
• Scikit-Learn(http://scikit-learn.org/ )
• Dato(https://dato.com/ )
• H20.ai(http://www.h2o.ai/ )
• ….
• Aggregate data real time from
diverse data sources
• Model static queries over
dynamic streams of data
• Create simulations and replays
of real data streams
Stream Analytics
Best Practices Interesting Technologies
• Apache
Storm(http://storm.apache.org/ )
• Spark Streaming
(http://spark.apache.org/streaming/
)
• Apache
Samza(http://samza.apache.org/ )
• ….
• Automate actions based on the
output of predictive models
• Use programmatic models to
script proactive analytics
business rules
• Continuously test and validate
proactive rules
Proactive Analytics
Best Practices Interesting Technologies
• Spark
Mlib(http://spark.apache.org/d
ocs/latest/mllib-guide.html )
• Scikit-Learn(http://scikit-
learn.org/ )
Solutions….
• Leverage a consistent data pipeline as part of all solutions
• Empower different teams to contribute to different aspects of the big data pipeline
• Keep track of key metrics about the big data pipeline such as time to deliver solutions,
data volume over time, data quality metrics, etc
Enterprise Data Solutions
• Data discovery
• Data quality
• Data testing tools
• …
Some Examples
• Mobile analytics
• Embedded analytics capabilities (ex: Salesforce Wave, Workday)
• Aggregation with external sources
• Video & image analytics
• Deep learning
• ….
Other Interesting Capabilities
Building a big data and advanced analytics
pipeline
Infrastructure-Driven
Data Storage Data Aggregation Data Transformation
Data Discovery Others…
Stream Analytics Predictive Analytics
Proactive Analytics Others…
Real time data access Batch data access Stream data access
Solution
Solution
Solution
Data
Access
Data
Infrastructure
Data
Science
Solutions
Domain-Driven
Data Storage Data Aggregation Data Transformation
Data Discovery Others…
Stream Analytics Predictive Analytics
Proactive Analytics Others…
Real time data access Batch data access Stream data access
Solution
Solution
Solution
Data
Access
Data
Infrastructure
Data
Science
Solutions
• Lead by the architecture team
• Military discipline
• Commitment from business
stakeholders
Infrastructure-Drives vs. Domain-Driven Approaches
Infrastructure-Driven Domain-Driven
• Federated data teams
• Rapid releases
• Pervasive communications
• Establish a vision across all levels of the data pipeline
• You can’t buy everything…Is likely you will build custom data infrastructure building
blocks
• Deliver infrastructure and functional capabilities incrementally
• Establish a data innovation group responsible for piloting infrastructure capabilities
ahead of production schedules
• Encourage adoption even in early stages
• Iterate
Some General Rules
Summary
• Big data and advanced analytics pipelines are based on 4 fundamental elements: data access,
data infrastructure, data science, data solutions….
• A lot of inspiration can be learned from the big data solutions built by lead internet vendors
• Establish a common vision and mission
• Start small….iterate….
Thanks
http://Tellago.com
Info@Tellago.com
Ad

More Related Content

What's hot (20)

Introduction to Data Engineering
Introduction to Data EngineeringIntroduction to Data Engineering
Introduction to Data Engineering
Vivek Aanand Ganesan
 
Introduction to Hadoop and Hadoop component
Introduction to Hadoop and Hadoop component Introduction to Hadoop and Hadoop component
Introduction to Hadoop and Hadoop component
rebeccatho
 
Building Lakehouses on Delta Lake with SQL Analytics Primer
Building Lakehouses on Delta Lake with SQL Analytics PrimerBuilding Lakehouses on Delta Lake with SQL Analytics Primer
Building Lakehouses on Delta Lake with SQL Analytics Primer
Databricks
 
Building a modern data warehouse
Building a modern data warehouseBuilding a modern data warehouse
Building a modern data warehouse
James Serra
 
Introduction to Apache Spark
Introduction to Apache SparkIntroduction to Apache Spark
Introduction to Apache Spark
Rahul Jain
 
Apache Tez: Accelerating Hadoop Query Processing
Apache Tez: Accelerating Hadoop Query ProcessingApache Tez: Accelerating Hadoop Query Processing
Apache Tez: Accelerating Hadoop Query Processing
Hortonworks
 
Data lake
Data lakeData lake
Data lake
GHAZOUANI WAEL
 
Big Data and Hadoop
Big Data and HadoopBig Data and Hadoop
Big Data and Hadoop
Flavio Vit
 
Demystifying Data Warehousing as a Service - DFW
Demystifying Data Warehousing as a Service - DFWDemystifying Data Warehousing as a Service - DFW
Demystifying Data Warehousing as a Service - DFW
Kent Graziano
 
Big Data & Hadoop Introduction
Big Data & Hadoop IntroductionBig Data & Hadoop Introduction
Big Data & Hadoop Introduction
Jayant Mukherjee
 
Introduction to snowflake
Introduction to snowflakeIntroduction to snowflake
Introduction to snowflake
Sunil Gurav
 
Big Data
Big DataBig Data
Big Data
Subhavinolin Raja
 
Introducing the Snowflake Computing Cloud Data Warehouse
Introducing the Snowflake Computing Cloud Data WarehouseIntroducing the Snowflake Computing Cloud Data Warehouse
Introducing the Snowflake Computing Cloud Data Warehouse
Snowflake Computing
 
Big Data
Big DataBig Data
Big Data
Vinayak Kamath
 
Snowflake Datawarehouse Architecturing
Snowflake Datawarehouse ArchitecturingSnowflake Datawarehouse Architecturing
Snowflake Datawarehouse Architecturing
Ishan Bhawantha Hewanayake
 
Introduction to ETL and Data Integration
Introduction to ETL and Data IntegrationIntroduction to ETL and Data Integration
Introduction to ETL and Data Integration
CloverDX (formerly known as CloverETL)
 
Beyond SQL: Speeding up Spark with DataFrames
Beyond SQL: Speeding up Spark with DataFramesBeyond SQL: Speeding up Spark with DataFrames
Beyond SQL: Speeding up Spark with DataFrames
Databricks
 
Azure data factory
Azure data factoryAzure data factory
Azure data factory
BizTalk360
 
Introduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse ArchitectureIntroduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse Architecture
Databricks
 
Hadoop Presentation - PPT
Hadoop Presentation - PPTHadoop Presentation - PPT
Hadoop Presentation - PPT
Anand Pandey
 
Introduction to Hadoop and Hadoop component
Introduction to Hadoop and Hadoop component Introduction to Hadoop and Hadoop component
Introduction to Hadoop and Hadoop component
rebeccatho
 
Building Lakehouses on Delta Lake with SQL Analytics Primer
Building Lakehouses on Delta Lake with SQL Analytics PrimerBuilding Lakehouses on Delta Lake with SQL Analytics Primer
Building Lakehouses on Delta Lake with SQL Analytics Primer
Databricks
 
Building a modern data warehouse
Building a modern data warehouseBuilding a modern data warehouse
Building a modern data warehouse
James Serra
 
Introduction to Apache Spark
Introduction to Apache SparkIntroduction to Apache Spark
Introduction to Apache Spark
Rahul Jain
 
Apache Tez: Accelerating Hadoop Query Processing
Apache Tez: Accelerating Hadoop Query ProcessingApache Tez: Accelerating Hadoop Query Processing
Apache Tez: Accelerating Hadoop Query Processing
Hortonworks
 
Big Data and Hadoop
Big Data and HadoopBig Data and Hadoop
Big Data and Hadoop
Flavio Vit
 
Demystifying Data Warehousing as a Service - DFW
Demystifying Data Warehousing as a Service - DFWDemystifying Data Warehousing as a Service - DFW
Demystifying Data Warehousing as a Service - DFW
Kent Graziano
 
Big Data & Hadoop Introduction
Big Data & Hadoop IntroductionBig Data & Hadoop Introduction
Big Data & Hadoop Introduction
Jayant Mukherjee
 
Introduction to snowflake
Introduction to snowflakeIntroduction to snowflake
Introduction to snowflake
Sunil Gurav
 
Introducing the Snowflake Computing Cloud Data Warehouse
Introducing the Snowflake Computing Cloud Data WarehouseIntroducing the Snowflake Computing Cloud Data Warehouse
Introducing the Snowflake Computing Cloud Data Warehouse
Snowflake Computing
 
Beyond SQL: Speeding up Spark with DataFrames
Beyond SQL: Speeding up Spark with DataFramesBeyond SQL: Speeding up Spark with DataFrames
Beyond SQL: Speeding up Spark with DataFrames
Databricks
 
Azure data factory
Azure data factoryAzure data factory
Azure data factory
BizTalk360
 
Introduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse ArchitectureIntroduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse Architecture
Databricks
 
Hadoop Presentation - PPT
Hadoop Presentation - PPTHadoop Presentation - PPT
Hadoop Presentation - PPT
Anand Pandey
 

Viewers also liked (14)

Processing Twitter Events in Real-Time with Oracle Event Processing (OEP) 12c
Processing Twitter Events in Real-Time with Oracle Event Processing (OEP) 12cProcessing Twitter Events in Real-Time with Oracle Event Processing (OEP) 12c
Processing Twitter Events in Real-Time with Oracle Event Processing (OEP) 12c
Guido Schmutz
 
What Is Visualization?
What Is Visualization?What Is Visualization?
What Is Visualization?
OneSpring LLC
 
An Introduction to Evaluation in Medical Visualization
An Introduction to Evaluation in Medical VisualizationAn Introduction to Evaluation in Medical Visualization
An Introduction to Evaluation in Medical Visualization
Noeska Smit
 
Information Visualization for Medical Informatics
Information Visualization for Medical Informatics Information Visualization for Medical Informatics
Information Visualization for Medical Informatics
University of Maryland
 
Info vis 4-22-2013-dc-vis-meetup-shneiderman
Info vis 4-22-2013-dc-vis-meetup-shneidermanInfo vis 4-22-2013-dc-vis-meetup-shneiderman
Info vis 4-22-2013-dc-vis-meetup-shneiderman
University of Maryland
 
Theius: A Streaming Visualization Suite for Hadoop Clusters
Theius: A Streaming Visualization Suite for Hadoop ClustersTheius: A Streaming Visualization Suite for Hadoop Clusters
Theius: A Streaming Visualization Suite for Hadoop Clusters
jtedesco5
 
Real-Time Analytics and Visualization of Streaming Big Data with JReport & Sc...
Real-Time Analytics and Visualization of Streaming Big Data with JReport & Sc...Real-Time Analytics and Visualization of Streaming Big Data with JReport & Sc...
Real-Time Analytics and Visualization of Streaming Big Data with JReport & Sc...
Mia Yuan Cao
 
Text and text stream mining tutorial
Text and text stream mining tutorialText and text stream mining tutorial
Text and text stream mining tutorial
mgrcar
 
In Memory Analytics with Apache Spark
In Memory Analytics with Apache SparkIn Memory Analytics with Apache Spark
In Memory Analytics with Apache Spark
Venkata Naga Ravi
 
JT@UCSB - On-Demand Data Streaming from Sensor Nodes and A quick overview of ...
JT@UCSB - On-Demand Data Streaming from Sensor Nodes and A quick overview of ...JT@UCSB - On-Demand Data Streaming from Sensor Nodes and A quick overview of ...
JT@UCSB - On-Demand Data Streaming from Sensor Nodes and A quick overview of ...
Jonas Traub
 
Web 2 0 Projects Elementary
Web 2 0 Projects ElementaryWeb 2 0 Projects Elementary
Web 2 0 Projects Elementary
Cinci0987
 
Towards Utilizing GPUs in Information Visualization
Towards Utilizing GPUs in Information VisualizationTowards Utilizing GPUs in Information Visualization
Towards Utilizing GPUs in Information Visualization
Niklas Elmqvist
 
Presentation Brucon - Anubisnetworks and PTCoresec
Presentation Brucon - Anubisnetworks and PTCoresecPresentation Brucon - Anubisnetworks and PTCoresec
Presentation Brucon - Anubisnetworks and PTCoresec
Tiago Henriques
 
Stream Processing with Kafka in Uber, Danny Yuan
Stream Processing with Kafka in Uber, Danny Yuan Stream Processing with Kafka in Uber, Danny Yuan
Stream Processing with Kafka in Uber, Danny Yuan
confluent
 
Processing Twitter Events in Real-Time with Oracle Event Processing (OEP) 12c
Processing Twitter Events in Real-Time with Oracle Event Processing (OEP) 12cProcessing Twitter Events in Real-Time with Oracle Event Processing (OEP) 12c
Processing Twitter Events in Real-Time with Oracle Event Processing (OEP) 12c
Guido Schmutz
 
What Is Visualization?
What Is Visualization?What Is Visualization?
What Is Visualization?
OneSpring LLC
 
An Introduction to Evaluation in Medical Visualization
An Introduction to Evaluation in Medical VisualizationAn Introduction to Evaluation in Medical Visualization
An Introduction to Evaluation in Medical Visualization
Noeska Smit
 
Information Visualization for Medical Informatics
Information Visualization for Medical Informatics Information Visualization for Medical Informatics
Information Visualization for Medical Informatics
University of Maryland
 
Info vis 4-22-2013-dc-vis-meetup-shneiderman
Info vis 4-22-2013-dc-vis-meetup-shneidermanInfo vis 4-22-2013-dc-vis-meetup-shneiderman
Info vis 4-22-2013-dc-vis-meetup-shneiderman
University of Maryland
 
Theius: A Streaming Visualization Suite for Hadoop Clusters
Theius: A Streaming Visualization Suite for Hadoop ClustersTheius: A Streaming Visualization Suite for Hadoop Clusters
Theius: A Streaming Visualization Suite for Hadoop Clusters
jtedesco5
 
Real-Time Analytics and Visualization of Streaming Big Data with JReport & Sc...
Real-Time Analytics and Visualization of Streaming Big Data with JReport & Sc...Real-Time Analytics and Visualization of Streaming Big Data with JReport & Sc...
Real-Time Analytics and Visualization of Streaming Big Data with JReport & Sc...
Mia Yuan Cao
 
Text and text stream mining tutorial
Text and text stream mining tutorialText and text stream mining tutorial
Text and text stream mining tutorial
mgrcar
 
In Memory Analytics with Apache Spark
In Memory Analytics with Apache SparkIn Memory Analytics with Apache Spark
In Memory Analytics with Apache Spark
Venkata Naga Ravi
 
JT@UCSB - On-Demand Data Streaming from Sensor Nodes and A quick overview of ...
JT@UCSB - On-Demand Data Streaming from Sensor Nodes and A quick overview of ...JT@UCSB - On-Demand Data Streaming from Sensor Nodes and A quick overview of ...
JT@UCSB - On-Demand Data Streaming from Sensor Nodes and A quick overview of ...
Jonas Traub
 
Web 2 0 Projects Elementary
Web 2 0 Projects ElementaryWeb 2 0 Projects Elementary
Web 2 0 Projects Elementary
Cinci0987
 
Towards Utilizing GPUs in Information Visualization
Towards Utilizing GPUs in Information VisualizationTowards Utilizing GPUs in Information Visualization
Towards Utilizing GPUs in Information Visualization
Niklas Elmqvist
 
Presentation Brucon - Anubisnetworks and PTCoresec
Presentation Brucon - Anubisnetworks and PTCoresecPresentation Brucon - Anubisnetworks and PTCoresec
Presentation Brucon - Anubisnetworks and PTCoresec
Tiago Henriques
 
Stream Processing with Kafka in Uber, Danny Yuan
Stream Processing with Kafka in Uber, Danny Yuan Stream Processing with Kafka in Uber, Danny Yuan
Stream Processing with Kafka in Uber, Danny Yuan
confluent
 
Ad

Similar to Building a Big Data Pipeline (20)

10 Big Data Technologies you Didn't Know About
10 Big Data Technologies you Didn't Know About 10 Big Data Technologies you Didn't Know About
10 Big Data Technologies you Didn't Know About
Jesus Rodriguez
 
Testing Big Data: Automated Testing of Hadoop with QuerySurge
Testing Big Data: Automated  Testing of Hadoop with QuerySurgeTesting Big Data: Automated  Testing of Hadoop with QuerySurge
Testing Big Data: Automated Testing of Hadoop with QuerySurge
RTTS
 
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in ProductionTugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Codemotion
 
Intro to Machine Learning with H2O and AWS
Intro to Machine Learning with H2O and AWSIntro to Machine Learning with H2O and AWS
Intro to Machine Learning with H2O and AWS
Sri Ambati
 
Lecture1 BIG DATA and Types of data in details
Lecture1 BIG DATA and Types of data in detailsLecture1 BIG DATA and Types of data in details
Lecture1 BIG DATA and Types of data in details
AbhishekKumarAgrahar2
 
Unushs susus susujss. Ssuusussjjsjsit 4.pptx
Unushs susus susujss. Ssuusussjjsjsit 4.pptxUnushs susus susujss. Ssuusussjjsjsit 4.pptx
Unushs susus susujss. Ssuusussjjsjsit 4.pptx
AshishHiwale1
 
Experfy Online Course - Gain Competitive Advantage Using Microsoft Azure Data...
Experfy Online Course - Gain Competitive Advantage Using Microsoft Azure Data...Experfy Online Course - Gain Competitive Advantage Using Microsoft Azure Data...
Experfy Online Course - Gain Competitive Advantage Using Microsoft Azure Data...
Experfy
 
Spsbepoelmanssharepointbigdataclean 150421080105-conversion-gate02
Spsbepoelmanssharepointbigdataclean 150421080105-conversion-gate02Spsbepoelmanssharepointbigdataclean 150421080105-conversion-gate02
Spsbepoelmanssharepointbigdataclean 150421080105-conversion-gate02
BIWUG
 
How to build your own Delve: combining machine learning, big data and SharePoint
How to build your own Delve: combining machine learning, big data and SharePointHow to build your own Delve: combining machine learning, big data and SharePoint
How to build your own Delve: combining machine learning, big data and SharePoint
Joris Poelmans
 
Microsoft Azure BI Solutions in the Cloud
Microsoft Azure BI Solutions in the CloudMicrosoft Azure BI Solutions in the Cloud
Microsoft Azure BI Solutions in the Cloud
Mark Kromer
 
Testing Big Data: Automated ETL Testing of Hadoop
Testing Big Data: Automated ETL Testing of HadoopTesting Big Data: Automated ETL Testing of Hadoop
Testing Big Data: Automated ETL Testing of Hadoop
Bill Hayduk
 
Big data.ppt
Big data.pptBig data.ppt
Big data.ppt
IdontKnow66967
 
Introduction to Data Engineering
Introduction to Data EngineeringIntroduction to Data Engineering
Introduction to Data Engineering
Durga Gadiraju
 
Lecture1
Lecture1Lecture1
Lecture1
Manish Singh
 
The Last Mile: Challenges and Opportunities in Data Tools (Strata 2014)
The Last Mile: Challenges and Opportunities in Data Tools (Strata 2014)The Last Mile: Challenges and Opportunities in Data Tools (Strata 2014)
The Last Mile: Challenges and Opportunities in Data Tools (Strata 2014)
DataPad Inc.
 
Web Briefing: Unlock the power of Hadoop to enable interactive analytics
Web Briefing: Unlock the power of Hadoop to enable interactive analyticsWeb Briefing: Unlock the power of Hadoop to enable interactive analytics
Web Briefing: Unlock the power of Hadoop to enable interactive analytics
Kognitio
 
Developing Enterprise Consciousness: Building Modern Open Data Platforms
Developing Enterprise Consciousness: Building Modern Open Data PlatformsDeveloping Enterprise Consciousness: Building Modern Open Data Platforms
Developing Enterprise Consciousness: Building Modern Open Data Platforms
ScyllaDB
 
Streaming Visualization
Streaming VisualizationStreaming Visualization
Streaming Visualization
Guido Schmutz
 
Myth Busters II: BI Tools and Data Virtualization are Interchangeable
Myth Busters II: BI Tools and Data Virtualization are InterchangeableMyth Busters II: BI Tools and Data Virtualization are Interchangeable
Myth Busters II: BI Tools and Data Virtualization are Interchangeable
Denodo
 
Modernizing Your Data Warehouse using APS
Modernizing Your Data Warehouse using APSModernizing Your Data Warehouse using APS
Modernizing Your Data Warehouse using APS
Stéphane Fréchette
 
10 Big Data Technologies you Didn't Know About
10 Big Data Technologies you Didn't Know About 10 Big Data Technologies you Didn't Know About
10 Big Data Technologies you Didn't Know About
Jesus Rodriguez
 
Testing Big Data: Automated Testing of Hadoop with QuerySurge
Testing Big Data: Automated  Testing of Hadoop with QuerySurgeTesting Big Data: Automated  Testing of Hadoop with QuerySurge
Testing Big Data: Automated Testing of Hadoop with QuerySurge
RTTS
 
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in ProductionTugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Codemotion
 
Intro to Machine Learning with H2O and AWS
Intro to Machine Learning with H2O and AWSIntro to Machine Learning with H2O and AWS
Intro to Machine Learning with H2O and AWS
Sri Ambati
 
Lecture1 BIG DATA and Types of data in details
Lecture1 BIG DATA and Types of data in detailsLecture1 BIG DATA and Types of data in details
Lecture1 BIG DATA and Types of data in details
AbhishekKumarAgrahar2
 
Unushs susus susujss. Ssuusussjjsjsit 4.pptx
Unushs susus susujss. Ssuusussjjsjsit 4.pptxUnushs susus susujss. Ssuusussjjsjsit 4.pptx
Unushs susus susujss. Ssuusussjjsjsit 4.pptx
AshishHiwale1
 
Experfy Online Course - Gain Competitive Advantage Using Microsoft Azure Data...
Experfy Online Course - Gain Competitive Advantage Using Microsoft Azure Data...Experfy Online Course - Gain Competitive Advantage Using Microsoft Azure Data...
Experfy Online Course - Gain Competitive Advantage Using Microsoft Azure Data...
Experfy
 
Spsbepoelmanssharepointbigdataclean 150421080105-conversion-gate02
Spsbepoelmanssharepointbigdataclean 150421080105-conversion-gate02Spsbepoelmanssharepointbigdataclean 150421080105-conversion-gate02
Spsbepoelmanssharepointbigdataclean 150421080105-conversion-gate02
BIWUG
 
How to build your own Delve: combining machine learning, big data and SharePoint
How to build your own Delve: combining machine learning, big data and SharePointHow to build your own Delve: combining machine learning, big data and SharePoint
How to build your own Delve: combining machine learning, big data and SharePoint
Joris Poelmans
 
Microsoft Azure BI Solutions in the Cloud
Microsoft Azure BI Solutions in the CloudMicrosoft Azure BI Solutions in the Cloud
Microsoft Azure BI Solutions in the Cloud
Mark Kromer
 
Testing Big Data: Automated ETL Testing of Hadoop
Testing Big Data: Automated ETL Testing of HadoopTesting Big Data: Automated ETL Testing of Hadoop
Testing Big Data: Automated ETL Testing of Hadoop
Bill Hayduk
 
Introduction to Data Engineering
Introduction to Data EngineeringIntroduction to Data Engineering
Introduction to Data Engineering
Durga Gadiraju
 
The Last Mile: Challenges and Opportunities in Data Tools (Strata 2014)
The Last Mile: Challenges and Opportunities in Data Tools (Strata 2014)The Last Mile: Challenges and Opportunities in Data Tools (Strata 2014)
The Last Mile: Challenges and Opportunities in Data Tools (Strata 2014)
DataPad Inc.
 
Web Briefing: Unlock the power of Hadoop to enable interactive analytics
Web Briefing: Unlock the power of Hadoop to enable interactive analyticsWeb Briefing: Unlock the power of Hadoop to enable interactive analytics
Web Briefing: Unlock the power of Hadoop to enable interactive analytics
Kognitio
 
Developing Enterprise Consciousness: Building Modern Open Data Platforms
Developing Enterprise Consciousness: Building Modern Open Data PlatformsDeveloping Enterprise Consciousness: Building Modern Open Data Platforms
Developing Enterprise Consciousness: Building Modern Open Data Platforms
ScyllaDB
 
Streaming Visualization
Streaming VisualizationStreaming Visualization
Streaming Visualization
Guido Schmutz
 
Myth Busters II: BI Tools and Data Virtualization are Interchangeable
Myth Busters II: BI Tools and Data Virtualization are InterchangeableMyth Busters II: BI Tools and Data Virtualization are Interchangeable
Myth Busters II: BI Tools and Data Virtualization are Interchangeable
Denodo
 
Modernizing Your Data Warehouse using APS
Modernizing Your Data Warehouse using APSModernizing Your Data Warehouse using APS
Modernizing Your Data Warehouse using APS
Stéphane Fréchette
 
Ad

More from Jesus Rodriguez (20)

The Emergence of DeFi Micro-Primitives
The Emergence of DeFi Micro-PrimitivesThe Emergence of DeFi Micro-Primitives
The Emergence of DeFi Micro-Primitives
Jesus Rodriguez
 
ChatGPT, Foundation Models and Web3.pptx
ChatGPT, Foundation Models and Web3.pptxChatGPT, Foundation Models and Web3.pptx
ChatGPT, Foundation Models and Web3.pptx
Jesus Rodriguez
 
DeFi Opportunities and Challenges in the Current Crypto Market
DeFi Opportunities and Challenges in the Current Crypto MarketDeFi Opportunities and Challenges in the Current Crypto Market
DeFi Opportunities and Challenges in the Current Crypto Market
Jesus Rodriguez
 
MEV Deep Dive .pptx
MEV Deep Dive .pptxMEV Deep Dive .pptx
MEV Deep Dive .pptx
Jesus Rodriguez
 
Quant in Crypto Land
Quant in Crypto LandQuant in Crypto Land
Quant in Crypto Land
Jesus Rodriguez
 
The Polygon Blockchain by the Numbers
The Polygon Blockchain by the NumbersThe Polygon Blockchain by the Numbers
The Polygon Blockchain by the Numbers
Jesus Rodriguez
 
Social Analytics for Cryptocurrencies
Social Analytics for Cryptocurrencies Social Analytics for Cryptocurrencies
Social Analytics for Cryptocurrencies
Jesus Rodriguez
 
DeFi Quant Yield-Generating Strategies
DeFi Quant Yield-Generating StrategiesDeFi Quant Yield-Generating Strategies
DeFi Quant Yield-Generating Strategies
Jesus Rodriguez
 
High Frequency Trading and DeFi
High Frequency Trading and DeFiHigh Frequency Trading and DeFi
High Frequency Trading and DeFi
Jesus Rodriguez
 
Simple DeFi Analytics Any Crypto-Investor Should Know About
Simple DeFi Analytics Any Crypto-Investor Should Know About Simple DeFi Analytics Any Crypto-Investor Should Know About
Simple DeFi Analytics Any Crypto-Investor Should Know About
Jesus Rodriguez
 
15 Minutes of DeFi Analytics
15 Minutes of DeFi Analytics15 Minutes of DeFi Analytics
15 Minutes of DeFi Analytics
Jesus Rodriguez
 
DeFi Trading Strategies: Opportunities and Challenges
DeFi Trading Strategies: Opportunities and ChallengesDeFi Trading Strategies: Opportunities and Challenges
DeFi Trading Strategies: Opportunities and Challenges
Jesus Rodriguez
 
Practical Crypto Asset Predictions rev
Practical Crypto Asset Predictions revPractical Crypto Asset Predictions rev
Practical Crypto Asset Predictions rev
Jesus Rodriguez
 
Better Technical Analysis with Blockchain Indicators
Better Technical Analysis with Blockchain IndicatorsBetter Technical Analysis with Blockchain Indicators
Better Technical Analysis with Blockchain Indicators
Jesus Rodriguez
 
Price Predictions for Cryptocurrencies
Price Predictions for CryptocurrenciesPrice Predictions for Cryptocurrencies
Price Predictions for Cryptocurrencies
Jesus Rodriguez
 
Fascinating Metrics and Analytics About Cryptocurrencies
Fascinating Metrics and Analytics About CryptocurrenciesFascinating Metrics and Analytics About Cryptocurrencies
Fascinating Metrics and Analytics About Cryptocurrencies
Jesus Rodriguez
 
Price PRedictions for Crypto-Assets Using Deep Learning
Price PRedictions for Crypto-Assets Using Deep LearningPrice PRedictions for Crypto-Assets Using Deep Learning
Price PRedictions for Crypto-Assets Using Deep Learning
Jesus Rodriguez
 
Demystifying Centralized Crypto Exchanges using Data Science
Demystifying Centralized Crypto Exchanges using Data ScienceDemystifying Centralized Crypto Exchanges using Data Science
Demystifying Centralized Crypto Exchanges using Data Science
Jesus Rodriguez
 
Crypto assets are a data science heaven rev
Crypto assets are a data science heaven revCrypto assets are a data science heaven rev
Crypto assets are a data science heaven rev
Jesus Rodriguez
 
Implementing Machine Learning in the Real World
Implementing Machine Learning in the Real WorldImplementing Machine Learning in the Real World
Implementing Machine Learning in the Real World
Jesus Rodriguez
 
The Emergence of DeFi Micro-Primitives
The Emergence of DeFi Micro-PrimitivesThe Emergence of DeFi Micro-Primitives
The Emergence of DeFi Micro-Primitives
Jesus Rodriguez
 
ChatGPT, Foundation Models and Web3.pptx
ChatGPT, Foundation Models and Web3.pptxChatGPT, Foundation Models and Web3.pptx
ChatGPT, Foundation Models and Web3.pptx
Jesus Rodriguez
 
DeFi Opportunities and Challenges in the Current Crypto Market
DeFi Opportunities and Challenges in the Current Crypto MarketDeFi Opportunities and Challenges in the Current Crypto Market
DeFi Opportunities and Challenges in the Current Crypto Market
Jesus Rodriguez
 
The Polygon Blockchain by the Numbers
The Polygon Blockchain by the NumbersThe Polygon Blockchain by the Numbers
The Polygon Blockchain by the Numbers
Jesus Rodriguez
 
Social Analytics for Cryptocurrencies
Social Analytics for Cryptocurrencies Social Analytics for Cryptocurrencies
Social Analytics for Cryptocurrencies
Jesus Rodriguez
 
DeFi Quant Yield-Generating Strategies
DeFi Quant Yield-Generating StrategiesDeFi Quant Yield-Generating Strategies
DeFi Quant Yield-Generating Strategies
Jesus Rodriguez
 
High Frequency Trading and DeFi
High Frequency Trading and DeFiHigh Frequency Trading and DeFi
High Frequency Trading and DeFi
Jesus Rodriguez
 
Simple DeFi Analytics Any Crypto-Investor Should Know About
Simple DeFi Analytics Any Crypto-Investor Should Know About Simple DeFi Analytics Any Crypto-Investor Should Know About
Simple DeFi Analytics Any Crypto-Investor Should Know About
Jesus Rodriguez
 
15 Minutes of DeFi Analytics
15 Minutes of DeFi Analytics15 Minutes of DeFi Analytics
15 Minutes of DeFi Analytics
Jesus Rodriguez
 
DeFi Trading Strategies: Opportunities and Challenges
DeFi Trading Strategies: Opportunities and ChallengesDeFi Trading Strategies: Opportunities and Challenges
DeFi Trading Strategies: Opportunities and Challenges
Jesus Rodriguez
 
Practical Crypto Asset Predictions rev
Practical Crypto Asset Predictions revPractical Crypto Asset Predictions rev
Practical Crypto Asset Predictions rev
Jesus Rodriguez
 
Better Technical Analysis with Blockchain Indicators
Better Technical Analysis with Blockchain IndicatorsBetter Technical Analysis with Blockchain Indicators
Better Technical Analysis with Blockchain Indicators
Jesus Rodriguez
 
Price Predictions for Cryptocurrencies
Price Predictions for CryptocurrenciesPrice Predictions for Cryptocurrencies
Price Predictions for Cryptocurrencies
Jesus Rodriguez
 
Fascinating Metrics and Analytics About Cryptocurrencies
Fascinating Metrics and Analytics About CryptocurrenciesFascinating Metrics and Analytics About Cryptocurrencies
Fascinating Metrics and Analytics About Cryptocurrencies
Jesus Rodriguez
 
Price PRedictions for Crypto-Assets Using Deep Learning
Price PRedictions for Crypto-Assets Using Deep LearningPrice PRedictions for Crypto-Assets Using Deep Learning
Price PRedictions for Crypto-Assets Using Deep Learning
Jesus Rodriguez
 
Demystifying Centralized Crypto Exchanges using Data Science
Demystifying Centralized Crypto Exchanges using Data ScienceDemystifying Centralized Crypto Exchanges using Data Science
Demystifying Centralized Crypto Exchanges using Data Science
Jesus Rodriguez
 
Crypto assets are a data science heaven rev
Crypto assets are a data science heaven revCrypto assets are a data science heaven rev
Crypto assets are a data science heaven rev
Jesus Rodriguez
 
Implementing Machine Learning in the Real World
Implementing Machine Learning in the Real WorldImplementing Machine Learning in the Real World
Implementing Machine Learning in the Real World
Jesus Rodriguez
 

Recently uploaded (20)

Maxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINKMaxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINK
younisnoman75
 
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Andre Hora
 
Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]
saniaaftab72555
 
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Ranjan Baisak
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
Adobe Illustrator Crack FREE Download 2025 Latest Version
Adobe Illustrator Crack FREE Download 2025 Latest VersionAdobe Illustrator Crack FREE Download 2025 Latest Version
Adobe Illustrator Crack FREE Download 2025 Latest Version
kashifyounis067
 
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
ssuserb14185
 
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDesigning AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Dinusha Kumarasiri
 
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentSecure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Shubham Joshi
 
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRYLEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
NidaFarooq10
 
Solidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license codeSolidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license code
aneelaramzan63
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025
kashifyounis067
 
PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025
mu394968
 
How can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptxHow can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptx
laravinson24
 
EASEUS Partition Master Crack + License Code
EASEUS Partition Master Crack + License CodeEASEUS Partition Master Crack + License Code
EASEUS Partition Master Crack + License Code
aneelaramzan63
 
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
AxisTechnolabs
 
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Lionel Briand
 
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Eric D. Schabell
 
The Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdfThe Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdf
drewplanas10
 
Maxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINKMaxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINK
younisnoman75
 
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)
Andre Hora
 
Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]
saniaaftab72555
 
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Ranjan Baisak
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
Adobe Illustrator Crack FREE Download 2025 Latest Version
Adobe Illustrator Crack FREE Download 2025 Latest VersionAdobe Illustrator Crack FREE Download 2025 Latest Version
Adobe Illustrator Crack FREE Download 2025 Latest Version
kashifyounis067
 
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
ssuserb14185
 
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDesigning AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Dinusha Kumarasiri
 
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentSecure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Shubham Joshi
 
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRYLEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
NidaFarooq10
 
Solidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license codeSolidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license code
aneelaramzan63
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025
kashifyounis067
 
PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025
mu394968
 
How can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptxHow can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptx
laravinson24
 
EASEUS Partition Master Crack + License Code
EASEUS Partition Master Crack + License CodeEASEUS Partition Master Crack + License Code
EASEUS Partition Master Crack + License Code
aneelaramzan63
 
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
AxisTechnolabs
 
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Lionel Briand
 
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Eric D. Schabell
 
The Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdfThe Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdf
drewplanas10
 

Building a Big Data Pipeline

  • 1. Building a Modern Big Data & Advanced Analytics Pipeline (Ideas for building UDAP)
  • 2. About Us • Emerging technology firm focused on helping enterprises build breakthrough software solutions • Building software solutions powered by disruptive enterprise software trends -Machine learning and data science -Cyber-security -Enterprise IOT -Powered by Cloud and Mobile • Bringing innovation from startups and academic institutions to the enterprise • Award winning agencies: Inc 500, American Business Awards, International Business Awards
  • 3. • The principles of big data and advanced analytics pipelines • Some inspiration • Capabilities • Building a big data and advanced analytics pipeline Agenda
  • 4. The principles of an enterprise big data infrastructure
  • 6. There are only a few technology choices….
  • 9. Netflix Data Access Data Fetching: Falcor(https://github.com/Ne tflix/falcor ) Data Streaming: Apache Kafka (http://kafka.apache.org/ ) Federated Job Execution Engine: Genie(https://github.com/Net flix/genie ) Data Infrastructure Data Lakes: Apache Hadoop (http://hadoop.apache.org/ ) Data Compute: Apache Spark SQL Querying: Presto (https://prestodb.io/ ) Data Discovery : Metacat Data Science Multidimensional analysis: Druid (http://druid.io/ ) Data Visualization: Sting Machine learning: Scikit- learn( http://scikit- learn.org/stable/ ) Tools & Solutions Netflix big data portal Hadoop Search: Inviso(https://github.com/Net flix/inviso ) Workflow visualization (https://github.com/Netflix/Li pstick )
  • 13. Spotify Data Access Data Fetching: GraphQL(https://facebook.git hub.io/react/blog/2015/05/0 1/graphql-introduction.html ) Data Streaming: Apache Kafka (http://kafka.apache.org/ ) Data Infrastructure Data Lakes: Apache Hadoop (http://hadoop.apache.org/ ) Data Compute: Apache Spark SQL Aggregation: Apache Crunch(https://crunch.apache .org/ ) Fast Data Access: Apache Cassandra(http://cassandra.a pache.org/ ) Workflow Manager :Luigi(https://github.com/spo tify/luigi ) Data Transformation: Apache Falcon(http://hortonworks.co m/hadoop/falcon/ ) Data Science Data Visualization: Sting Machine learning: Spark MLib( http://scikit- learn.org/stable/ ) Data Discovery: Raynor Tools & Solutions Hadoop Search: Inviso(https://github.com/Net flix/inviso )
  • 15. LinkedIn Data Access Data Streaming: Apache Kafka (http://kafka.apache.org/ ) Data Fetching: GraphQL(https://facebook.git hub.io/react/blog/2015/05/0 1/graphql-introduction.html ) Data Infrastructure Data Lakes: Apache Hadoop (http://hadoop.apache.org/ ) Data Compute: Apache Spark(http://www.project- voldemort.com/voldemort/ ) Fast Data Access: Voldemort(http://cassandra.a pache.org/ ) Stream Analytics : Apache Samza(http://samza.apache.o rg/ ) Real Time Search : Zoie (http://javasoze.github.io/zoi e/ ) Data Science Multidimensional analysis: Druid (http://druid.io/ ) Data Visualization: Sting Machine learning: Scikit- learn( http://scikit- learn.org/stable/ ) Data Discovery: Raynor Tools & Solutions Hadoop Search: Inviso(https://github.com/Net flix/inviso )
  • 16. LinkedIn Stream Data Processing
  • 18. Goldman Sachs Data Access Data Fetching: GraphQL(https://facebook.git hub.io/react/blog/2015/05/0 1/graphql-introduction.html ) Data Streaming: Apache Kafka (http://kafka.apache.org/ ) Data Infrastructure Data Lakes: Apache Hadoop/HBase (http://hadoop.apache.org/ ) Data Compute: Apache Spark Data Transformation: Apache Pig(http://hortonworks.com/ hadoop/falcon/ ) Stream Analytics: Apache Storm (http://storm.apache.org/ ) Data Science Multidimensional analysis: Druid (http://druid.io/ ) Data Visualization: Sting Machine learning: Spark MLib( http://scikit- learn.org/stable/ ) Data Discovery: Custom data catalog Tools & Solutions Secure data exchange: Symphony (http://www.goldmansachs.co m/what-we- do/engineering/see-our- work/inside-symphony.html )
  • 19. Goldman Sachs Data Exchange Architecture
  • 20. Capabilities of a big data pipeline
  • 22. • Provide the foundation for data collection and data ingestion methods at an enterprise scale • Support different data collection models in a consistent architecture • Incorporate and remove data sources without impacting the overall infrastructure Goals
  • 23. • On-demand data access • Batch data access • Stream data access • Data transformation Foundational Capabilities
  • 24. • Enable standard data access protocols for line of business systems • Empower client applications with data querying capabilities • Provide data access infrastructure building blocks such as caching across business data sources On-Demand Data Access Best Practices Interesting Technologies • GraphQL(https://facebook.github.io/ react/blog/2015/05/01/graphql- introduction.html ) • Odata(http://odata.org ) • Falcor (http://netflix.github.io/falcor/ )
  • 25. • Enable agile ETL models • Support federated job processing Batch Data Access Best Practices Interesting Technologies • Genie(https://github.com/Netfl ix/genie ) • Luigi(https://github.com/spoti fy/luigi ) • Apache Pig(https://pig.apache.org/ )
  • 26. • Enable streaming data from line of business systems • Provide the infrastructure to incorporate new data sources such as sensors, web streams etc • Provide a consistent model for data integration between line of business systems Stream Data Access Best Practices Interesting Technologies • Apache Kafka(http://kafka.apache.org/ ) • RabbitMQ(https://www.rabbit mq.com/ ) • ZeroMQ(http://zeromq.org/ ) • Many others….
  • 27. • Enable federated aggregation of disparate data sources • Focus on small data sources • Enable standard protocols to access the federated data sources Data Virtualization Best Practices Interesting Technologies • Denodo(http://www.denodo.co m/en ) • JBoss Data Virtualization(http://www.jbos s.org/products/datavirt/overvie w/ )
  • 29. • Store heterogeneous business data at scale • Provide consistent models to aggregate and compose data sources from different data sources • Manage and curate business data sources • Discover and consume data available in your organization Goals
  • 30. • Data lakes • Data quality • Data discovery • Data transformation Foundational Capabilities
  • 31. • Focus on complementing and expanding our data warehouse capabilities • Optimize the data lake to incorporate heterogeneous data sources • Support multiple data ingestion models • Consider a hybrid cloud strategy (pilot vs. production ) Data Lakes Best Practices Interesting Technologies • Hadoop(http://hadoop.apache.org/ ) • Hive(https://hive.apache.org/ ) • Hbase(https://hbase.apache.org/ ) • Spark(http://spark.apache.org/ ) • Greenplum(http://greenplum.org/ ) • Many others….
  • 32. • Avoid traditional data quality methodologies • Leverage machine learning to streamline data quality rules • Leverage modern data quality platforms • Crowsourced vs. centralized data quality models Data Quality Best Practices Interesting Technologies • Trifacta(http://trifacta.com ) • Tamr(http://tamr.com ) • Alation(https://alation.com/ ) • Paxata(http://www.paxata.com/ )
  • 33. • Master management solutions don’t work with modern data sources • Promote crow-sourced vs. centralized data publishing • Focus on user experience • Consider build vs. buy options Data Discovery Best Practices Interesting Technologies • Tamr(http://tamr.com ) • Custom solutions… • Spotify Raynor • Netflix big data portal
  • 34. • Enable programmable ETLs • Support data transformations for both batch and real time data sources • Agility over robustness Data Transformations Best Practices Interesting Technologies • Apache Pig(https://pig.apache.org/ ) • Streamsets(https://streamsets. com/ ) • Apache Spark (http://spark.apache.org/ )
  • 36. • Discover insights of business data sources • Integrate machine learning capabilities as part of the enterprise data pipeline • Provide the foundation for predictive analytic capabilities across the enterprise • Enable programmatic execution of machine learning models Goals
  • 37. • Data visualization & self-service BI • Predictive analytics • Stream analytics • Proactive analytics Foundational Capabilities
  • 38. • Access business data sources from mainstream data visualization tools like Excel , Tableau, QlickView, Datameer, etc. • Publish data visualizations so that they can be discovered by other information workers • Embed visualization as part of existing line of business solutions Data Visualization and Self-Service BI Best Practices Interesting Technologies • Tableau(http://www.tableau.com/ ) • PowerBI(https://powerbi.microsoft.co m/en-us/ ) • Datameer(http://www.datameer.com/ ) • QlikView(http://www.qlik.com/ ) • Visualization libraries • ….
  • 39. • Implement the tools and frameworks to author machine learning models using business data sources • Expose predictive models via programmable APIs • Provide the infrastructure to test, train and evaluate machine learning models Predictive Analytics Best Practices Interesting Technologies • Spark Mlib(http://spark.apache.org/docs/la test/mllib-guide.html ) • Scikit-Learn(http://scikit-learn.org/ ) • Dato(https://dato.com/ ) • H20.ai(http://www.h2o.ai/ ) • ….
  • 40. • Aggregate data real time from diverse data sources • Model static queries over dynamic streams of data • Create simulations and replays of real data streams Stream Analytics Best Practices Interesting Technologies • Apache Storm(http://storm.apache.org/ ) • Spark Streaming (http://spark.apache.org/streaming/ ) • Apache Samza(http://samza.apache.org/ ) • ….
  • 41. • Automate actions based on the output of predictive models • Use programmatic models to script proactive analytics business rules • Continuously test and validate proactive rules Proactive Analytics Best Practices Interesting Technologies • Spark Mlib(http://spark.apache.org/d ocs/latest/mllib-guide.html ) • Scikit-Learn(http://scikit- learn.org/ )
  • 43. • Leverage a consistent data pipeline as part of all solutions • Empower different teams to contribute to different aspects of the big data pipeline • Keep track of key metrics about the big data pipeline such as time to deliver solutions, data volume over time, data quality metrics, etc Enterprise Data Solutions
  • 44. • Data discovery • Data quality • Data testing tools • … Some Examples
  • 45. • Mobile analytics • Embedded analytics capabilities (ex: Salesforce Wave, Workday) • Aggregation with external sources • Video & image analytics • Deep learning • …. Other Interesting Capabilities
  • 46. Building a big data and advanced analytics pipeline
  • 47. Infrastructure-Driven Data Storage Data Aggregation Data Transformation Data Discovery Others… Stream Analytics Predictive Analytics Proactive Analytics Others… Real time data access Batch data access Stream data access Solution Solution Solution Data Access Data Infrastructure Data Science Solutions
  • 48. Domain-Driven Data Storage Data Aggregation Data Transformation Data Discovery Others… Stream Analytics Predictive Analytics Proactive Analytics Others… Real time data access Batch data access Stream data access Solution Solution Solution Data Access Data Infrastructure Data Science Solutions
  • 49. • Lead by the architecture team • Military discipline • Commitment from business stakeholders Infrastructure-Drives vs. Domain-Driven Approaches Infrastructure-Driven Domain-Driven • Federated data teams • Rapid releases • Pervasive communications
  • 50. • Establish a vision across all levels of the data pipeline • You can’t buy everything…Is likely you will build custom data infrastructure building blocks • Deliver infrastructure and functional capabilities incrementally • Establish a data innovation group responsible for piloting infrastructure capabilities ahead of production schedules • Encourage adoption even in early stages • Iterate Some General Rules
  • 51. Summary • Big data and advanced analytics pipelines are based on 4 fundamental elements: data access, data infrastructure, data science, data solutions…. • A lot of inspiration can be learned from the big data solutions built by lead internet vendors • Establish a common vision and mission • Start small….iterate….